ESTIMATING THE INFINITESIMAL GENERATOR OF A CONTINUOUS
TIME, FINITE STATE MARKOV PROCESS*

BY ARTHUR ALBERT?
Columbia University

0. Summary. Let {Z(f), ¢ > 0} be a separable, continuous time Markov
Process with stationary transition probabilities P;;(¢), 7,5 = 1,2, -+- , M. Under
suitable regularity conditions, the matrix of transition probabilities, P(Z),
can be expressed in the form P(t) = exp {Q, where Q is an M X M matrix and
is called the “infinitesimal generator” for the process.

In this paper, a density on the space of sample functions over [0, f) is con-
tructed. This density depends upon Q. If @ is unknown, the maximum likelihood
estimate Q(k, £) = ||¢:;(k, ¢)||, based upon % independent realizations of the
process over [0, t) can be derived.

If each state has positive probability of being occupied during [0, ¢) and if the
number of independent observations, k, grows larger (¢ held ﬁxed) then §;;
is strongly consistent and the joint distribution of the set (K (Gs; — i)} isi
(suitably normalized), is asymptotically normal with zero mean and covariance
equal to the identity matrix.

If k is held fixed (at one, say) and if ¢ grows large, then §;; is again strongly
consistent and the joint distribution of the set {€(§i; — qi7)}se; (suitably nor-
malized), is asymptotically normal with zero mean and covariance equal to the
identity matrix, provided that the process {Z(t), ¢ > 0} is positively regular.

The asymptotic variances of the ¢;; are computed in both cases.

1. Mathematical formulation. The probabilistic behavior of a finite state,
continuous time Markov process { Z(t), ¢ = 0} is determined by a knowledge of
the transition probability matrix P(i, s), whose entries are

Py(t,8) = PrlZ(s) =jlZ(t) =4

(where ¢ < s and ¢ and j range over the possible states of the process). The
. process is said to have stationary transition probabilities if P(t, s) depends only
on the difference between s and ¢:

P(t,s) = P(s — ).
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728 ARTHUR ALBERT

If certain regularity conditions on the behavior of the (stationary) transition
probabilities are met, the so-called forward and backward systems of differential
equations can be derived:

P'(t) = QP(t) = P()Q; P0) =1,
where Q(called the infinitesimal generator for the process) is a square matrix

whose value is constant in time.
The (unique bounded) solution to the forward and backward equations is

(tQ)"
nl

P(t) = expiQ = io

In this paper, we will discuss the problem of estimating @ when it is not known.
In particular, a maximum likelihood estimate for @ will be derived and its large-
sample properties investigated. The results obtained here are the continuous
time analogues of the results stated by Anderson and Goodman in [1], which
describe the asymptotic behavior of the maximum likelihood estimate: of the
transition probability matrix of a (discrete time) Markov chain.

The question of defining a maximum likelihood estimate (hereafter denoted by
m.l.e.) is not an altogether trivial one. Customarily, an m.l.e. is defined relative
to a density (which depends upon the parameter to be estimated) over the
sample space of the experiment. In the case at hand, the sample space will be a
function space (though happily a simple one), and so, one of the first major tasks
to be attended to is the construction of a density over the set of realizations for
the process. Once this is accomplished, we will see that the m.l.e. is quite simply
expressed as a function of the observations, and the remainder of the paper will
concern itself with questions of consistency and asymptotic distribution theory.

2. General properties of finite-state Markov processes. Let (2, @, P) be a
probability space and let {Z(¢, -); ¢ = 0} be a separable Markov process on that
space, which takes its values in a finite set (which for convenience will be taken
to be the set {1, 2, - - -, M}). (Occasionally, the second argument of Z(-, -) will
be suppressed as a notational convenience.) The value of Z(-, ) at time {is a
random variable which will be called the state of the process at time ¢.

It is assumed that the transition probability function is homogeneous in time
(stationary) :

For any s, t = 0,

PlZ(t +s) =j|Z(s) = 1] = Pu(?)
depends only upon the time difference ¢. It is further assumed that

limp.o[(1 — Pis(h))/B)(= g(z)) exists for all 7,
and
limp.o[(Pi;(R))/R)(= q(3, 7)) exists for all 4 and j, j == 4.

The following theorem can be established on the basis of these assumptions,
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and will serve as the basis for constructing a density on the space of sample
functions. For a proof, the reader is referred to Chapter VI of [6].
TrEOREM 2.1.
(a) Let
—q()) = =2 q(5,9) ifi=j
q(¢,J) = i

and let Q be the (M X M) matrix whose (3, j)th entry is q(¢, 7). The matrix of
transition probability functions is given by P(t) = exp tQ.

(b) PlZ(t) =4, t=St=<th+ a|Z(k) =1 =-exp—qg(@)a’
for all non-negative &y, and a.

(¢) If Z(ty) = i and q() > O, there is, with probability one, a sample function
discontinuity for some t > ty , and in fact, a first discontinuity which is a jump. If
0 < a £ =, the conditional probability that the first discontinuity in [t , to + o)
is a jump to j, given that Z(t)) = i and that there is a discontinuity in [t , o + @),
is q(4,7)/9(3). :

(d) Almost all sample functions are step functions with a finite number of jumps
n any finite time interval.

3. The space of sample functions. Suppose observations are made on the
process {Z(t); 0 < ¢t < T} (where T is finite). By virtue of Theorem 2.1, a
sample function can be specified by a knowledge of the number of jumps made
in [0, T'), the (ordered) lengths of time between jumps, and the succession of
values taken on by the process in [0, T'). '

To be more precise, suppose ' is that subset of the underlying probability
space for which sample functions of the process {Z(¢, -), ¢ = 0} are step func-
tions with a finite number of jumps in any finite interval. By Theorem 2.1,
this set has probability one. Now, let us define the following random variables
(r.v.s):

The time at which the sth jump occurs if w £ &’
ro(w) =0, 7iw) =

+ o« otherwise,

Ti(w) = {n“(w) — 7i(w) if r;(w). < ©
otherwise,
N(T, w) = The largest integer, n, for which 7.(w) < T,
Ziw) = Z(ri(w), w) 1=0,1,2, ---.

