THE CHOICE OF THE DEGREE OF A POLYNOMIAL REGRESSION
AS A MULTIPLE DECISION PROBLEM!

By T. W. ANDERSON
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0. Summary. On the basis of a sample of observations, an investigator wants
to determine the appropriate degree of a polynomial in the index, say time, to
represent the regression of the observable variable. This multiple decision
problem is formulated in terms used in the theory of testing hypotheses. Given
the degree of polynomial regression, the probability of deciding a higher degree
is specified and does not depend on what the actual polynomial is (except its
degree). Within the class of procedures satisfying these conditions and symmetry
(or two-sidedness) conditions, the probabilities of correct decisions are maximized.
The optimal procedure is to test in sequence whether coefficients are 0, starting
with the highest (specified) degree. The procedure holds for other linear re-
gression functions when the independent variates are ordered. The problem and
its solution can be generalized to the multivariate case and to other cases with a
certain structure of sufficient statistics.

1. The problem. A frequent problem in regression analysis is to determine
how many independent variables to include in the fitted regression function. In
some cases the independent variables are ordered in importance or usefulness.
We consider here the example in which the independent variables are successive
powers of the observation index, say time. Usually, if a particular power is in-
cluded in the regression function, all lower powers are included. In this note we
study the problem of determining how many powers to include, that is, the
degree of the polynomial regression.

This problem is typical of some other multiple decision problems in which the
alternatives are ordered or ranked. After formulating and solving the problem
of the choice of polynomial regression, we shall see that the ideas apply to other
situations in which there is a certain structure of sufficient statistics.

Let 31, -+, yr be the observed “dependent” variables, normally and in-
dependently distributed with common variance ¢ and expected values
(1) 8y, = 7@0(0 + 7l¢l(t) + -+ 'Yq¢q(t): t=1,--- ) T)

where ¢:(¢) is a polynomial of degree i. In case the independent variables are
ordered such as powers of ¢, one can orthogonalize them without effecting the
regression function (except changing the coefficients). We take the polynomials
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orthogonal and normalized; that is,

T
Z ¢3(t) =1,
t=1

) .
;1¢<(t)¢j(t) =0, i J.
The estimates of the coefficients are
T
(3) Ci = ;y@i(t)x i=0:"'1q'

These are independently normally distributed with common variance o and
means &; = v . The estimate of ¢° is based on

S = ;_; [ye — copo(t) — -+ — capa()]

z 2 2 2
= Zy:—— ,-Z:oc"’

t=1

(4)

and S/’ is distributed according to the x’-distribution with T — (g + 1) de-
grees of freedom. These ¢ + 2 quantities constitute a sufficient set of statistics;
the problem could be formulated in these terms (which constitute essentially
the ‘“‘canonical form”’).

The investigator may assume he needs a polynomial of degree at least m
(which may be 0), and thus he does not question whether any of yo, 71, ***, ¥m
are 0. He may assume the maximum degree he will need is ¢. It is an advantage
to represent the trend by a polynomial of low degree because the curve
is smoother, the presumed “explanation” is simpler and the function is more
economical. However, if the underlying mean value of the observed variable is
not approximately a polynomial of low degree the investigator will want to use
a polynomial of higher degree. When the degree has been established, the in-
vestigator will usually not ask whether coefficients of lower degree terms are 0.
(If he does question the value of some coefficient after the degree has been
established, it is for some other purpose, such as testing a theory, rather than
for the purpose considered here, which is finding the simplest polynomial repre-
sentation. See [6], p. 49, for example.)

The investigator has a multiple decision problem, namely, choosing whether
the degreeism, m + 1, ---, g — 1, or g. We can formalize this by saying that
he wants to decide to which of the following mutually exclusive. sets the para-
meter point (Ym+1, *** , ¥e) belongs:

H,:v, # 0,
Hy oy :v¢=0, v¢1 # 0,
(5) :

Hupivg = ++* = Ymiz2 = 0, Ym+1 # 0,

Hm:'Yq= te 'Ym+1=0-
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The set H; implies that the polynomial is of degree 7. An alternative formulation
is that he wishes to decide which (if any) of the following null hypotheses are
true:

*
H« Y = 07
* o
(6) Hygs 2v¢ =Y =0,
*
Hogtyoomtr 1¥¢ = -** = Ymnn = 0.

