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In [1] and [2] Anderson and Darling proposed the use of the statistic
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for testing the hypothesis that a sample of size # has been drawn from a popula-
tion with a specified continuous cumulative distribution function G(z). In (1)
G.(z) is the empirical distribution function defined on the sample of size n.

We consider here the problem of determining and tabulating the distribution
function, F(z; n) = Pr {W> < 2z}, of this statistic. In [1], the asymptotic dis-
tribution of this statistic under the null hypothesis was derived and, rewritten
in a form convenient for computation, it is given by
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Using the calculated values of the a;’s and b;’s, and the fact that

[ ") dy < 3 (n)! exp [2/8),

it can be determined that no more than two terms of the sum (j = 0, 1) are
needed to evaluate F(z; o) tofive decimal places over the range of z which is of
interest. This range is 0 < z < 8, since for all n, F(8; n) = 1.000, rounded to
three decimal places. The integral in each term of the sum was evaluated numeri-
cally using Hermite-Gauss quadrature numerical-integration formulas (p. 327 of
[3], [4]). This method of numerical integration is very efficient in terms of com-
puting time and gives sufficient accuracy to determine F(z; ) to five decimal

places. \
The results of these calculations of F(z; » ), rounded to four decimal places,

Received November 23, 1960; revised June 13, 1961.
1 Present address: IBM Research Laboratory, Monterey and Cottle Roads, San Jose 14,

California.
' 1118

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&

&4

The Annals of Mathematical Statistics. IIKOJS ®

WWW.jstor.org



ANDERSON-DARLING STATISTIC 1119

are given in the last column of Table I which appears at the end of this article.
The asymptotic significance points given in [2] were verified and are shown in
Table II.

An equivalent form of the statistic W, is given by

(4) Wh =
—n — (n7) fi' [(2e — DInG(X»)) + (2(n — 1) + DIn(1 — G(X»))],

where the X ;) are the order statistics of a sample of size n. It is well known that,
under the null-hypothesis, the transformation G(X ;) takes the X into the
order statistics U¢; of a sample of size n from a population with the uniform
(0, 1) distribution, giving '

(5) Wi=—-n—@" zi—l (20 — DIn Uy + (2(n — 1) + DIn (1— U)].

This shows clearly the distribution-free property of this statistic under the null
hypothesis, and allows us to determine very simply that, for any =, the mini-
mum value which the random variable W2 can attain is

(6) 2z (min) = —n — 711, En: In [(2%'2; 1)“‘1 (g_m_:z___w)z(n—nﬂ] .

t=1

These values are tabulated in Table IT (following Table I), in the row entitled

F(z) = 0.
From equation (5), we find that
) Wi=—-1-h[U1 - D)),

where U is uniform (0, 1), so that

3
(8) F(z,1) = Pr{Wi < 2} = {(()1 T tewl-e 1)]): i ; Zggggg

Values of F(z, 1), rounded to three decimal places, are given in Table I.

For n = 2 and finite, resort was had to synthetic sampling (Monte Carlo)
methods on an IBM 704 Computer to determine the distribution function
F(z;n) = Pr{W?} < 2}. This is done, using equation (5), by artificially generat-
ing m samples of size » from a uniform distribution. The result of this process
is an empirical distribution function, F.(z; n), which is used as an estimate of
F(z;n). The F,.(z;n) are tabulated in Table I forn = 2up ton = 8.

It is necessary to make a determination of the accuracy of these estimates
F.(z;n) of F(z;n) for a given m. This can be done in either of two ways, as
follows:

(1). For very large m, mF,(z; n) is approximately normally distributed,
with mean mF(z; n) and variance mF(z; m) (1 — F(z; m)). Therefore a con-
fidence interval with confidence coefficient 1 — « for F(z; n), at any point ¢,
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is given by
(9) {F(z;n) £ rap(F(2) (1 — F(2))l/m)}}.

In this expression {.,. is the upper —a/2 point of the N(0, 1) distribution. In
most tables the “error’” estimate used is essentially the above confidence interval
with confidence coefficient 0.6868, i.e., {42 = 1. Now F(z; n) is unknown, but
F(z;n) (1 — F(z;n)) is maximum at F(z;n) = 0.5, so that to keep this ‘“‘error”
less than or equal to .0005 over the range of z, one requires an m = 10°

(2). Another means of evaluating the error is by using the Kolmogorov-
Smirnov statistic, from which, for large m, we can say that we are 95 percent
sure that Fn(z; n) will stay within 1.36(m)_* of the true distribution F(z; n)
for all 2, i.e., over the entire distribution. Therefore to make this statement for
a deviation of .0005, we need m = 7.398 X 10°.