(With probabilities one, T';(-) is the time spent in the sth state, N(T, -) is
the number of jumps made by the process in [0, T'), and Z;(-) is the state of the
process immediately after the ¢th jump.)
In fact, with probability one, a sample function of {Z(Z, -),0 = ¢ < T} can
be represented as an ordered sequence:
{Z(t,w),0 =t < T} =

((Zo(@), To(@)), *++, (Znrwa(0);, Twarw-(w)); Znaw):



730 ARTHUR ALBERT

By this we mean: If
{Z(t7 w))O =t< T} = ((Zo, to), ) (zn_ltﬂ_l}, zﬂ))

then the path function starts at 2, at time zero, remains in 2, for #, units of time,
makes a jump to z;, remains in 2; for # units of time, - - -, jumps to 2, , re-
mains there for £,—; units of time and then makes the final jump to z, , and re-
mains there at least until time T'. (Note that n jumps, in all, have been made.)
We can write down the probability distribution on the space of sample func-
tions quite easily now:
TraeEOREM 3.1. Let

e _{0 ifi=j

YD =i =i

Then

PriN(T)=n&Zy=2&ToZan& - &Zn1= 2.3 & Tua
S an1 & Zn = 2,] = Pr[Z(0) = 2] exp — ¢(2.)T

n—1
fs I1 dt; ¢' (21, 211) exp — [g(2;) — g(2.)] ¢

n §=0

where

n—1
Sn={(t0,t1,"’,tn—1):ztj<T&0§t,’§aj} ifn > 0.

Pr[N(T) =0 & Zy = z) = Pr [Z(0) = z] exp — q(2)T.

Proor. The second assertion follows directly from Theorem 2.1(b). If n > 0,
then

PI'[N(T) =n&Z0=ZO&T0§‘¢xO&"’ &Zn—l= zn—l&Tn—lé an—l&Zn=zn]

=Pr{|:Zo=zo&--- &Z,.=z,.&ZT,-gT]ﬂS,,},

=0
where
8. = [(To, Ts, -+, Tas)eSul.
By Theorem 2.1(b) and (c)

r’
PriZ, =2n|Z =2, ,%e1=tn1,To, - ,Tn_l]=w
Q(Zn—l)

and

PriTaSen|Zo=20,3Zn=2,T0, -, Tau] =1 — g imen,
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By induction,

PI'[Z() =Zo,"' .Zn=zn,T0§a0,'°',Tn§an]=

Pr[Z(0) = z)] {ij: L(Zl(_;_%’i'ﬁ - e“I(’i)“i]} [1 — g etman]

It follows that

Pr{[Zo=zo,-~-,Z,.=z,.&ZT,~g T:Ins,.} =
=0

n—1 ) n—1
Pr[Z(0) = ] fs 2 d {ff o, Q(2a) 0 d‘"} BIRICTEMERLR
il =

n §=0

The conclusion is obtained by performing the inner integration.
It is now (conceptually) quite simple to construct the desired density:
Every sample function which makes » jumps in [0, 7') can be represented as a
point in

Wa = []I_:I1 (Wo ®4R1)] ® Wo,

where Wo = {1, 2, -+, M} (the state space of the process) and R'is the real
line.
Let I be the Lebesgue measure on R' and let C be the counting measure on
Wo .
C{z}) =1 if zeWs.

Let ¢'™ be the (sigma-finite) product measure on W, , defined by the relation:

e = [H (¢ %X l)] X C.

j=1

By Theorem 2.1(d), almost every samplefunction of the process {Z(¢),0 <t < T}
can be represented as a point in
w=Uw,.
n=0

For each set WCW for which WNW, is ¢\ measurable define ¢* (W) =

% 0™ (WNW,). (¢* is defined on the Borel-field ®*, which is the smallest
Borel-field containing all sets WC W whose projection on [[7; ® R'is a Borel
set for each n.) Let o be a measure on the space of all sample functions, defined
for all subsets B whose intersection with W is in ®&*:

o(B) = ¢ (BNW).

(o is & sigma-finite measure.)
The desired density function can now be exhibited. (It is a density with re-

spect to ¢.)
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TraEOREM 3.2. If B is a subset of the space of all sample functions over [0, T)
which is measurable with respect to o, then

Pr[B] = [ fa(0) do(0),

where
(Pr(Z(0) = ze ™" ifv = (2);
n—1
Pr[Z, = z)e **" IIO ¢’ (25, 2541) exp — [g(2;) — q(2.)]¢;
1= .
'L:f?) = ((20 5 to), Tty (zn—l ) tn—l); 21,)
fo(v) =

withn > 0,2;eW,,t; =20(=0,1,---,n — 1),

n—1
and X t; < T;

=0

0 otherwzise.

9

Proor. By Theorem 3.1, the conditional distribution of ((Zy, To) -+ (Zp-,
Tn-), Z,) given that N(T) = n is, for each n, absolutely continuous with re-
spect to ¢'™. If the derivative exists,

an
920,21, y2n b0 b, <00 yta) = Ao ~ -+ Ot
PrIN(T)=n&Zo=2& &Zi=2.&ToSto & -+ & To1 < tay]
Pr[N(T) =l

is the (joint) conditional density of ((Zo, To), -+, (Zn-1, Tna), Z,) with
respect to o™, given that N(T) = n (for n > 0). In this case,

Pr(B|N(T) = n] = an gn do™

n

™ measurable, so that if B is a

™ measurable

for all sets B whose intersection with W, is o
subset of the space of all possible sample functions, and BNW, is ¢
for each n, then

)

Pr[B]=anw

n=0 YB

Pr[N(T) = n] g, do™.

A routine computation (in connection with Theorem 3.1) shows that the
derivative in question does indeed exist and that g, Pr [N(T) = n] corresponds
to fo on W, .. Thus,

0

PriBl = fB o Jadr™ = fB Jado® = fn fo do.

n=0

Although we shall not discuss the hypothesis testing problem here, the follow-
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ing result is quite important in that context and is included here since it follows
so readily from the results established thus far.

THEOREM 3.3. Let @ = ”90(7" J) ” and @ = ”q1<z7 J) ” ,Jj=12-- ) M’
be two values of the parameter Q.

(a) If qo(%, j) vanishes whenever qi(, j) does, then the probability measure on
(2, @, P) under Qo ¢s absolutely continuous with respect to the one under Q, .

(b) If for someiand j(j # ©),q:1(¢,5) = 0and q(%,5) > 0 and Po,[Z(t) = 1]
> 0 for some ty = 0, then Pq, is not absolutely continuous with respect to Peq, .

Proor.

(a) Under stated conditions, fq, vanishes with fq, .

