SYMMETRICAL UNEQUAL BLOCK ARRANGEMENTS WITH TWO
UNEQUAL BLOCK SIZES'

By DaMARAJU RAGHAVARAO
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1. Summary. This paper deals with the analysis and constructions of Sym-
metrical Unequal Block (SUB) arrangements with two unequal block sizes.
The analysis of these designs is obtained on the assumption of equal intrablock
error variances for blocks of different sizes. Various methods of constructing
these arrangements from known incomplete block designs are considered in
this paper. The method of constructing SUB arrangements by the method of
finite differences is also considered in this paper.

2. Introduction. The necessity of incomplete blocks in experiments was noticed
by experimenters and theoreticians long ago, and, as a result, the Balanced
Incomplete Block (BIB) designs of Yates [21] and the Partially Balanced In-
complete Block (PBIB) designs of Bose and Nair [6] were evolved. Amongst all
incomplete block designs with constant block size k, the BIB designs were
shown to be the most efficient designs by Kiefer [12], Kshirsagar [14] and Mote
[15]. But these designs become useless when the natural blocks comprise different
number of plots. To meet this contingency, Kishen [13] introduced the SUB
arrangements, which share the property of complete balance (in the sense of
having a constant A), but which involve blocks of different sizes.

Let v treatments 1, 2, - - - , v satisfy the following relations:

(a) Any two treatments are either 1st, or 2nd block associates, the relation
of block association being symmetrical, i.e., if the treatment 4 is the 7th block
associate of ¢, then ¢ is the 7th block associate of 6.

(b) Each treatment 6 has u;, 7th block associates, the number u; being in-
dependent of 4.

(¢) If any two treatments 6 and ¢ are 7th block associates, then the number
of treatments which are jth block associates of § and kth block associates of ¢,
is a7 and is independent of the pair of 7th block associates 8 and ¢. Also,

Aijk = Qikj -

The arrangement of v treatments, satisfying the above conditions, in b blocks
where n; blocks are of size k; , and n, blocks are of size k, is said to be a SUB
arrangement with- two unequal block sizes, if

(i) each treatment occurs in n:k;/v blocks, of size k; (¢ = 1, 2), and

(i1) every pair of 1st block associates occurs together in u blocks of size

ki and in A — u blocks of size k. , while every pair of 2nd block associates occurs
together in A bloclgs of size k, .
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TWO UNEQUAL BLOCK SIZES 621

From (i), we can easily see that each treatment occurs in
(nikes/v) + (noka/v) =,

say, blocks in all. v, b, v, k:, ni, pi, @ije, A%, J, £ = 1, 2) are known as the
parameters of the SUB arrangement with two unequal block sizes. The following
relations are easily deducible from the above definition:

2 2 2
b= Doni, wor= ) nki, v—1\N= 2 nkik — 1),
=1 =1 =1

2 2
(2.1) v—1= Zlm, kz_laijk = p; — 0;j,

MiGije = Wik = MkOkii, L J, k = 1,2,
where §;; is the Kronecker delta taking the value 1 or 0 according as 7 = j or
1 % j. It can be easily seen that the SUB arrangement as defined above is equiva-
lent to adjoining two PBIB designs D, D*, with two associate classes and the
same association scheme and unequal block sizes. The restrictions on the A
parameters of the PBIB designs in this case become A, = 0, and

M A=A =

These restrictions on the parameters were inherent in the definition of Kishen.
Further it follows that the existence of two PBIB plans with the above restric-
tions on N’s and with the same association schemes implies that of a SUB ar-
rangement and conversely. We use this fact in Sections 6, 7 and 8.

Recently, pairwise balanced designs were used in the construction of mutually
orthogonal latin squares and orthogonal arrays ([8], [9], and [11]). Let us see
the similarities and differences between pairwise balanced designs and SUB
arrangements. An arrangement of » objects (called treatments) in b sets (called
blocks) will be called a pairwise balanced design of index A and type (v; k1,
kg, ---, kp) if each block contains either &, , k», - -+ , k, treatments which are
all distinct (k; < v, k; £ k;, for 7 # j), and every pair of distinct treatments
occurs in A blocks of the design. The differences between pairwise balanced
designs and SUB arrangements are the following:

(1) In a pairwise balanced design, each treatment need not occur the same
number of times, while, in a SUB arrangement, every treatment occurs r times.

(2) Some pairwise balanced designs do not satisfy the conditions (a), (b)
and (c) on the treatments.