Unfortunately the time available for computation limited the value of m
used in these computations to m = 10° for n = 2, and to m = .25 X 10° for
n = 3,4,5, 6,7, and 8. Thus, using the Kolmogorov-Smirnov criterion, the
values F.,.(z; 2) given in Table I are within .00163 of F(z, 2) with probability
0.95, and for n = 3, 4, 5, 6, 7, and 8 the values F,.(z, n) are within .00326 of
F(z; n) with probability 0.95.

Determination of the distribution of W% for n > 8 by Monte Carlo methods
is prohibitive, since for n = 8 and m = 250,000, six hours of computing time
were required. This is quite indicative of the inefficiency and impracticability
of simple Monte Carlo methods as a means of solving distribution theory prob-
lems when the entire distribution function is required with great accuracy.
Furthermore, it is doubtful whether modified Monte Carlo methods ([5], [6],
[71) could be used to advantage here.

Fortunately the convergence of the distribution of W to its asymptotic dis-
tribution is quite rapid. Thus, from Table I the maximum deviation at the tabu-
lated points between the asymptotic distribution and the distribution forn = 8
is approximately 0.006. For F(z) = 0.8, which is of most interest, this difference
is only 0.001, so that for practical purposes the asymptotic distribution can be
used for n > 8.

Significance points for W2 are given in Table II, for significance levels 0.100,
0.050, 0.010. For n = 1 and n — « these values are exact; the others are obtained
by inverse interpolation from Table I and are only approximate.

Acknowledgments. I wish to thank Mr. H. Serenson for his help in program-
ming this problem.
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TABLE I - Values of F{z; n) - Exact for n = | and n-»09; Estimated for n = 2,3,4,5,6,7,and 8

n ¥(z; n)

2 1 2 3 4 5 6 7 8 n—»o0
. 025 0.0000
. 050 0.0000
. 075 0.0000
. 100 0.000 0.0000
. 125 0.000 0.000 0.000 0.0003
. 150 0.000 0.001 0.001 0.001 0.0014
. 175 0.001 0.003 0.003 0.003 0.004 0.0042
. 200 0.008 0.007 0.008 0.009 0.008 0.009 0.0096
. 225 0.016 0.016 0.016 0.017 0.017 0.017 0.0180
. 250 0.001 0.028 0.028 0.028 0.029 0. 029 0.029 0.0296
.275 0.030 0.044 0.043 0.044 0.044 0.044 0.045 0.0443
. 300 0. 059 0.063 0.063 0.063 0.062 0.062 0.063 0.0618
. 325 0.087 0.083 0.085 0.083 0.084 0.083 0.084 0,.0817
. 350 0.115 0.106 0.109 0.106 0.106 0.106 0.106 0.1036
. 375 0. 142 0.130 0.134 0.130 0.131 0.130 0.130 0.1269
. 400 0.116 0.169 0. 159 0.161 0.156 0.156 0. 155 0. 155 0.1513
. 425 0.195 0.196 0.187 0.187 0.182 0.182 0.181 0.181 0.1764
. 450 0. 248 0. 222 0.217 0.212 0.208 0.208 0. 207 0. 207 0.2019
. 475 0.291 0.248 0. 248 0.238 0.235 0.234 0.233 0.233 0.2276
. 500 0. 328 0.273 0.271 0.264 0. 261 0. 260 0. 259 0. 259 0.2532
. 525 0. 360 0.298 0.295 0.289 0.287 0. 285 0. 284 0. 284 0.2786
. 550 0. 389 0. 323 0. 320 0. 314 0. 312 0. 310 0. 309 0. 309 0.3036
. 575 0. 415 0. 347 0. 345 0. 340 0. 337 0. 335 0.334 0. 334 0. 3281
. 600 0. 439 0. 371 0. 371 0. 364 0. 361 0. 359 0. 358 0. 358 0. 3520
. 625 0.461 0. 394 0. 396 0. 387 0. 384 0. 382 0. 381 0. 381 0.3753
. 650 0. 481 0.418 0. 418 0. 410 0. 407 0. 404 0.403 0. 404 0. 3980
. 675 0.501 0. 440 0.439 0. 431 0. 429 0. 426 0. 424 0. 425 0. 4199
. 700 0.519 0. 463 0. 459 0. 452 0. 449 0. 446 0. 446 0. 446 0. 4412
. 750 0.552 0. 507 0. 496 0.491 0. 489 0. 486 0. 486 0. 487 0. 4815
. 800 0.582 0. 547 0.530 0.528 0.525 0.524 0.523 0.523 0.5190
.850 0. 609 0.580 0.567 0.563 0.559 0. 559 0. 557 0.557 0. 5537
.900 0. 634 0.610 0.598 0.593 0.591 0. 590 0.588 0. 589 0.5858
. 950 0. 656 0. 636 0.626 0. 622 0. 620 0.619 0.618 0.619 0.6154