(b) Let B be the set of sample functions whose value at time £, is ¢ and whose
next (distinet) value is j. By Theorem 2.1(c), Pq,[B] = 0 and Pq,[B] > 0.

It can be shown that P;;(¢) never vanishes for { > 0 unless it vanishes iden-
tically (see [6], Ch. VI). It follows then, that Pr [Z(¢) = ] never vanishes for
¢t > 0 unless it too vanishes identically. If the parameter space is restricted to
those values of @ for which every state ¢ has positive probability of being occupied
eventually, then a necessary and sufficient condition that Po, be absolutely
continuous with respect to Pq, is that ¢,(7, j) vanish whenever g;(¢, j) does.

4. Sufficient statistics and maximum likelihood estimates. Suppose % inde-
pendent realizations vy, ve,..., vx of {Z(f), 0 < ¢t < T} are observed. The
likelihood function, £$°, has been traditionally defined by the equation

£ = Q;fo(”j) .

If we let N”(4, j) = the total number of transitions from state 7 to state J
observed during the k trials and 457 () = the total length of time that state ¢
is occupied during the % trials, we may write

log £ = C. + 2 _;N;"’@ P log q(,5) — 20 AP (4)q(s),
1 JFEr %

where C is finite with probability one and does not depend upon Q.
The Halmos-Savage factorization theorem can be applied to the last expres-
sion, and by inspection we see that the set

{N;'k) (zi .7) ) A;’k)(i)} I

is a sufficient statistic for . The maximum likelihood estimates (m.l.e) for
¢(%, j) (i.e., those values of q(7, j) which maximize log £5?) are seen to be

§r (4, ) = NOG, /AP @0) if © = j & APE) > 0.
If A$Y = 0, the m.le. does not exist and so we adopt the convention that
42°(4,5) =0 if i5j and Af(5) = 0.

6. Moments. In the sections to follow, we will investigate the large sample
properties of the set {§5” (2, 7)} j« both as T approaches infinity while £ is fixed,
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and as k approaches infinity with T fixed. A knowledge of certain moments of

NP (4, 7) and AP () proves to be of use, and the following lemma reduces the
determination of these moments to a fairly routine computational task:

For notational convenience, we will let N»(z, 7)) = N$ (4, 7) and A-(3) =
AL (9) for all ¢ and j. N(T) is as defined in Section 3.

Lemma 5.1.

(a) There are constants a and B such that

tﬂ—l at

dt

PrN(h) znl <8 f

for all h between zero and one. Consequently,

,é PrN(h) =l < B f (‘e‘“ dt‘)2 o(h), ash— 0.

(b) Pr [Nu(3, §) = 1] = p(4)q(s, Hk + o(k) as h — 0 and ENw(3, j) =
P(9)¢(3, )b + o(h) as h — 0. (Here, p(7) = PrlZ(0) = 1].) :
Proor.
(a) By Theorem 3.1, there are constants K, «, and v, such that

. f H e dt;

=1

PrIN(k) = n] < Ky" f

§2tsh

(’Y )"_l n—1 at
_K’(n—l)'f " ™ dt,

§ ﬂf tn—l eat dt
0

where v/ > 0 and 8 = K'e".
(b) By Theorem 2.1,

Pr[Ni(3,4) = 1| N(h) =1 & Z(0) = 1] = q(5,5)/9(5).
By Theorem 3.1,
Pr[N(h) = 1|Z(0) =] = q(2)h + o(h).
Whence,
Pr [Ni(5,4) = 1] = p(i)a(é, Dk + o(k)
Since

BN\(5,3) = 3 [Pr NG, ) 2 7]

= PriNu(i,) = 1+ Pr Na(i,9) 2 20+ 3, Pr (i, ) 2 nl
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From part (a)
Pr [Nu(z,5) = 2] < Pr[N(k) = 2] = o(h)

and

3 Pr V(6 ) 2 7l S 3 Pr IN(h) 2 n = o(h).

THEOREM 5.1.
(a) EN:G,) = o) [ (Pr2(®) = it
() BAL() = fo " Prz() = 4] d.
BN )N s(r,5) = 9,9 [ [ (Pule — 0P 12(0) =11
() b o )
+ P;.(z — t)Pr[Z(t) = 4]} dtdz + 8(5,5;7,8)q(4,7) fo Pr(Z(t) = ldt,
where
8, jir, 8) = 1 ifr=<andj=s
BEDSTN0 otherwise.
@ PADA) = [ [ 1Pt = 0Prize =+
+ P (x — t)Pr [Z(t) = ]} dt d=.
EN1(r,8)A+(3) = q(r,8) fT fz {Pir(z —t) Pr(Z(t) = 4]
e 0 0
+ Pz — &) Pr2(t) = 1} di da.
E{[Nz(r, s) — q(r, s)Ar(r)IN2(3, ) — q(3, ) Az(8)]}
()

= 8(i, j; 7, $)q(iy §) f Pr [Z(2) = 4] dt.

Part (f) of the theorem is rather surprising: Since the r.v.’s {Ar(3)}i5 are
constrained by the relation it Az(s) = T, it is unexpected to find that

NG, §) — a(i, HA=()]  and  [Nx(,5) — o(¢,5) Ax(¥)]

are uncorrelated, (even if ¢ = ') when j # j'.

Proor. We will prove (a), (b) and (f) here and relegate the proofs of (c),
(d) and (e) to Appendix I.

(a) Divide [0, T') into n + 1 equal parts of length b = T/n + 1, and let
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X.(3, j) be the number of transitions from ¢ to j during the (time) interval
k-h, (K + 1)h),k=0,1,2, ---, n. Then

EN.(i,j) = ,gEXk(i,j) - ; Pr(Z((k + 1)h) = j & Z(k-h) = ] + o(h)

= ,g Pr[Z(k-h) = dlq(s, j)h + o(h) — ¢(3,7) fOT Pr[Z(t) = 4] dt,
asn — .

{1 if Z(t) =3,
(b) Let Yi(t) =
0 otherwise.

Then

T
A(i) = fo Yi(t) df,  so that

EA:(7) = foT EY(t) dt = jod Pr[Z(t) = 4] dt.

(¢) B{[N:(3, ) — (% )Az(D)]WN=(r; 5) — q(r, 8)Ar(r)]}
= EN:(¢,j)Nz(r, s) + q(r, 8)q(%, j) EAr(¢) Ar(r)
— (q(5, /) EN (7, 8)A2(3) + q(r, $)EN=(3, ) Ax(r)),
and the result follows from comparison with (c), (d) and (e).