It can be further seen that SUB arrangements form a special class of pairwise
balanced designs which can be conveniently analysed, while, the analysis of a
general pairwise balanced design shall be very cumbersome.

Let N = (n;;) be the incidence matrix of the SUB arrangements, where
n;; = 1 or 0 according as the 7th treatment occurs in the jth block or not. Then
we have

(2.2)

b=v,
since rank (NN’) = v = rank (N) =< b.
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Kishen [13] has classified SUB arrangements with two block sizes according
as the values of nik:/v, and A, and provided approximate analyses in particular
cases, assuming the same intrablock error variance for blocks of all sizes. It
seems more appropriate to assume equal intrablock variance only for the blocks
of the same size, but this leads to a complicated analysis and is a problem for
further research. The assumption of equal intrablock variance is of very doubtful
general validity, but may be reasonable in some cases, e.g., if the experiment is
an agronomic one and the block sizes do not vary much. The analysis of SUB
arrangements is obtained in this paper with the help of association matrices.

3. Association matrices. Let us further assume that each treatment is its
own<9th block associate and of no other treatment. Then, we have

ko =1, Goi; = OgMi 1,7 =0,1,2,
(38.1) Qi = i, 5, k=12
A0 = O, ’L' = 1, 2,

We now define the matrices By, B:, and B; as the association matrices of SUB
arrangements with two unequal block sizes as B; = (bes:), where bgg; = 1 or 0
according as 6 and ¢ are 7th block associates or otherwise. We can easily see that

BO+BI+BZ=EW;
(3.2) 2
B,B, = ;)a,-,-,,B,-, i, k=0,1,2
where E,., stands for the m X n matrix with positive unit elements everywhere.
Now, let Az = (aijx), k¥ = 0, 1,2 be a 3 X 3 matrix, where the first subscript
stands for the column, the second for the row and the third for the matrix.
Following an argument similar to Bose and Mesner [5], it can be shown that A’s
provide a regular representation in 3 X 3 matrices of the algebra given by the
B’s, which are » X v matrices.

4. Analysis. We easily see that

(4.1) u = mki(kr — 1) /o .
Let us assume the model to be
(4.2) Yi; = m + t; + b; + €,

where y;; is the yield of the plot in the jth block to which the 7th treatment is
applied, m is the general effect, ¢; is the effect of the 7th treatment, b, is the effect
of the jth block and the ¢;;’s are independent normal variates with mean zero
and variance o”. Let T be the total yield of all plots having the zth treatment,
B; be the total yield of the jth block, and #; be a solution for ¢; in the normal
equations. Further, denote the column vectors

{T17T2)""T1’}’ {BI)BZ7"°7Bb}7 {t11t27°")t7}7
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and {f,, &, -+, &} by T, B, t, and f respectively. It is well known that the re-
duced normal equations are

(4.3) Q = Cf,

where

(4.4) Q = T — Nlki'I,, + k3'I.,]B,
and

(4.5) C = rl, — N[ki'l,, + k3'L.,IN".

In equations (4.4) and (4.5), the symbol 4 stands for the Kronecker sum
(direct sum) of matrices. If N; and N, are the incidence matrices for the first
n; blocks and the last n, blocks respectively, we have

C = rI, — ki'Ni\Ny — k3'N.N,

(4.6) 4 - 1
= (r —v b)By — kiky {uks + (N — u)ki} By — k3 AB,.
Setting
(47) r—v"b = a, —kikTMuks + A — Wk} = o1, —k\N= a,
(4.6) reduces to
(4.8) C = ayBy + ayB; + a2B;.
A little calculation shows that
(4.9) ay + aur + ooue = 0.

From Corollary 3.2.1 of Shah [17], it is known that the solution of the normal
equations (4.3) is

(4.10) { = DQ,

where D is a linear combination of By, B; , and Bs , such that
(4.11) CD = DC = (vI, — E,,)/v.
Letting

(4.12) D = BBy + BiB1 + BeB:,

with a little algebra it can be shown that the 8,’s are solutions of the equations
2 2
Z-ozoaujaiﬁj= (1)— 1)/0, lfl=0,

J=l

(4.13)
= —1/v, otherwise.
From the relation (4.9), we easily see that the above three equations are not

independent. Further, since the least square estimate of an estimable function
is unique whatever be the solution of the normal equations, we can take any two
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of the equations (4.13) and solve them with an additional convenient restraint
like > 7B, = 0, or for some j, 8; = 0. A solution for the equations (4.13) can
easily be obtained as

Bo = —(mai — Aap) A + (may — A)/v},
(4.14) B = (mai — Aao) oy + (a0 — o) /v,

Bz = 0.

where A = oy + a1 a1 +aue o

Substituting these valuesin (4.12), we can find out D, and the matrix D, when
substituted in (4.10) determines the solution of the normal equations. The co-
variance matrix of { is

e’ DCD’" = o"[{Bo — v (B0 + wB1)} Bo

(4.15) } )
+ {81 — v (Bo + wiB)} By — v (Bo + i) Bal.

