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1. Summary. In this paper, a new nonparametric test for the problem of ¢
samples is offered. It is based upon the numbers of ¢c-plets that can be formed by
choosing one observation from each sample such that the observation from the
“ith sample is the least, ¢ = 1,2, - - - , ¢. The asymptotic distribution of the new
test statistic is derived by an application of the extension of Hoeffding’s theorem
[4] on U-statistics to the case of ¢ samples. The asymptotic power and the
asymptotic efficienciés of this test relative to the Kruskal-Wallis H-test [7] and
the Mood-Brown M-test [10] are computed in standard fashion along the lines
of Andrews’ paper [1].

2. Introduction. Let i, %w, - -+, Tin; be independent (real-valued) obser-
vations from the ¢th population with c¢.d.f. F;,72 = 1,2, - - - , ¢, and suppose that
these ¢ samples are independent. The F’s are assumed to be continuous. We
consider a certain nonparametric test for the hypothesis

Ko:F1=F2= s =Fc.

If we assume that the populations are approximately of the same form, in the
sense that if they differ it is by a shift or translation, then we may say that we
are testing for the equality of location parameters. References to prior work
on several-sample tests and some of the recent work may be found in [2], [6],
[7], [8], and [10].

Let v be the number of c-plets that can be formed by choosing one observa-
tion from each sample such that the observation from the ¢th sample is the least.
Then

(2.1) v = > I {number of z., > =.;, s=1,2 - ni.

j=1 rs1

The new test-statistic proposed is
c c 2
(22) V =N(2—1) [Z} pi(u® — ¢ — {; pi(u®? — c‘l)} ]

where N = D>_;n:, p: = ny/N and u® = v”/(nm; - - - n,). When the hypothesis
K, is true, it will be seen that the expectation of each 4 is 1/¢c. Thus, V may
be considered as a measure of deviation from K,. The motivation behind the
use of the v’s is simply to generalize, to the case of several samples, the Wilcoxon
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[12] statistic for two samples (the number of times observations in the first
sample are smaller than observations in the second sample). The test consists
in rejecting Ko at a significance level « if V exceeds some predetermined number
V« . In the next section it is shown that, when K, is true, V is asymptotically
distributed as a x* variable with ¢ — 1 degrees of freedom. Thus, a large sample
approximation for V, is provided by the upper a-point of the x* distribution
with ¢ — 1 degrees of freedom. It is conjectured that this approximation is
relatively close even for samples of moderate size.

3. The asymptotic distribution of V under K, . It will be seen that
(1) ni ng Ne (z)
(31) v = Z Z e Z ¢ (xltl y X2tg 5 * xct;))
t1=1 to=1 t =1

where

(%)
¢ i (xlll ) x2t2) MY xctc)

(3.2) 1 if 2y, < gy, forall k=1,---,cexcept <
"~ 10 otherwise.

Thus, u® is a generalized U-statistic [11] corresponding to 4. We shall make
use of the following generalization of Hoeffding’s theorem [4] on U-statistics

to the case of ¢ samples:
Lemma 3.1. Let X;5,5 = 1,2, -+, n; for a fixed © be independent (real or
vector) random variables identically distributed with c¢df. F;. ¢ =1,2,---, c.

Further, let Y ;n; = N and

—1
c n; %
l(vr) = [H ( (r)>j| Z ¢(T)(Xla1 y T Xlamf');
m;

=1

X251’ "'7X2ﬂm§'); '”;Xﬂh; "'7Xv5m§’)); r= 1727"';9;

where each ¢ is a function symmetric in each set of its arguments and D * denotes
the sum over all combinations (oq, -, amy)) of ms” integers chosen from
(1,2, .-+, m) and so on for §’s, - -+, and &s. Assume that &[] = 1 and
8o < . Then

() &Us] =17,

—1 . (r8) (rs)

c ni Lo )

(ii) Cov[UY, U] = [H( (,)>] IR
i=1 \'m. dy= d =0

3
1 m\ (ni — m{’ (r. )
: $dydg,eeeido\Ts 8),y
=1\ d; ) \m{¥ — d;
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(r

9 — min (m”, m”) and

where m;
Carvdgonds (1, 8) = 867 (Xu, -y Xuay » X1ay1, Xim®; -
Xa, s Xea,r Xeags1, 5 Xem®) X 69 Xu, -+, Xy
lel(')"'l y T lel(r)‘l-ml(a)—dl 3t Xcl y " Xcdc )

(r), (3)
Xcm(')+l, cee Xcmér)+m:)-d )] — 1,'”‘

(3.3)

r,s=1,2, -+, g, i being understood that r = s gives us Var (U$), and

(ifi) N*[UN — n] 18, in the limit as N — o« in such a way that n; = Np;, i
p’s being fixed numbers such that > ips = 1, normally distributed with zero mean
and asymaptotic covariance matriz = = (o) given by

c (r), (8
(34) = Em‘ s €0,eee0,1,0,000.0 (r,s), rs=12---,¢

i=l Vi (1 at the ith place),

where Uy = (U, -+, UL) and o' = (n©, -+, 1?).