6. Large sample properties of the M.L.E. The term “large sample” can be
interpreted in two ways in relation to the problem at hand: Many independent
realizations of the process {Z(t),0 < t < T} could be observed. (This corresponds
to an investigation of the behavior of 45 (4, j) as k — «.) On the other hand, a
single realization of the process can be observed over a long period of time. (This
corresponds to an investigation of §5” (3, j) as T — «.) We will obtain results
pertaining- to the consistency and asymptotic normality of these estimates in
both cases. '

First, we will study the (easier) problem of holding T fixed and letting &
grow large. The reader will recall that if ¢ > j,

e NP @, 5) /AP () if AP >0
gr (2, 7) = o 4 (B) s
if Az” (%) = 0.
(For convenience’s sake, we will sometimes suppress the T in this part of the

discussion.)

If Pr [Az(s) = 0] = 1, then ¢*(4, §) = 0 with probability one for every &,
even if ¢(¢,7) > 0. In this case, the estimate is a bad one. This situation only
occurs when we try to estimate parameters associated with transitions out of
a state that can never be reached (for Pr [Ar(d) = 0] = 1iff Pr[Z(f) =4 =0
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for every t). This case must be excluded from consideration. If Pr [Z(¢) = ¢] > 0,
then EAr(2) > 0, so that by Theorem 5.2,
EN.(4,3)
EA.()
Since N$(4, ) and A% (¢) are sums of independent, identically distributed
variables,

= q(¢ ).

kY[ s+
fim §® (4, 5) = lim =X L2 G, 0)/k _ q(4, 7)

ko A (3)/k

with probability one.

By applying a theorem of Cramér (c.f., [4], Theorem 2, or [5], page 254),
the set of r.v.’s

B @06D) — a6}
has the same asymptotic distribution as the set
{ 1 (N #(4,5) — q(s, j)A‘T"’(i))}
EA(7) B®o iti

and by the multivariate central limit theorem, the last is asymptotically normal,
with mean zero and covariances

C@, 35k, 1)

1 .. .. .
= m E[N(3,7) — q(, ])Ar(i)][Nr(k: 1) — q(k, 1)Ar(k)]

= 3(i,3s b, Datir) / [ "Pr2(0) = i) di.

This completes the proof of

TaEOREM 6.1. )

(a) If there is positive probability of the ith state being occupied at some time
t = 0, then

limye é(k)(i; .7) = Q(i, .7)

with probability one.
(b) If every state has positive probability of being occupred, then the set of r.v.’s

(P, 5) — ¢(5,0))} iei

are asymptotically normal and independent with zero mean and variances

q(z‘,j)/foT Pr(2(¢) =4 dt.

(Notice that ¢* (¢, 7) = 0 with probability one for every & if ¢(¢, 7) = 0, since,
by Theorem 5.1, Nz(4, j) has zero mean in this case.)
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Now let us turn our attention to the more interesting problems of consistency
and asymptotic normality when % is held fixed (kK = 1) and T grows large.
First we will derive a series of results which lead to a demonstration of the
(joint) asymptotic normality of the set of r.v.’s
T i

From this, we can conclude that
(1/T)IN (4, §) — q(3,5)A=(3)]

converges to zero in probability as 7 — .

Then, we will show that (1/T)N (<, ) and (1/T)Ar(z) converge with proba-
bility one as T' — «, and, in fact, converge to constants with probability one.
If limr.e (1/T)Ar(7) is positive, Cramér’s theorem can be used to show that
the set of r.v.’s

(T} (423, 5) — q(4,5))}ii

have a joint distribution which is asymptotically normal.
Furthermore, ¢r(7, ) is consistent in the strong sense, since

N2(2, §)/A2(5)] — q(4, 4)

converges to zero with probability one as 7' — .

DEFINITION.
(a) If @ = {aij}ie; and B = {Bi;}iz; are two sequences indexed by double
subscripts which run over the integers 1, 2, -- -, M, we define

(a, ) = ;,‘; @ijBij -
(b) If
o= (641l and &= {e}ily

we define
M
(3,8) = D dies
1=1

(¢) For any matrix 4, let A* be the transpose of 4.

e

TurOREM 6.2. Let £r = {£2(4, 7)}ises , Where
£0(4,5) = TIN2(3,5) — g4, ) Ar(5)].

Let o = {w(%,7)}ixs , and ¢(0; T) = E exp — ({7, @) be the joint moment generat-
ing function of the set {£r(%, 7)}sz; . Then

e(o;t) = ("L ),
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where R( o, t) is an M X M matrix whose (¢, 7)th entry is
—a() + 2 (0, oG k) if i =,

rif(“’) t) = ..
6, 9) exp — 2053 it i =3,
and n and I are M-vectors:
Pr(Z(0) = 1] 1
I Pr(Z(0) = 2] 1
= : ’ "=
Pr [Z(0) = M] 1

Proor.
Let gi(w, t) = E(exp — (&, 0)|Z(t) = k) be the conditional moment

generating function of & given that Z(¢) = k. Since
Ai(R) =t — 2 A4,
1=k

621) o(o,) = ¢ { fsz [ exp — Cl(m,0) + T (o — adad 4 Gy

+ fm/(; exp — ¢ [(n,0) + z; (ax — a)a] d Gk}

where Gi(n, a) is the joint conditional distribution function of the {N (¢, 7)}ix;
and {4.(z)} given that Z(¢) = k, @ is the positive orthant in M/ — 1 dimensional
Euclidean space, @U® is the non-negative orthant in M — 1 Euclidean space,
9N is the set of all vectors with M* — M non-negative, integer components and

a = 2 q(4, fw(i, §) i=1,2 -, M.
e
Clearly,
M
(6.2.2) o0, 8) = 2 §i(o, 1)

where (o, t) = gi(o, t) Pr [Z(t) = 1].
The inner integral in the first term of the expression for g;(w, ¢) can be in-
tegrated by parts (see Appendix IT) and we find that

(6.2.3) (0, 1) = fi(d’, V', 1)

where fi(u, v; t) is the Laplace transform of

Fi(n, a;8) = Pr {() (). VG5, ) = na) 0 () [4:6) < ad N12() = KD}
filu, vit) = 3 faljldai Fi(n, a;t) exp — [(n, u) 4 (a, V)],

nedl
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and

(6.2.4) ui; = w(i, 5)/¢ 6,7 =1,2, -, M(i 5 5),
B v} = (e — a)/f ifi=1,2-k—1k+1,--,M,

and

vg — [eakti H (Otk - ai)]_l .
ik #

In Appendix IIT it is shown that the functions Fy , k = 1,2, -, M, satisfy
a system of first order linear differential-difference equations:

QF—k = —q(k)Fx + E q(», k)Aw F

ot oy
F,=Pr[Z(0) =k if¢t=0andn; = 0forallqy,
F,=0 if n;; < 0 for some 7 and j
Fr,=0 if ¢ = 0 and n;; > 0 for some ¢ and j.