If any hypothesis of (6) is true, the preceding hypotheses must be true, and if
any hypothesis is false the succeeding ones must be false; that is,

Hi¢1mC -+ C H;.
The two sets of sets are related by
H; =H._,U---UH,,
Hie1 = HeoU ---U H,,
(7) ' @e-1 -2 ’

%
@g—1,*ym+1 — Hm .

We suppose that the investigator wants to control directly the probabilities
of errors of saying coefficients are not zero when they are or correspondingly of
choosing a higher degree than necessary. We assume that the investigator as-
signs a significance level to each null hypothesis:

Dy = Pr{Reject H; | Hy},
Pq + Pe1 = Pr{Reject Hog1 | Hogi},
(8) :
Do+ -+ + Pmya = Pr{Reject Hyg1,....ms1 | Hagt, e imaa)
= Pr{Reject Hy | Hn},

where p; = 0and p, + -+ + Pmy1 = 1. Since one null hypothesis includes the
next (that is, each subsequent null hypothesis is more stringent), the prob-
abilities of rejection are taken monotonically nondecreasing (that is, the prob-
ability of rejecting a more restricted null hypothesis when it is true is greater
than that of rejecting a less restricted one). In terms of the mutually exclusive

categories the specification is
pe = Pr{Accept Hy | H,,U --- U Hy},
© Pe1 = Pr{Accept Hy | H,2U ---U H,},

Pmi1 = Pr{Accept Hpy1 | Hm}.
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Let pm =1 —pg — *++ — Pms1 = Pr{Accept Hm | Hn}. Another way of putting
the formulation is that when the degree of polynomial needed is less than ¢, the
investigator specifies the probability of deciding to use a polynomial of degree
at least ¢ (for each 7).

A statistical procedure for this multiple decision problem consists of a set
of ¢ — m + 1 (mutually exclusive and exhaustive) regions in the space of
Co, -+, ¢ and S (or in the original space of 1, - -, yr), say Bm , Bmya, - -,
R, if the sample point falls in R; then H; is accepted. The assignment of signifi-
cance levels implies that these regions are ‘similar regions” in the sense that
when y; = --- = vy, = 0 the probabilities of the sample point falling in R, -- -,
R,are p;, -+, pg , respectively (independent of vo, - -+, via and o’) ; that is,
when the degree of the polynomial needed is less than ¢ the probability of making
an error of saying the degree should be at least ¢ does not depend on what that
lower degree polynomial is.

Since it seems reasonable that it does not matter to the investigator whether
a nonzero coefficient is positive or negative, we ask that the probabilities asso-
ciated with the procedure not be affected by changing the sign of any of the
coefficients in question; that is, the probabilities depend on |ym4l, -+, |val-

Subject to the above requirements we ask for the best regions in the sense
that we want to maximize the probability of R; when H; is true, 1 = m +1,
-+, q. It should be noticed that we are trying to maximize simultaneously the
probabilities of ¢ — m different regions (each for all nonzero values of the
corresponding parameter). It will have to be shown that under the above condi-
tions the maximized probabilities of one region are not affected by the choice of
another. This fact permits us to optimize Bm41, « -+ , B, simultaneously.

2. The optimal procedure. First, we note that when v;y3 = -+ = v, = 0
the best test of the hypothesis v; = 0 at a given significance level a; has the
rejection region

(10) Ti

c; tr—i1 (i)

St FaFs T—i-1
where tr—;_1(a;) is the significance point of the ¢-distribution with T — ¢ — 1
degrees of freedom corresponding to the (two-sided) significance level a;. The
test is best in the sense that it is the uniformly most powerful test based on a
similar region with power depending on |y, that is, not depending on the sign
of Yi .