1. 000 0.677 0. 660 0.652 0.648 0. 647 0. 646 0.645 . 0.646 0. 6427
1. 050 0. 696 0. 683 0. 676 0.673 0.672 0.671 0. 669 0.670 0. 6680
1.100 0.714 0.703 0.698 0. 696 0. 694 0. 695 0.693 0. 694 0.6912
1. 150 0.731 0. 722 0.719 0.717 0.715 0.716 0.714 0.714 0.7127
1. 200 .0. 746 0.739 0.738 0.736 0.734 0.735 0.734 0.733 0.7324
1. 250 0.761 0.756 0. 755 0.754 0.752 0.753 6. 752 0,751 0.7508
1. 300 0.774 0.770 0.770 0.770 0.768 0.770 0.768 0.769 0.7677
1. 350 0. 786 0.784 0.785 0. 785 0.784 0.785 0.784 0.784 0.7833
1. 400 0.798 0.798 0.799 0.799 0.798 0.799 0.798 0. 798 0.7978
1. 450 0. 809 0. 809 0.811 0.812 0.811 0.812 0.812 0.811 0.8111
1.500 0. 820 0. 821 0. 823 0. 824 0.824 0. 824 0. 824 0. 824 0. 8235
1.550 0. 829 0.831 0.833 0.835 0.835 0.835 0.835 0.835 0.8350
1. 600 0.838 0. 842 0. 843 0. 845 0. 845 0. 845 0. 846 0. 846 0. 8457
1. 650 0. 847 0.851 0.852 0.855 0. 854 0. 855 0. 855 0. 855 0.8556
1.700 0. 855 0. 860 0.861 0.864 0.864 0.864 0.864 0.864 0.8648
1.750 0.863 0.868 0. 869 0.872 0.872 0.872 0.873 0.873 0.8734
1.800 0.870 0.875 0.877 0.880 0.880 0. 880 0. 880 0.881 0.8814
1. 850 0.877 0.883 0. 884 0. 887 0,887 0.887 0.888 0. 888 0. 8888
1.900 0.883 0. 889 0. 891 0.894 0. 894 0.894 0. 895 0. 895 0. 8957
1.950 0. 889 0. 896 0.898 0.900 0.901 0.900 0.901 0.901 0.9021
2.000 | 0.895 0.902 0.904 0.906 0.907 0.906 0.907 0.907 0. 9082
2.050 0.900 0.907 0.909 0.912 0.912 0.912 0.913 0.913 0.9138
2.100 0.905 0.912 0.915 0.917 0.917 0.918 0.918 0.918 0.9190
2.150 0.910 0.917 0.920 0.922 0.922 0.923 0.922 0.923 0.9239
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TABLE I (Continued)