Proor. The proof of this lemma, (concerning generalized U-statistics [11]) is
a straightforward extension of the proof of Hoeffding’s theorem [4] on U-statis-
tics, and the details are omitted.

Now to apply the lemma to our problem, we note from (3.1) that

u® = 0 /g - e, i=1,2-,c¢

are generalized U-statistics with g = ¢ and m® =m® = ... = m{? = 1. Then
if Kois true, ¥ = P[X: < Xpfork = 1, -+, c except k = 4], where the X’s
are independent and identically distributed random variables, and hence

(3.5) $o,..., w0 (4,9)

(lat the zth place)
= 8[¢(‘)(X17 e 7X‘57 e Xc)¢(i)(X{7 e ;X'&'; et ;X:)] - 6_27
where again the X’s and X"’s are independent and identically distributed random
variables, so that

+,0,1,0,:44,0 (1,’5)

(l at 'the 1th place)
(3.6) =P[X; < Xy, X: <Xy all k=1,---,cexcept bk =1] — ¢’
_ (¢ —1)*
@2c —'1)’
?0,...,0,1,0,-..,0 (i, ’&.)
(1 at the jth place)

= P[X; < X, Xi < X;, Xi < Xyforallk =1, -
except iand alll = 1, -+, ¢ except ¢ and j] — ¢
= [#(2c — 1Y

(3.7
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and similarly,

fo,...,o,l'o,...,o(’l:, ])
(i5£7)

(3.8) —_°c=1 1 : - . ,
_ T aee = if 1 is at the 7th or the jth place in the row of 0’s

[¢(2¢ — 1)1 otherwise.

Thus, if K, is true, from (3.4) we have

(39) ois = [A(2 — 1) [(-c—%—lf + ;i ;1)—10] ,
and i
(3.10) o=t 0P [(TH) -2 - 2], i)

The above two relations give us
(311) (2 — DX = (X4 1/p)Jee + €D — cqfre — Jead’,

where D = diagonal (1/px, k = 1,2,--,¢),d = (1/pr, -+, 1/p.) and
Jre = (1), . Hence from (iii) in Lemma 3.1 it follows that NiU - Jen/cl,
where U’ = (u®, - -+, u), has a limiting normal distribution with zero means

’ -
and asymptotic covariance matrix = given by (3.11). But > = nmy -+ ne,

and hence w’s are subject to one linear constraint, »iz., Y ;u'” = 1. Thus the
distribution of w’s is singular and hence the asymptotic distribution is also
singular. Then X is singular; in fact it can be easily verified from (3.11) that

]'1,02 = 0. Let
N}[U/ - Jl'c/C] = b' = (b1 y "y bc—l ) bc) = (b(’) ’ bc)'

Then it follows that bgXg'bo has a limiting x* distribution with ¢ — 1 degrees
of freedom, where X, denotes the asymptotic covariance matrix of by . From

(3.11) we have
(3.12) (2 — 1)=g = aJea,em1 + ¢'Do — cqoJ1,0-1 — ¢Jo1.190

where Do = diagonal (1/px, k= 1,2, --+,¢—1),q = (1/p1, -+, 1/Pe1)

and a = Zli=1 1/ps .
Casg (i):m = ng = +-+ = n,.Then p; = 1/cand (3.12) gives (2c — 1) Eo =

cd — Jc_1,c_1 , SO t,hat
26-1 = (20 - 1/0)[1 + Jc—l,c—l])

and hence,

[ 2
(3.13) be =5 by = E(_z.cc‘_l) > (um _ %) ]

=1
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Cask (ii): Not all »’s are equal. Then qo and J.—1,; are linearly independent
and from (3.12) we have

¢’(2¢c — 1)% = ¢'Dy — EF’,

where

= [eqo, Je1al, F = [Jour1, ¢qo — Jo1,]
are both of full rank v72., two. Then

[(2c — ]2 = ¢7°Dy' — Di* EAF'DyY,
where A is given by
FF'D'E — ¢TIA = 1.