Secondly, we note that if T is a similar region for testing the hypothesis
i = 0, that is,
(11) Pri{Ti|vi=%in =" =7=0 =
for all vo, 71, *** , vi1 and o°(>0), then T cuts out conditional probability
a; on almost every combination of specified values of ¢, ¢, -++, ¢iy.and
4+ cz + S (the sufficient statistics for vo, 41, -+, vi-1 and o* when
Y= o = 7 = 0); that is, |

(12) Pr{T:|co,c1, ", €6+ -+ co+ S;vi=-=7=0 =a
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almost everywhere (or with probability 1). In fact, some of the optimum prop-
erties of the ¢-test noted above are based on this “Neyman structure” of similar
regions (see Lehmann [3], Sec. 4.3, for example). The requirements (9) (or
equivalently (8)) imply that each R; has such structure, in fact

R.U R;,U ---UR,,

the region of rejection of Hyg.....s, has such a structure for each i(i = m
+ 1, .-+, q). We make use of this fact to show that the choice of R,, - - , Ri
(subject to (9)) does not affect the choice of R; in the sense that the probabil-
ity of R; (a function of |y,|) when v;y3 = -+ = v, = 0 does not depend on
how R, - -+, R, are chosen. Note that we are interested in v; when v, =
+++ = v, = 0, and if one of y:i41, - , v, is not 0 (that is the degree is greater
than ) we are not interested in v; and may assume v; # 0.

LemMMmA 1. Let Si41 be a set in the space of ¢, -+ - , ¢q and S such that
(13) Pri{Siplvin =" =v%=0 =p,+ - + pina,
and let T; be a set defined by co, -+ , c;and ci41 + -+ + ¢2 + S. Then
(14) Pr{8:iuN Ti|yipp = -+ = v, = 0}

=1 =p— - = pin) Pr{Ts|yinn = -+ = v, = 0},

where S;11 is the complement of Siy .
Proor. The requirement (13) is that S.;. is a similar region (with respect to
Yo, *++ ,v: and ¢°) and therefore

Pr{Siulco, = ¢, cin+ -+ e+ Siyim= - =7,=0}
=pg+ -+ Pin
for almost all ¢, - -+, ¢;and ¢fa + -+ + ¢} + 8. Let
fileo, -+ e i+ -+ g+ 8)

be the characteristic set function of T;( f = 1 if the point is in the set and 0
otherwise). Then

Pr{Si+ln T}
= S[Pr{gi+1|00, ,C¢,c?+1+ e + 8}

(15)

(16)

fico, =+, e, ¢l + --- + 8)]
=&[(1 —pg — +++ = Pi)filCo, -+ +, €, i+ - + 8)]
which is (14). This proves the lemma.
The point of the lemma is that however R, , - -+, Ri;1 are chosen subject to

(9), which implies (13) for S;31 = B,U --- U R.4,, the probability of a region
R; defined as an intersection S;41 N T'; depends only on T and not on S;;; (when
H:...,H.l is true) .

Now let T be the region defined by (10) for a; = p;/(1 — pg — +*+ — Dit1)-
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Lemma 2. Given Sy satisfying (13) and any R; disjoint with Sy such that

(17) PriR:|v:i =vix1 = -+ =7, =0} = ps,
Pr Ri 'Y‘-"Y'- = e e ='y =0
0us) {R: | + « = 0}
= Pr{R;| —vi,vipp = ++» = 7, = 0},
then
(19) Pr{Si+ln T?|'Yi+1="'=‘Yq=0}§PI'{R-'|'Y:‘+1="'=‘Yq=0}-

Proor. Suppose there were some value of v; so that the inequality (19) were
violated. We shall show that this contradicts the previous assertion that

T* = (SinN TH U (8iaN TY)

is the uniformly most powerful test of the hypothesis y; = 0 (when vix =
-+« = v, = 0) with power independent of the sign of v . For T} and

R:U (8:nN TY)

are critical regions of the same size for testing y; = 0 with power independent
of the sign of v; but the power of the second region at this special value of v:
would be greater than that of T7 . Since this is false, the lemma must be true.