Hence

(4.16) Var (fy — &) = 2(Bo — B)o°,  if 6 and ¢ are first block associates;

= 2By’ otherwise.
The average variance is given by
2{v trace(DCD’) — Ey,DCD'E,}¢’/v(v — 1)

(4.17) .
= 2{(v — 1)Bo — mbi}o’/(v — 1).

Hence the efficiency of SUB arrangements is
(4.18) (v = 1)/Ir{(v — 1)Bo — mbi}].

6. Characteristic roots of the (' matrix of a SUB arrangement. In his con-
cluding remarks, Rao [16] mentions that some balanced designs exist with
unequal block sizes also. In this section we prove that no SUB arrangement
with two unequal block sizes is balanced. To prove this result we require the
characteristic roots of the C' matrix. The distinet characteristic roots of the
C matrix can be shown, in a manner similar to that of Connor and Clatworthy
[11a], to be 0, ¢1, and ¢,, where
(5.1 di=a = §l(e — @) (~p+ (=DW) + (@ + ), =12
where p = aus — aQus, ¢ = @z + @z and w = p* + 2 ¢ + 1. We know that
the design is balanced if the non zero characteristic roots of C are all equal (cf.,
Rao [16]). We can easily see that ¢, and ¢, are equal if and only if
(5.2) (o — a)’w = 0.

Since a’s are positive or zero, w is always non zero and (5.2) is impossible. Hence
we have

TrEOREM 5.1. No SUB arrangement with two unequal block sizes s balanced.

6. Construction of SUB arrangements from Group Divisible designs. A
Group Divisible (GD) design is defined by Bose and Connor [4] as an incomplete



TABLE 6.1
Parameters of SUB arrangements Obtainable by the method of Theorem 6.1

Parameters of SUB Arrangements

Serial *
No.
? b 4 k ks m ne In M2 Gm A

1 6 7 3 2 3 3 4 1 4 0 1 SR 1

2 6 11 7 3 4 2 9 2 3 1 4 SR 4

3 6 15 9 2 4 3 12 1 4 0 5 R 4

4 8 12 4 2 3 4 8 1 6 0 1 R 5

5 8 26 10 4 3 2 24 3 4 2 3 R 7

6 9 12 7 3 6 3 9 2 6 1 4 SR 14

7 12 13 4 3 4 4 9 2 9 1 1 SR 20

8 12 13 7 3 8 4 9 2 9 1 4 SR 26

9 12 15 7 4 6 3 12 3 8 2 3 SR 25
10 12 19 5 4 3 3 16 3 8 2 1 SR 21
11 12 26 6 2 3 6 20 1 10 0 1 R 16
12 14 21 5 2 4 7 14 1 12 0 1 R 24
13 14 35 7 2 3 7 28 1 12 0 1 R 25
14 15 20 5 3 4 5 15 2 12 1 1 R 27
15 15 28 6 5 3 3 25 4 10 3 1 SR 36
16 15 33 9 5 4 3 30 4 10 3 2 R 31
17 16 36 7 4 3 4 32 3 12 2 1 R 35
18 18 39 7 6 3 3 36 5 12 4 1 SR 45
19 18 57 9 2 3 9 48 1 16 0 1 R 40
20 20 21 5 4 5 5 16 3 16 2 1 SR 51
21 20 29 6 5 4 4 25 4 15 3 1 SR 52
22 20 70 10 2 3 10 60 1 18 0 1 R 42
23 21 52 8 7 3 3 49 6 14 5 1 SR 59
24 24 30 6 4 5 6 24 3 20 2 1 R 45
25 24 50 8 3 4 8 42 2 21 1 1 R 46
26 24 67 9 8 3 3 64 7 16 6 1 SR 61
27 24 76 10 6 3 4 72 5 18 4 1 R 47
28 26 65 9 2 4 13 52 1 24 0 1 R 53
29 27 63 9 3 4 9 54 2 24 1 1 R 54
30 27 84 10 9 3 3 81 8 18 7 1 SR 66
31 28 53 8 7 4 4 49 6 21 5 1 SR 68
32 30 31 6 5 6 6 25 4 25 3 1 SR 70
33 32 68 9 8 4 4 64 7 24 6 1 SR 74
34 35 54 8 7 5 5 49 6 28 5 1 SR 76
35 36 85 10 9 4 4 81 8 27 7 1 SR 78
36 40 69 9 8 5 5 64 7 32 6 1 SR 79
37 40 82 10 4 5 10 72 3 36 2 1 R 61
38 42 55 8 7 6 6 49 6 35 5 1 SR 80
39 45 86 10 9 5 5 81 8 36 7 1 SR 81
40 48 56 8 6 7 8 48 5 42 4 1 R 63
41 48 70 9 8 6 6 64 7 40 6 1 SR 82
42 54 87 10 9 6 6 81 8 45 7 1 SR 84
43 56 57 8 7 8 8 49 6 49 5 1 SR 85
44 56 71 9 8 7 7 64 7 48 6 1 SR 86
45 63 72 9 7 8 9 63 6 56 5 1 R 66
46 63 88 10 9 7 7 81 8 54 7 1 SR 87
47 72 73 9 8 9 9 64 7 64 6 1 SR 89
48 72 89 10 9 8 8 81 8 63 7 1 SR 90
49 80 90 10 8 9 10 80 7 72 6 1 R 68