After simplification we finally have

(314) by Z; by = N(2 — 1) [; p,< ® _) {;p ( @ i)}z

It may be seen that the above expression reduces to (3.13) when ny = n, =
-+ = n.. It may be noted that the above expression is invariant under any
choice of (¢ — 1) linearly independent u’s. We have thus proved Theorem 3.1.
TrrorEM 3.1. If F, = = ««- = F,and n; = N,, , where the p’s are fived
numbers such that ) ; p; = 1 then the statistic V, defined by (2.2), has a limiting
X’ distribution with ¢ — 1 degrees of freedom as N — o,

4. Consistency of the V-test. As mentioned earlier, if we assume that the
populations are approximately of the same form, then we may say that we are
testing for the equality of location parameters. Thus, we are primarily interested
in translation-type alternatives Fi(z) = F(x — 6;),¢ = 1, 2, -+, ¢, where
the 0’s are not all equal. We shall show that the V-test is consistent against
this class of alternatives.

We first state, without proof, the following straightforward extensions of a
lemma of Lehmann ([9], p. 169).

Lemma 4.1. Let 9 = f(F1, Fo, -+, F.) be a real-valued function such that
f(F,F,--- ,F) = noforall (F,F,---,F) in aclass C. Let

Tnl ..... nc=t(Xll,"',X1n1;"';Xcly"')Xc‘nc)

be a sequence of real-valued statistics such that Th,, ..., tends to y in probability as
min (7, -+ -, n.) — . Suppose that f(Fy, Fa, ---, F,) 5% no(>no) for all
(Fy, Fy, -+, F.) in a class @, . Then the sequence of tests which reject when
| Tayooome = 0| > Cay,ooomg (When Tay,.ony — M0 > Cny....m,) ©8 comsistent for
testing H : @y at every fixed level of significance against the alternatives C .

Lemma 4.2. Let o f(i)(F’l y Fo, oo JF), 0 =1,2, ---, g, be real-valued
functions such that f"’(F F,--- F) = 4" forall (F,F,---,F) inaclass €.
Let T3)..m, = t°(Xu,.., Xm o Xa, oo, Xen), 8= 1, 2,--4, g, be
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sequences of real-valued statistics such that T , « -, n, tends to 29 in probability
asmin (ny, -+, n,) — . Suppose that at least one f*(Fy, Fy, -+, Fs) 5 n§°

forall (Fy,Fy, -+, F,) in a class C, . Further, let
Wn1 ..... ne — w(T'(nll)...,nc 3ttt T'(ngl.)...,nc>
0]

be a nonnegative function which is zero if, and only if, Tﬁfl)_,_,,,c = 7 for all
1 =1, .-+, g. Then the sequence of tests which reject when

1s conststent for testing H : Cq at every fixed level of significance against the alterna-
tives C; .

If we take 2 = P[X; < X;forallj = 1, -+, ¢ except 3], where the X’s
are independent random variables with continuous c.df. Fy, Fz, ---, F., re-
spectively, and T$) . .. = w?, i =1, ¢, then the convergence in prob-

ability of 4 to 7 follows from (iii) in Lemma 3.1. For the class €; of transla-
tion-type alternatives F;(z) = F(x — 0;), where the 6’s are not all equal, it
may be easily seen that n” > 1/c, where 6, is the (or one of the) least among
6, -+, 8. The V-test, thus, is seen to be consistent against the class of transla-
tion-type alternatives.

More generally, the V-test is consistent against the wider class of alternatives
for which P[X; < X forallj = 1, --- , cexcept ] # 1/c for at least one 7 among
(1, -++, ¢), where the X’s are independent random variables with continuous
cdf. Fi, Fs, ---, F., respectively.

6. The asymptotic" distribution of V under translation-type dlternatives.
Andrews [1] has investigated the asymptotic efficiencies of Kruskal’s H-test and
Mood’s M-test and has concluded that the asymptotic efficiency of one relative
to the other is = or =< 1, for the translation-type alternatives, depending on
the distribution function. It will be interesting (as suggested by Hoeffding and
the referee) to carry out similar studies on this test with respect to the two
previous tests. It is expected that the same type of conclusion will be reached.

Let us study the distribution of V, assuming a sequence of translation-type
alternative hypotheses K, forn = 1, 2, - - - . The hypothesis K, specifies that
Fix) = F(xz — n%,;),i=1,2, - ,c, where not all &s are equal. The letter
n will be used to index a sequence of situations in which K, is the true hypothesis.
The limiting probability distribution will then be found as n — .

TureoreM 5.1. For each index n assume that n; = ns; , with s; a posttive integer
and the truth of K., .

If F possesses a continuous derivative f and there exists a function g such

that
[fty + h) — fPI/R| = g(y)

and

f_: g(f(y) dy < o,
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then, for n — oo, the statistic V has a limiting noncentral x* distribution with
¢ — 1 degrees of freedom and the noncentrality parameter'

(5.1) (2c — 1)’ > 8:(6: — 8)° [f_: 1 — F)I 7 (y) dy] ,

i=1
where 8 = Z;s,-oi/z,- 8 .