The implication of the two lemmas is that whatever R, , - - - , R;y; are, the
best choice of R; is the part of T disjoint from R, , --- , R:31 and for such a
choice
(20) Pr{Rilyis1= -+ =74=0} = (1 — p — -+ — pi1) Pr{T7}.

This does not depend on the choice of R, , - - -, R:41 . Incidentally, this proves
that r,, - - -, r; given by (10) are independently distributed when
Yo ="' =7in =0

THEOREM. Let Ry, Rmy1, -+ , Rgbe ¢ — m + 1 disjoint regions in the sample
space such that
(21) Pr{R"l'Yi:'Y‘-H:"'=7¢=0}=pi7 i=m+1,---,gq

Pr{Rm“Ym-}-l = Ym42 = °°° = Y = 0} = pm’

where pm + Pmpr + <+ + P = 1, and
Pr{R:|vi,Yinn = - = v = 0}
(22) .
=Pr{Ri| —vi,vin =+ =97=0, <=m+1,.-,¢q
Then for every value of v (22) is maximized by R; defined by (10) for
a; = pi/(1 — pg— +++ — Pin)

complementary to R,U ---U R,-+1,'i =m+1,--,q.
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The optimum procedure is, therefore,
R, = T: ’
Rq—l = T: n T:—l ’

(23) Ri = T:ﬂ T:_ln e ﬂ Tf+1n T:k,

Rm+1 = f’:ﬂ T:_lﬂ ---ﬂ 7_’:._‘.20 T:t-lv-l}
Rm =’I—”;ﬂ _:_10---0 T’:..l.zn T:.+1.

What the procedure amounts to is to test v, = 0, y41 = 0, - - - in turn until
either one rejects such a hypothesis, say rejects v; = 0 and hence decides H;,
or one accepts all such hypotheses and eventually H,, . Thus the procedure is a
sequence of hypothesis tests; this result is a consequence of the requirement
that the probability of deciding that the degree of the polynomial is less than a
given integer when that is the case should not depend on what the polynomial is.

The optimum properties of the {-test of v; = 0 include being uniformly most
powerful among (i) the class of tests based on similar regions which are sym-
metric (in this ¢; or in all y,), (ii) the class of tests with powers depending only
on vi/¢’, (iii) the class of tests invariant under (scale and reflection) trans-
formations, ¢; — ke;, S — k*S (equivalently y, — ky.) and (location) trans-
formations, ¢; — ¢; 4+ a;,j = 1, - -+ , 7 — 1 (equivalently adding an arbitrary
polynomial of degree ¢ — 1 to y:), and (iv) the class of unbiased tests. Each
stated desirable property of the {-test leads to a corresponding formulation of
the theorem of this paper. For example, the similarity and symmetry require-
ments, (21 and (22), could be replaced by unbiasedness requirements, namely,
that

(24) Pr{Reject Hy...:|Hz...} S g+ -+ i, t=m+1,---,¢;

for unbiasedness implies similarity and independence of the signs of v,, -,
Ym+1 -

We have not stated here how pm, Pmt1, ---, D, are to be chosen. If a; is
ﬁxed, say a, thenpq =, Pg1 = a(l - d); LD = a(l - a)q—-, Uy P =

a(l — &)™, pm = (1 — @)” ™ In general one wants to balance the desira-
bility of not overestimating the degree with sensitivity to nonzero coefficients.

While the approach of this paper is (presumably) novel, the procedure derived
is not a new one. For example, a sequence of significance tests, starting with the
coefficient of the highest permitted degree, after determining ¢ by inspection of
the data, has been suggested by Plackett ([4], p. 92), and this series of tests
after a preliminary F-test of all coefficients has been recommended by Williams
([6], p. 41). Another procedure for deciding the degree of the polynomial is a
sequence of significance tests, but in the reverse order. (This method seems to
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be widely used; see Snedecor [5], Section 14.6, for example.) First, test ym41 = 0
by using 7m41 ; then, if this hypothesis is rejected, test ymi2 = 0 by using rm4s ;
and continue until some hypothesis is accepted or until v, = 0 has been rejected.
A disadvantage of this procedure is that if some v; is very large, the probability
of deciding on a polynomial of too low a degree is large. For example, if v. is
large and v is small, the probability of
ci
g+ +eg+ 8
is large, that is, of accepting v; = 0 and deciding that the degree of the poly-
nomial is 0. (The indicated difficulty is partly the failure to satisfy (8) or (9)
forys = -+ =9,=0.)