F(z; n)
n

1 2 3 4 5 6 7 8 n - »
2.200 0.915 0.922 0.924 0.926 0.927 0.927 0.927 0.927 0.9285
2.250 0.919 0.926 0.928 0.931 0.931 0.931 0.931 0.931 0.9328
2. 300 0.923 0.930 0.933 0.935 0.935 0.935 0.935 0.935 0.9368
2. 350 0.927 0.934 0.937 0.939 0.939 0.939 0.939 0.939 0.9405
2. 400 0.931 0.938 0.940 0.942 0.942 0.942 0.942 0.942 0.9441
2. 450 0.934 0.941 0.943 0.945 0.945 0.946 0.946 0.945 0.9474
2.500 0.938 0.944 0.947 0.948 0.949 0.949 0.949 0.949 0.9504
2.550 0.941 0.948 0.950 0.951 0.951 0.952 0.952 0.952 0.9534
2. 600 0.944 0.950 0.953 0.954 0.954 0.954 0.955 0.954 0.9561
2. 650 0.947 0.953 0.955 0.957 0.957 0.957 0.957 0.957 0.9586
2.700 0.949 0.956 0.958 0.959 0.959 0.959 0.960 0.959 0.9610
2.750 0.952 0.958 0.960 0.961 0.961 0.961 0.062 0.962 0.9633
2. 800 0.954 0.960 0.962 0.964 0.964 0.964 0.964 0.964 0.9654
2.850 0.957 0.962 0.964 0.965 0.965 0.965 0.966 0.966 0.9674
2.900 0.959 0.964 0.966 0.967 0.967 0.967 0.968 0.968 0.9692
2.950 0.961 0.966 0.968 0.969 0.969 0.969 0.970 0.969 0.9710
3.000 0.963 0.968 0.970 0.971 0.971 0.971 0.971 0.971  0.9726
3.050 0.965 0.970 0.972 0.972 0.972 0.972 0.973 0.973 0.9742
3.100 0.966 0.971 0.973 0.974 0.974 0.974 0.975 0.974 0.9756
3,150 0.968 0.973 0.975 0.975 0.975 0.975 0.976 0.976 0.9770
3,200 0.970 0.974 0.976 0.977 0.977 0.977 0.977 0.977 0.9783
3,250 0.971 0.075 0.978 0.978 0.978 0.978 0.978 0.978 0.9795
3. 300 0.973 0.977 0.979 0.979 ,0.979 0.979 0.979 0.979 0.9807
3,350 0.974 0.978 0.980 0.980 0.980 0.980 0.981 0.980 0.9818
3. 400 0.975 0.979 0.981 0.981 0.981 0.981 0.982 0.981 0.9828
3. 450 0.976 0.980 0.982 0.982 0.982 0.982 0.983 0.983 0.9837
3.500 0.978 0.981 0.983 0.983 0.983 0.983 0.983 0.984 0.9846
2,550 0.979 0.982 0.984 0.984 0.984 0.984 0.984 0.984 0.9855
3.600 0.980 0.983 0.985 0.985 0.985 0.985 0.985 0.985 0.9863
3. 650 0.981 0.984 0.986 0.986 0.986 0.986 0.986 0.986 0.9870
3.700 0.982 0.985 0.986 0.986 -0.987 0.986 0.987 0.987 0.9878
3.750 0.983 0.98 0.987 0.987 0.987 0.987 0.987 0.988 0.9884
3.800 0.983 0.986 0.988 0.988 0.988 0.988 0.988 0.988 0.9891
3.850 0.984 0.987 0.988 0.988 0.989 0.988 0.989 0.989 0.9897
3.900 0.985 0.988 0.989 0.989 0.989 0.989 0.989 0.989 0.9902
3.950 0.986 0.988 0.990 0.989 0.990 0.990 0.990 0.990 0.9908
4.000 0.986 0.989 0.990 0.990 0.990 0.990 0.990 0.990 0.9913
4,050 0.987 0.990 0.990 0.990 0.991 0.991 0.991 0.991 0.9917
4.100 0.988 0.990 0.991 0.991 0.991 0.991 0.991 0.991  0.9922
4.150 0.988 0.991 0.991 0.991 0.992 0.992 0.992 0.992 0.9926
4,200 0.989 0.991 0.992 0.992 0.992 0.992 0.992 0.992 0.9930
4,250 0.989 0.992 0.992 0.992 0.993 0.992 0.993 0.993 0.9934
4, 300 0.990 0.992 0.993 0.993 0.993 0.993 0.933 0.993 0.9938
4. 350 0.991 0.992 0.993 0.993 0.993 0.993 0.993 0.993 0.9941
4. 400 0.991 0.992 0.993 0.993 0.994 0.993 0.993 0.994 0.9944
4,500 0.992 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.9950
4. 600 0.993 0.994 0.995 0.995 0.995 0.995 0.995 0.995 0.9955
4.700 0.993 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.9960
4,800 0.994 0.995 0.996 0.996 0.996 0.996 0.996 0.996 0.9964
4.900 0.995 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.9968
5.000 0.995 0.996 0.996 0.997 0.996 0.996 0.996 0.997 0.9971
5.500 0.997 0.998 0.998 0.998 0.998 0.998 0.988 0.998 0.9983
6. 000 0.998 0.999 0.998 0.999 0.999 0.999 0.999 0.999 0.9990
7.0C0 0.998 1.000 0.999 0.999 0.999 0.999 1.000 0.999 0.9997
8. 000 0.999 1. 000 1. 000 1.000 1.000 1.000 1.000 1.000 0.9999
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TABLE 1I - Significance Points and Values of z(min.)

a=vt( F(z))

F(z! 2 1 2 3 4 5 6 1 8 n-» o
i ] 0.3863 0.2493 0.1885 0.1533 0.1304 0.1135 0,1043 0,0911 0
+90 2.0470 1.98 1.97 1.95 1.94 1.95 1.94 1.94 1.933
+95 2.7142 2.60 2.55 2.53 2.53 2.52 2.52 2.52 2.492
.99 4.3033 4.10 4.00 4,00 3.95 3.95 3.95 3.95 3,857