(Here, A, is the first order difference operator:
A,,ch(n, a; t) = Fk(nm s Mag, 00y My — 1, e, MM, M1, A t)

If we take Laplace transforms (¢ fixed) and adopt a matrix notation, we
find

HW Y0 _ *(wiu, v; 6),

at
M -1
f(u,v;0) = <H vi) I
=1
where
e Pr [2(0) = 1]
f(u,v;t) =( 7* 7 I= :
Fa, w3 ) Priz(0) = M}
and W(u) is an M X M matrix whose (7, j)th entry is
—q(2) ife=y
wi,j(u) = con g o s
q(z, j)e ¥ if ¢ £ 4.

The only bounded solution to this system of equations is

M

-1
(6.2.5) f(u v;2) = (II v,-) DA

j=1
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where

P NI

n!

If we let €* be the M-vector whose components are all zero except for the kth
which is unity,

M -1
fk(u, v, t) = (111 0i> (etW*(u)I’ s(k))’
Referring to equations 6.2.3 and 6.2.4, we find that
gk(ﬁ), t) — (etWt((n)/ﬂ)I’ eaktis(k))
so that

¢(w’ t) — (etW*(mlti)I, etd(alti)n).

where n is the M-vector whose entries are all unity, and

ayl, 07 0
IO R 0
0, O, au

Since 4 = A* commutes with W*, we find
oo, t) = (exp {{W*(o/t) + A*(a/t)J, ).

Since B* (o, t) = W* (o/t') + A*(a/t}), the conclusion follows.

The asymptotic behavior of ¢(w, t) is determined by the next lemma:

DEFINITION.

(a) For any matrix 4, adj A is the transposed matrix of cofactors of 4.

(b) If B(t) and A are M X M matrices, we say that B(f) = 4 4+ o(1)
as t — t, if each entry of B(t) approaches the corresponding entry of 4 as ¢t —#,.

LeMMmA 6.3. Let R(t) be an M X M mairiz such that R(t) = @ + o(1) as
t — . Let r(t) = det R(t). If zero s a simple eigenvalue of Q and v
= lim,,. ¢ r(t) exists and s finite, then

limg,e e®® = (1/p)¢"* adj Q,

where p s the product of the non-zero eigenvalue of Q.

Proor. Let u1, g2, -+, uu be the (not necessarily distinet) eigenvalues of @
arranged in lexicographical order: Re u; < Re uip1, and Im p; £ Im peyy if
Re p: = Re pir . It is known that zero is always an eigenvalue of @(the row
sums of @ are all zero), and that the non-zero eigenvalues of @ have negative
real parts. (c.f., [2], page 52.) Hence, uy = 0. Let ui(¢), -+, uu(t) be the
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eigenvalues of R(¢) similarly arranged. Since,
R(t) =Q+o(l) as t— =,
we(t) = w + o(1) as t— oo, k=12 ---, M.
(In particular, px(t) = o(1) as t — =».)
If A is any matrix possessing eigenvalues »;, -+, »,, with multiplicities
m, -+, M, then

4 a 1 [d’"“‘ ¢ adj (»I — A)]

e —v
S mi— D ™ I (v — w)™
J#i

(Sylvester’s theorem, c.f., [2], page 32.)
Ifm, =1,

4 € adj (n I — A) v
= ‘Bi(v:),
€ TGy =)™ + ;r ¢“B;(v)

J#ET

where B; is a matrix whose entries are rational functions of »; .

Since p1(t), « + -, wa—1(?) all have negative real parts for all ¢ sufficiently large,
G0 o g T = RO o) as tos e,
ng (uu(t) — pi(2))
tup (2)
— prM() adj @ + 0(1)]
= oo [ME S Wt
Since det R(t) = JI% pi(t),
_r(®
pu(t) = m as t— o,

o limyne 69 = limy,, (1/p)e™ " adj Q,

if the right hand limit exists.

The application of Lemma 6.3 to Theorem 6.2 is facilitated by

LemMA 6.4. Let B be a square matriz whose row sums all vanish. Let B*? be the
(3, 7) th cofactor of B. Then for every i and j, B“? = B%?,

Proor. Let D(4, j) be the determinant of the matrix obtained from B by
replacing the 7th entry of the 7th row of B by 1, the jth entry of the 7th row by
—1, and all other elements of the sth row by zero. Expand D(3, j) by cofactors
of the sth row and we find that D(z, 7)) = B“? — B“?, Since the row sums of
the modified matrix are all zero, D(z, j) = 0.
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THEOREM 6.5. If zero is a simple eigenvalue of @,

lim ¢(0. ) = cxp} 3 Zq“’”Q (3, 7).

t->0 1 J#

Proor. Let r(t) = det R(o, t), where R(o, t) is as defined in Theorem 6.2.
Clearly,

R(o,t) = Q + o(1) as t— o,
so if ¥ = limy,, ¢ 7(¢) exists, Lemma 6.3 applies:
lim e e = (1/p)""* adj QF,
so that
lim . (o, 1) = (1/p)e”” (adj Q'L n).
Let q*(‘z',‘ J) be the (7, j)th entry of adj Q*. Then ¢*(4, /) = Q*? and by Lemma
6.4, Q" = Q. Whence, since I is a probability measure,
M
(adj Q'L m) = 2 Q"
7=1
Let ®(u) = det (ul — Q) = [ (u — /l’j). Since ux = 0 is a simple eigenvalue
of Q, &(n) = u]ixn (» — u;) and by the rule for differentiating determinants,
d _ 1N G
La)| = (~)" = (1)1 3 @
M u=0 =1

(ef., [3]). Hence, if lim,.., tr(f) = v exists and is finite, lim ;. (0, ) = &/
It remains to evaluate v: If either exists,

limse ¢ 7(¢) = limy.o (1/y)7(1/y).