A practical disadvantage of the procedure, which is theoretically best in the
formulation of this paper, is that it requires computation of S and hence of
Co,Ci, - ,Cqfor a value of ¢ chosen in advance whereas in the other sequential
procedure one computes ¢; , ¢z, -+ , in sequence (with GG+ - +ea+8=
>yt — ¢t — i, etc.) and one needs to compute only as long as the hypotheses
are rejected. However, this disadvantage is limited because the regression
coefficients of orthogonal polynomials are relatively easy to compute since
tables of the polynomials are available and because usually one would choose
¢ small since orthogonal polynomials are not very useful if the situation calls
for a high degree. (In practice, if one accepted H, one might be tempted to
compute c,4+1 as a check on the choice of ¢.)

The problem of deciding the degree of polynomial could, of course, be formu-
lated in other ways. Perhaps one could take into account explicitly the cost of
computation. The objection to the other sequential procedure might be affected
by an assumption about the permissible relation between v; and v;41 (such as
vis1 < ky} for a preassigned k). Another approach to the entire problem is in
terms of prediction. Lehmann [2] has also formulated this problem as a multiple
decision problem which involves the concepts and results of the theory of testing
hypotheses, but his formulation and solution are different. He assumes explicitly
that the procedure is sequential, whereas here the sequential feature is a conse-
quence of the conditions of the solution. The critical difference, however, is that
he requires that if the investigator has decided v, = -+ = vi31 = 0 then the
’probability of deciding v; = O (when this is true) should not depend on ;4 ,
-+ +, v, which he now permits to be different from 0. This requirement does not
seem to be appropriate in many situations, however, because the question of
v: = 0 is not of interest if any of v;41, - - * , v is nonzero and there is, therefore,
no reason to control the probability of deciding v; = 0 when the polynomial is
of higher degree.

8. Generalizations. It is clear that the formulation of the problem in terms of
orthogonal polynomials is simply a convenience. The mean value function (1)
could be written equivalently

(26) &y = Bo+ Bt + -+ + Bt t=1,---,T.

(25) <k
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Then B; is a linear combination of v;, vi41, ** - , v, and the hypothesis
7" = e e s = yq - 0
is equivalent to 8; = --- = 8, = 0; that is, the degree in one formulation is the

same as the other. (Consideration of this relationship emphasizes that if y; # 0
one is not interested in whether y; = 0 forj < <.)

The problem is formally unchanged if the powers of ¢ in (26) are replaced
by other “independent variates.” The important point is that the independent
variates are ordered in the sense that in the regression function we are interested
in whether 8; = 0 only if 8;43 = --- = 8, = 0. When the independent variates
are not polynomials in ¢ it is unlikely that the independent variates are orthog-
onal. In that case the computations can be done by use of the forward solution
of the normal equations.

Lehmann [2] has pointed out a direct generalization. Let

Cui Y1¢
(27) Ci = E , 8; = v = E , i=0’1’...,q.
Cnii Yni

Suppose the c¢,; are independently and normally distributed with common
variance o and let S/¢* be independently distributed as x* with n degrees of
freedom. Then again we can ask the questions indicated by (5) or (6) where we
interpret yiq1 = - = v, =0Otomeanvy,; = 0,g=1,---,n;,5 =¢t + 1,

-, q. (The vectors ys41, - -+ , v, may not have the same number of coordi-
nates.) We can again require (8) or (9). Here we can ask that when vy;41 =
0, -+, v, = 0 the probability of R; depend on viy: = v + --+ + v4:i. Then
R: with maximum probability for yiys > 0 (corresponding to the optimum
property of (28) below) is the intersection of the complement of R,U -+ U Ry
and