* Reference to the GD design from the Tables, that can be used to construct the SUB
arrangement.

625
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block arrangement with »* treatments, each replicated r* times, in b* blocks, of
size k¥, where the treatments can be divided into m groups, of n treatments
each, so that the treatments belonging to the same group occur together in
AT blocks, while the treatments belonging to different groups occur together
in A3 blocks. We now prove
TrEOREM 6.1. If a GD design exisis with parameters
v* = mn, b*, ¥, E* =,
(6.1) N=A—1 M=)\

then, a SUB arrangement with parameters
v = mn, b=0b"4+m, r=r"41, ks = n, ky = k¥,

(6.2) n = m, ny = b¥ wm=n—1

Mo = n(m - 1), iy = N — 2, A,
can be constructed by adding m blocks to the plan of the GD design where the ith
added block contains the treatments of the ith group (¢ = 1, 2, ---, m). Con-

versely, if a SUB arrangement exists with parameters (6.2), then, by removing the
blocks of size ky , we get a GD design with parameters (6.1) where the ith group
contains treatments of the ith block of size k, (1 = 1,2, --- , m).

Proor. The first part of the theorem is obvious and requires no proof. To
prove the second part, it is sufficient to show that the blocks of size k; form a
PBIB design with group divisible association scheme, which can easily be seen
to be s0 in this case from the definition of SUB arrangements.

The first part of the above theorem is the same as Lemma 5 of Bose and
Shrikhande [8], but is included here for completeness.

7. Construction of SUB arrangements from PBIB designs with two associate
classes having the triangular association scheme. A PBIB design is said to have
a triangular association scheme (cf., Bose and Shimamoto [7]) if the number
of treatments v* = n(n — 1)/2 and the association scheme is an array of n
rows and n columns with the following properties:

(1) The positions in the principal diagonal (running from upper left hand
corner to lower right hand corner) are left blank.

(ii) The n(n — 1)/2 positions above the principal diagonal are filled by the
numbers 1, 2, --- , n(n — 1)/2 corresponding to the treatments.

(iii) The n(n — 1)/2 positions below the principal diagonal are filled so that
the arrangement is symmetrical about the principal diagonal.

(iv) For any treatment 7, the first associates are exactly those treatments
which lie in the same row and column as 7.

We now prove
TureoreEM 7.1. If a PBIB design with two associate classes having a triangular

assoctation scheme exists with parameters
v = n(n - 1)/2, b*, ¥, E* = n—1,

7.1)
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then a SUB arrangement with parameters
v=mn(n—1)/2, b=2b"+mn, r=1r*42,
(7.2) ki=n—1 k= m=mn  n=>0
= 2n — 4, pe = (n — 2)(n — 3)/2, oy =n — 2, A,

can be constructed by adjoining n new blocks to the plan of the PBIB design, where
the ith added block contains treatments of the ith row of the association scheme
(¢ =1, 2,---, n). Conversely, if a SUB arrangement exists with parameters
(7.2), by removing the blocks of size k, , we obtain a PBIB design with parameters
(7.1) having a triangular association scheme.