Since the right-hand side is indeterminate (lim,.o7r(1/y) = det@ = 0), we
resort to L’Hospital’s rule: If lim,, (d/dy)r(1/y) exists and is finite, then

v = lime,e ¢ 7(¢) = lim,.o (d/dy)r(1/y).

By the rule for differentiating determinants (c.f., [3] again), (d/dy)r(1/y)
exists for every positive y. In fact,

()= E T ()5 (+3)

where R“?(1/y) is the (4, 7)th cofactor of R(w; 1/y). Explicitly:

_a_,,..((,, 1) §2y*
ay \My l

_(,,(, ;)y‘l . . .
2y%w(2,J)Q(Z,.7) if ? ;éj

Z q(4, kK)o (i, k) i i=y
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Since R“?(1/y) — Q" = Q¥ as y — 0, and since
T =1 —w(h, )Yt + 0(y)  as y—0,

we can write

%r <11/> B 2;/% i [Z o, K)o, k) (R (y> B <?1/>>:|

F 12 T a6 DE R +o(1) s g0,

It is shown in Appendix IV that

lim o ; [2; a(é, 1) (s, k) (RS (y) RGO (;))] _o.

We have, as an immediate

COROLLARY 6.6. For each ¢ and j,j #= 1, [Nz(4,5) — q(4, ))A(2)]/T — 0
in probability as T — .

Proor. Each £7(¢, j) converges in law to a normal distribution. Hence
(1/TH £1(%, j) converges in law (and hence in probability) to zero.

Actually, we need a stronger result than this in order to carry out the proposed
agenda. An investigation of the almost-sure convergence of (1/T)Ar(7) and
(1/T)N 2(3, j) must be made, and, as one might expect, such an investigation
utilizes such concepts as metric transitivity and stationarity. A brief digression
along these lines is now appropriate and the results of this discussion will point
the way to our main theorem.

We say that the process {Z(t), ¢ = 0} is strictly stationary, if P [Z() =
does not depend upon ¢ for any z. Let

M
A=),
N
where \; = Pr [Z(0) = i]. Since
Priz(t) =jl = 21 Pii(t)\s s

it seems that A must possess some mysterious power if the left-hand side is not
to depend upon ¢. Specifically, A must make the matrix equation, P*)A = A,
work. A can be characterized in the following way:

Lemma 6.7.

(a) The process {Z(t),t = O} is strictly stationary if and only if the initial dis-
tribution A satisfies the equatzon Q*A = 0.
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(b) If zero is a simple eigenvalue of Q, there is exactly one such A:

M
A=

A
with N = Q%% /p.
(¢) If zero is a simple eigenvalue of Q, then limy o Pr[Z(t) = 3] = \;,
(1=1,2,---, M), independent of the initial distribution of the process.

ProoF.
(a) The process is strictly stationary if and only if P*(f) A = A. Since

P'(t) = QP(t) = P()Q;  P(0) = I,

the conclusion follows.
(b) Under the hypothesis of the lemma, the null space of @ is one dimensional.

The vector

x1
x=|2],
Zu
where z; = Q“?, is always a solution of Q*x = 0, since det @ = 0. All solutions
of Q*A = 0 are therefore multiples of x.

Let P = lim;,., P(¢). It is well known that the matrix limit exists when the
limit is taken term-by-term, and that the column vectors p® - - p™ of P are
stationary distributions for the Z(¢) process, and hence are eigenvectors of Q*.
Whence, p*” = cx forj = 1,2, ---, M. Since 2.1, Q“? = p (c.f., Theorem
6.5),¢c = 1/p. ‘

(¢) For any other initial distribution, A’,

lim, P*(t) A’ = P*A’ = A.

LemMma 6.8. The process {Z(t), t = 0} is metrically transitive if and only if there
is exactly one initial distribution A which satisfies Q*A = 0.

Proor. It is well known that {Z(t), ¢ = 0} is metrically transitive if and only
if there is exactly one A satisfying P*(t) A = A (cf., [6], page 238, in conjunc-
tion with page 511). The last results permit us to state:

TaEOREM 6.9. If zero is a simple eigenvalue of Q, and if Q*® > 0
fork =1,2,--- M,

Prlimp.. (1/T)A(z) = N] =1
and
Pr (limz.. (1/T)N (4, ) = q(4, )N = L.
(Here, \; = Q“?/p.)
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Proor. If zero is a simple eigenvalue of @, the process {Z(t), ¢t = 0} is metrically
transitive. So then, are the processes {Y.(t), ¢ = 0}, where,
1 if Z(t) =1
0 otherwise, 1=1,2---, M.
If the initial distribution on {Z(t), ¢ = 0} is

M
A2

Yi(t) =

A = ) ()\'5=Q(i'i)/l’>0), i=1.~2,"'7M’
Ay
then, by the ergodic theorem,

. T
lim Ar(7) = lim 1_/ Y.(t) dt = EY;(0) = \;
Th

T->0 T T >0

with probability one.
Since A > 0 for each £,

Pr[limr.e (1/T)Az(z) = X\:| Z(0) = k] =1 for each k.
Hence, no matter what the initial distribution,
Prlimr., (1/T)A r(2) = N = 1.

Let h > 0 be given and let ¢, = nh. Let X(7, j) be the number of transitions
from 7 to j made in the interval [(k — 1)h, k-h), k = 1,2, - -- . If the Z(¢) pro-
cess is strictly stationary, so then is the process

{Xk(z’])’k =12 - }

Since
Nu(i,5) = 22 Xu(i, 1),
the ergodic theorem tells us that

y(hy6,9) = lim L No(i,9) = 7 lim © 35 X,(6,)

n->0 t" n-»0

exists with probability one for every positive h.
By Theorem 5.2, EN »(7, j) = ¢(¢, 7)\T and

T z
Var N(,5) = 2¢(i. )\ fo fo Pi(z — ¢) dt dz + q(6, )N T — (i, N2 T
if the process has the initial distribution A.

Since limr,, (1/T%) Var Nz(3,7) = q2.(.z', A limr,e (Pi(T) — N, and
since (by Lemma 6.7) limr.., P;:(T) = Q“’/p, Tchebycheff’s inequality reveals
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that [N z(3, 7)/T] — q(4, )\ in probability as T — «. Hence [N,(7, j) /] —
q(, 7)\: in probability, so that y(h, ¢,5) = ¢(7,j)\: identically in A.