Proor: Let 1% = 8¢ (X1, Xz, -+, X.)| K.]; then it can be easily shown
that

©=1_%\4omm,
c n

where

o =cli — 2 6,

k=1

and
(52) A= f_ [1 — F)I7f*(y) dy.
Similarly, it may be shown that
(5.3) E, = X+ 0(n7}),
wher(;, X is given by (3.11) and O(n ) denotes a matrix whose elements are
o(n™).

Then, in view of Lemma 3.1, N YU — n,) is, in the limit as n — «, distributed
with zero means and covariance matrix X, , or, in view of (5.3), with asymptotic
covariance matrix X. Hence N*(U — ¢™'J.,) has a limiting normal distribution
with mean-vector — (D_ s:)*\s, where & = (8, ---, 8,), and covariance
matrix . Thus V, in the limit as n — o, is distributed as a noncentral x* with
¢ — 1 degrees of freedom and the noncentrality parameter

A o= (D k sk)N'8Eq 80,
in the notation of Section 3. Since D_i 8 = 0, arguing exactly as from (3.11)
to (3.14), we see that Ay reduces to (5.1).

6. Asymptotic relative efficiency. Andrews [1] has shown that the H-statistic,
the M-statistic and the F-statistic are asymptotically distributed as noncentral
x* with ¢ — 1 degrees of freedom and noncentrality parameters Ag, Ay and
\r, respectively, where

g =12 {‘/_w F'(:c) dF'(x)}2 il 8‘(0¢ —_ 9)2,

4

A = 4lF ()T D s:(6:; — 8)°,

=1

1 This was also obtained independently by Y. S. Sathe.
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and
A= D i sl (8: — 8) /ol

where a is the median of F. -

It is now well known ([1], [3]) that in such cases the asymptotic efficiency of
one statistic relative to the other is equal to the ratio of their noncentrality
parameters. Hence, we have the asymptotic efficiencies of the V-statistic relative
to the H, M and F statistics as follows:

evg = (2c — 1) N/12 {[o F'(2) dF(x)}

evar = (2¢ — 1)N/4[F ()T,

2
’

and
evr = (2c — 1)N'oF,
respectively, where A\ is given by (5.2). These expressions are seen to be in-

dependent of the scale parameter. For the uniform distribution the efficiencies
are given by

€v,g = €y, Fr = év,M/3 = (26 - 1)62/12(6 —_ 1)2,
so that we have
c 2 3 4 5 6 10 o
ev.g 100 094 104 117 132 195 «o.
For the exponential distribution, f(y) = ¢%, 0 £ y < ®, eév,g = €v,u/3 =
ev.r/3 = (2¢ — 1)/3, so that
c 2 3 4 5 10 o
evy 100 166 233 3.00 633 .
For the normal distribution A can be computed from the Table I given by
Hojo [5] for ¢ = 13. We have
c 2 3 4 5 6 7 8 10 12 13
evy 100 094 086 080 0.74 069 065 0.58 053 051,
Whlle é;j',M = 3év,g'/2 and €y, r = 36;7,1-1/1!’.

For the normal distribution, the asymptotic efficiency of the V-statistic rela-
tive to the Kruskal-Wallis H-statistic tends to zero as the number of populations
tends to infinity. I am thankful to the referee for supplying the following indica-
tion of the proof.

OvuTLINE OF THE Proor. We must show that

n! [_w [®(2)]"(z) dz — 0 as n— .
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On integrating by parts, it is seen that
® n 2 — 1 [w n+1
[ e@ré@) d = — [ de@Ie@) i

i

1 ! n+1 4 —1

It is therefore enough to prove that

1
n*f z"®d N (z) de — 0 as n— .
0

We shall prove this using the fact that

1 ) 3
1; a"llog )] dz = (n zlr_ 1) .

It is easily seen by de ’Hospital’s rule that
7 (x)
(log (=9I
Given any ¢ > 0 there exists therefore a constant a(3 < a < 1) such that
7 (z) = dlog ()1t for a <z <1,

—0 as r— 1.

and hence

[ @ ae s e [ oliog O e 5 o (20)
E z)de < ¢ | o"llog (@ v < el75)

Finally it is easily seen that for fixed a [ 2" ' (x)dz tends to O at a faster rate
than [ " ® '(z)dz as n — . Given e and hence a, there therefore exist ng so
that n = no implies

1 . - 1 . o0 3
nx— oy — <
lxcp (x)dx=2L P (x)dx=2e<n+1)

and this completes the proof.
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