!’
Ci C; n;
> Fn-.n- 1+---+n(ai)
caciput+ - +8 it Fng+n T ’

where Fa; n;, +--4n(a:) is the significance point of the F-distribution with
n; and nyy + - -+ + n degrees of freedom corresponding to significance level
a; = pi/(1 — pg — +++ — Piy1). This formulation is in the canonical form of a
regression function :

(28) rs =

q ng
(29) &y =, 2 Boi?git -

J=0 g=l
In the multivariate case y: can be taken as a vector with coordinates yi;, -- -,
Ype - In the regression function (1) the coefficient v; can be taken as a vector
with coordinates yii, -+« , ¥ps OF in (26) Bi = (B, ***, Bpi). We assume
%1, -+, yr to be independently distributed with y. having a multivariate
normal distribution with covariance matrix =. The estimate of v; is ¢; given by
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(3), and the estimate of = is 1/(T — ¢ — 1) times

T

8 = D [ys — copo(t) — -+ — capa(t)llye — cop(t) — -+ — cubo(t)]

t=1

(30) T .
= Zytyi - Zc.d.

The sets (5) and (6) are now in terms of the vectors v;. When v,y = -+ =
v, = 0, the best test of the hypothesis yv; = 0 at a given significance level a; ha.s
the rejection region (based on Hotelling’s T

(31) ci(cipciva + -+ + 8)T'ei > /(T — i — P)IFp,r_ip(ai).

The test is best in the sense of being the uniformly most powerful test with
power depending on v;Zy; as well as being the uniformly most powerful in-
variant test (¢; — Kcj, S — KSK’ for K nonsingular and ¢; = ¢; + a;,j =
1,---,¢ — 1) (see [1], Chapter 5). If we assign probablht.les (8) or (9) and
ask for the best procedure with probability depending on viZ'; (when vigy =

= v, = 0) we find that R; is the intersection of (31) and the complement of
RqU c--URip.

It will be observed that the formulation of the problem has a solution because
of the Neyman structure of the regions and the existence of a best procedure
for each component hypothesis. The Neyman structure depends on having
sufficient statistics for families of distributions that are boundedly complete.
We can make more general statements. Suppose we observe a vector y with a
distribution F(v1, - ,Yq, 0), where each of 1, - - - , v, and ¢ may be vectors.
We formulate the sets of parameter points (5) or (6) with m = 0 (the “nuisance
paramet.ers” forming o). Suppose there are statistics ¢;, -+, ¢;, s such that
¢, -, Ci, s are sufficient when y;43 = 0, -+, v, = 0, '1. =1,---,q. (For
the ongma,l problem the vector s would consist of coand i + - + ca+ 8)
The decision regions may be defined in the spaceof ¢, - -+ , ¢¢, s; and a decision
about v; can be made on the basis of ¢;, ---, ¢, s. A simila,r region T'; has
Neyman structure

(32) Pl‘{T.‘lCl,"',C.',_l,S;‘Yi=0,"’,‘Yq=0}=a

with probability 1 (with respect to all F(v1, -+, vi1, 0, -+, 0, ¢)) if the
family of distributions F(y1, -+-, ¥i-1, 0, --+, 0, ¢) is boundedly complete.
Then Lemma 1 holds.

Suppose that when vy = 0, - -+ , v, = O there is a uniformly most powerful
test of v; = O at significance level a; within a class of tests, the class being de-
fined in terms of the power as a function of v; . In view of Lemma 1 the inter-
section of the rejection region of such a test with the complement of R,U ---U
R:41 will have a corresponding property, and the corresponding form of Lemma 2
will hold. Then the corresponding Theorem holds for the set of regions B, , - - -,
R, . An application of this general theory can be made to determining the ap-
propriate order of a stochastic difference equation in a certain class of nearly
stationary stochastic processes.



DEGREE OF POLYNOMIAL REGRESSION 265

The theory in this paper has been developed in terms of nonrandomized
tests; only direct modifications are needed to make the results valid for ran-
domized tests.
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