If A is the initial distribution, then, limr.. [N z(¢, 7)/T] = q(%, j)A: with
probability one. By proceeding as in the first part of this theorem, it follows that

Pr ([V2(i, §)/T) = 9(6, M) = 1
independent of the initial distribution. -

The conditions that zero be a simple eigenvalue of @ and that Q“* be positive
for every 7 are sometimes abbreviated by the phrase: “{Z(t), ¢ 2 0} is positively
regular.”

The main result can be stated.

TaeoreM 6.10.

(a) If {Z(¢t), t = O} us positively regular, then

lim e 425, 3) = (i)

with probability one, and

(b) The joint distribution of the set of r.v.’s

(71425, 3) — (i )W jersims

is asymptotically mormal and independent with zero mean and variances
q(%, 7) 0/Q?, where p is the product of the non-zero-eigenvalues of Q and Q?
is the (7, 1)th cofactor of Q.

Proor.

(a) From Theorem 6.9,

limT-wo NT(Z’ .7) /A T(’&) = Q(Z’ .7)
with probability one. Since 4(z)/T tends to a positive limit,
lim 7, Qr(i, J) = limzr,e Nf(i, J)/A T(z)

with probability one.
(b) By Cramér’s theorem ([5], page 254), the (joint) asymptotic distribution
of the set {T*[¢z(4,7) — q(4, )]} ji is the same as that of the set

g L%if”“"”]},.,,.

and this, in term, has the same limiting distribution as

{g%i;])}w )

From Theorem 6.5, the joint moment generating function of this set tends to

1 i, QY 4, . .
expgzil;————ﬂ ’)f%)? W(i,j) as T — w.

But, \s = Q“"/p.
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As an afterthought, we point out that ¢(7, j) = ¢(¢, j) with probability one
if q(4, j) = 0. For then, EN,(7, j) = 0 (by Theorem 5.2) so that
Pr[N«(s,7) =0] = 1.

7. Asymptotic efficiency. If a random variable, X, has a density, g(z, ), (where
a ranges over an interval of the real line), then under certain regularity condi-
tions (c.f., [5], pp. 478—481), the Cramér-Rao inequality states that for any
estimate a* of a, which is based upon % independent observations of the r.v. X ,

E(e* — ) 2 (1 + db;:))z [kE ("_%0?’)2]4,

where b(a) = E(a®™ — a) is the bias of the estimate o*.
If o* is an unbiased estimate of «, (b(«) = 0), the inequality states that the
variance of a* must be at least as large as

2711
o]
da
If this lower bound is achieved, the estimate is called efficient.

More generally, if the asymptotic distribution of &*(a® — «) is normal with
zero mean and variance ¢ (as k — ), o is said to be asymptotically efficient if

-]
(e.f., [5], p. 489).

In the case at hand, if we wish to estimate a particular ¢(7, j) on the basis
of k independent observations of the process {Z(f), 0 = t < T}, we
take §®(¢,7) = N¥(3,7) /AP (5) as our estimate.

Under the conditions of Theorem 6.1, k'(4* (3, 7) — q(7, 7)) is asymptotically
normally distributed with zero mean and variance

& = q(3,) / fo Pr(Z(¢) = 4] dt.

A routine computation in connection with Theorem 3.2 shows that

alogfq= 1 CoN e .
oG9~ aGp S T dh )

so that by Theorem 5.2

[E (‘;qlz’f §‘)’>2]_1 =q,3j) / fo "Prlz() = ildt = k.

Thus, under the conditions of Theorem 6.1, q(") (7, 7) is asymptotically efficient
as the number of independent observations grows infinite.

It seems reasonable to extend the notion of asymptotic efficiency to the case
where the estimate for ¢(7, ) is based upon one very long realization of the
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process Z(t), instead of many independent realizations of the process over a
finite time interval.

The expression E(d logg/da)® is sometimes called “Fisher’s Information
Number” and the Cramér-Rao lower bound clearly exhibits the relevance of this
quantity. It should be observed, that the information is multiplied by £ when &
independent observations are taken. Conversely, if ¥ independent observations
yield an information I, the information contained in a single observation is I/k.

If one observation consists of a single realization of Z(¢) over the time interval
[0, T), it therefore seems natural to define

L E (a lOg f Q>2
T \oq(s, j)
as the amount of information obtained per unit time of observation. We will

call an estimate ay of ¢(3, §) asymptotically efficient as T — » if T*(a¥ — q(3,7))
is asymptotically normally distributed with zero mean and variance

2 _ 1 d log fQ>2:|‘1
¢ = lm [T b <6q(i, ) '

We already know that under the conditions of Theorem 6.10, 7%(§z(%, 7) =
¢(%,7)) is asymptotically normal with zero miean and variance ¢* = ¢(¢, 5) p/Q"*.
Since

1 alogfo\ _ [T . o
TE(@(i, _7;) = fo Pr(Z(t) = i dt/Tq(s, ),

and since, by Lemma 6.7,

[T PriZ(t) =ddt=Q%T/o +0o(T) as T— o,

. 1 d log fq>2:|—1 2
Him, [TE<aq<z', )l =

Gr(%, j) is therefore asymptotically efficient as T' — .

we see that
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come to a grinding halt. I also wish to thank the National Science Foundation
for their financial support during the initial stages of this investigation.

APPENDIX I
Proof of Theorem 5.2 (c, d, e)
Throughout this discussion we will let
1 ifZ(@) =1
0 otherwise t=1,2,---, M,
X (7, j) = the number of jumps from ¢ to 7 in
[(k — 1)k, kh), kb =1,2 -,

Y.(t)
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and
m(t) = Pr[Z(t) = 4], i=1,2---.M.
(c) Divide [0, T) into n parts of length T/n = h.

ENT(?:, j)NT(T, 8) = ,Z,mg EXk(i; j)Xm(T, 3)

2 ;Pr [(Xi(3,5) = 1&Xn(r,s) = 1]
+ o(1) as h—0,

k—2

=> ;Pr [Xi(3,§) = 1&Xn(r, s) = 1]

k=3 m.

o Pr [Xk(’b, j) = I&Xk_l(r, 8) = 1]

m—2

Z_lPr [X4(5, §) = 1&Xn(r, s) = 1]

m=3 k

>
+ kzn_:,Pr (X% (3, 7) = 1&Xu(r,s) = 1]
P>

+ ZzPr [Xmna(?,5) = 1&Xn(r,s) = 1]
+ o(1) as h—0,

n k—2

= 22 T wlm)q(r, )hPu(k-h — (m + D).
+ 56,53 7, 9) 2w,

n m—2

+ 2 > mi(kh)q(5, AP w(m-b — (k + 1)R)q(r, s)h

m=3 k=1
+ o(1) as h— 0.
As h — 0, this expression tends to

00,9 [ [ (rOPuta = 0 + mOPs o — 0) dids
o+ 806 )aCig) [ mi(t) e
(@) BA:(@)ds(r) = [ ' [ " BY.(0)YVo(0) dt do
- /O’T fOT Pr[2(z) = i&Z(t) = r] dt de
= fOT foz P.i(z — t)m(t) dt dz

T t
+f0 fo Py (t — z)m(z) dz dt.
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(e) Divide the interval [0, T') into n equal parts of length & = T/n. Then,
Nz(3, §) = 2ia Xi(3,5), so that,

n T
Bd7(r)N2(i,) = 2 f BLY() XG5, )] de.
By Lemma 5.1,

E[Y () Xi(5, )] = Pr(Z(¢) = r&Xi(4,5) = 1] + o(k)
as h — 0, so that

EA(r)N.(4,5) = é {fokh Pr[Z(t) = r&Z(kh) = i&Z((k + 1)h) = jl dt
+ fk:kﬂ)h Pr [Z(kh) = i&Z(t) = r&Z((k + 1)h) = j] dt

+ f " Pr(Z(kh) = i&Z(( + DR) = j&Z(E) = 7] dt}
(k+1)h

+ o(1) as h—0,

- ,}; [fokh m(t) Pri(kh'— )q(3,7) dt] 3

+ B[ nhemali )Pt + 0B at | 1

k+1)h

+ o(1) as h—0,

i) [ [ {w)Pﬂ(x — 0) dt da + mi() Pt — ) dt dx}

= (i, j) f ' f (O Pz — £) + m(O) Pz — 1)} dida

as n — «. (We have used Lemma 5.1 repeatedly.)
APPENDIX II

Justification of the Integration-by-Parts in Equation 6.2.1 of Theorem 6.2
It will suffice to show that the set function J; , where

Jk(E) = Pr{[NT = n]n [(AT(1)7 ] AT(k - 1))
Az(k+ 1), , Az(M)) e B]| Z(T) = K}

is, for fixed % and fixed n e 9%, absolutely continuous with respect to M — 1 dimen-
sional Lebesgue measure over @, where N» = (N (1, 2), N.(1, 3), --- , N+(M,
M — 1)). It will then follow that the mass function Gx(n,-, T') has no singular
component with respect to Lebesgue measure over @ and this, in turn, justifies
the integration-by-parts step.

First, we notice that J,(-) can be expressed as a countable sum over a certain

(A2.1)
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subset Hj:l ®W,o of set functions of the form
J]?(E;n,Zo, e ,z,._l) = Pr [N(T) = ’n,Zo =20, " ;Zn—l = Zn—1 ,Z,, = k,
(Az(1), -+, Az(k — 1), Ae(k + 1), -+, Az(M))eE]/Pr [Z(T) = k]
where n = D, ;ni; . Therefore it suffices to show that set functions of the form
Jx (with n, 29, - - , 2,1 fixed) are absolutely continuous over Q.
Let I(j) be the set of indices » for which z, = j. Then, A7(j) = D ver»T> ,
(where, as in Section 3, T, is the time spent in Z,) and

1
* . CECIRY = —— = = .. =
Ji(E;n, 2z, s Zn1) PrIZ(T) = ) PrN(T) = n,Zy = 2, v Zn =k,

(Z TP,"', Z Tl'a Z Tv,"':z Tv)eElo

veI (1) vel (k—1) vel (k+1) vel p

If 1(j) is empty for some j = k, then Ji(E; n, 2, -+, 2n1) = O since E is
assumed to be a subset of the positive orthant @. Otherwise, by Theorem 3.1,
Jr(E;m, 2, , 2,_1) can be expressed as an M — 1 dimensional Lebesgue
integral over E.

APPENDIX III

gt Fo= —qb)Fy + X q(n, k) Au F,.
vk

Proor.

Fe(na, = -5 Maras Guy 0y Gex, Grpa, =, G5 &+ h)
1
= ZPri(Q 0, WVenn(i, ) = naN () [Aena(d) < ai)

N[Z(t + h) = kN B}

+ O(K’) as h — 0, (where B,, is the event: “[m changes in [¢, ¢ + h)].” (cf.,
Lemma 5.1)); = Fr(naa, Mot — 1, =+ ,Nar a1, @15 =+ * 5 Gt , Qg1 , ** 5 G 5 8)
(1 —q(k)h) + Zv;éka(nlzy ey — 1, e MMM, G G, Gy,
ax; t)q(v, k)b 4+ o(h) as h — 0. Thus,

limpao (1/R)[Fi(n, a; ¢ + h) — Fi(n, a; t)] = —q(k)Fr + ,st(V’ k)AF, .

The initial conditions are obvious: If n;; > 0 for some 7 and j,
Fr(mg, -+, N, u-1,a;0) = 0.
Otherwise,
Fr(0,---,0,a;0) = Pr[Z(0) = k]
APPENDIX IV
Proof of the last step in Theorem 6.5

i gk [ Z oo (2 G) -2 ()]

-ty & R nen 10 () -0 ()]
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Let the matrix R(o, £) be defined as in Theorem 6.2, and let S (z) = ||s.m(2)]|
be the matrix obtained from R(w, 1/2°) by replacing the ¢th row of R by the row
whose ¢th element is D_eiq(ik)w(ik) and whose mth element is
—q(z, m)w(s, m) if m # 4.

If we expand sV (z) = det 8 (z) by cofactors of its sth row, we find

sP(z) = 2 ¢4, B)o (3, B[R (o, 1/2") — R (e, 1/2")].
k#%7
It suffices to show that for each 7, limg.o (d/dz)s”(z) = 0. But
d (3) _ (n,m) i
2.8 (@) = ; ;S (@) 7 sam(z)

where 8™ (z) is the (n, m)th cofactor of S'”(z).
We use the explicit form of s, .(z) along with the fact that

S™™ (z) = 8™™(0) + o(1) asz — 0

to deduce that
£ ) = T 3 gln,m)aln,m) (5" (0) — S~ (0)] + o(1).

Since the row runs of $'”?(0) are all zero, Lemma 6.4 applies:
8™ (0) = 8™™(0).

Whence
(d/dz)s?(z) = o(1) as z—0.
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