ProoF. The first part of the theorem is simple and requires no proof. To prove
the second part, from the comment in Section 2, it is sufficient to show that the
n; blocks of size &, form a PBIB design with triangular association scheme. It
can be easily seen that each treatment occurs twice in blocks of size k; and the
two blocks in which a particular treatment 6 occurs may be written as

(0, 01’ 02) e ’On—2)
(0, 0,,_1, 01,,, ttty, 027&—4))

where 6, 0;, -+ -, 62,4 are the first block associates of 6. It can further be seen
that the first block associates of 8 can be divided into two sets (6:, 8, + - , 0n—s)
and (6n—1, 0o, -, Ons) such that the treatment pairs (6;, 6;) and (i, 6:’)
are first block associates for ¢ = j =1,2,--- ,n —2and ¢ #j =n — 1,
n, -+, 2n — 4. Now using an argument similar to that of Shrikhande [18],
we prove that the blocks of size k, ferm a PBIB design with triangular associa-
tion scheme (see Table 7.1).

(7.3)

8. Construction of SUB arrangements from PBIB deisgns with two associate
classes having an L, association scheme. A PBIB design with two associate
classes is said to have an L, association scheme, if the number of treatments is

TABLE 7.1
Parameters of SUB arrangements obtainable by the method of Theorem7.1

Parameters of SUB Arrangements

Serial No. *
v b r k k2 m N " B2 OGm A
1 10 11 5 4 5 5 6 6 3 3 2 T 9
2 10 15 8 4 6 5 10 6 3 3 4 T 18
3 10 25 8 4 3 5 20 6 3 3 2 T 14
4 15 16 6 5 6 6 10 8 6 4 2 T 22
5 15 16 8 5 9 6 10 8 6 4 4 T 27
6 15 21 5 5 3 6 15 8 6 4 1 T 28

* Reference to the PBIB design with triangular association scheme from the Tables,
that can be used to construct the SUB arrangement.



628 DAMARAJU RAGHAVARAO

s where s is a positive integer and the treatments can be arranged in an s X s
square, such that any two treatments in the same row and the same column
are the first associates. We now prove

TareorEM 8.1. If a PBIB design with two associate classes having an Ly asso-
ciation scheme exists with parameters

(8.1) =, b, N, KB s, M =a—1, A=),
then, a SUB arrangement with parameters
v =&, b=0b"+ 2s r=r*+42, k= s, ky = &,
(8.2) mo=2s, my=0% =2 —2,
ur = (s — 1)% ay = s — 2, A,

can be constructed by adding 2s more blocks to the plan of the PBIB design where
the ith added block contains the treatments in the ith row of the association scheme
(1=1,2,---,5s) and the (s + j)th added block (j = 1,2, ---, s) contains the
treatments in the jth column (§ = 1, 2, ---, s) of the association scheme. Con-
versely, if a SUB arrangement exists with parameters (8.2) and s 5 4, then by
removing the blocks of size ki, we obtain a PBIB design with parameters (8.1)
having an L. association scheme.

Proor. Proof for the first part is obvious. To prove the second part, it is
sufficient to show that the blocks of size k; form a PBIB design with L, associa-
tion scheme and with parameters

o3 V=g V=2, =2 K=k, MN=1

(83) }\§=O, n{=2s—2, p}1=s—2.
From the definition it follows that the blocks of size k; form a PBIB design
with parameters (8.3) and it can easily be proved to have an L, association
scheme, when s # 4 by making an appeal to Theorem 1 of Shrikhande [19].

9. Construction of SUB arrangements from affine resolvable BIB designs.
A BIB design with parameters »’, b’, 7/, &/, N’ is said to be affine resolvable if
the b’ blocks of the design are grouped into 7’ sets of b’/r’ blocks each, such that
each treatment occurs once among the blocks of a given set and blocks of dif-
ferent sets will have k’*/v’ treatments in common. Bose [3] proved that the
parameters v’, b’, v, ¥/, X’ of an affine resolvable BIB design can be expressed in
terms of only two integral parameters » > 0 and ¢ = 0 as follows:

v = nf{(n — 1)t + 1}, bV =n@+n+1),
(9.1) P=nt+n+1, K =na{(n—1)t+1},
N =mnt+1.

We now prove
TaeoreEM 9.1. If an affine resolvable BIB design exists with parameters (9.1)
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TABLE 9.1

Parameters of SUB arrangements derivable from affine resolvable BIB destgns by removing a
block and the treatments contained in it

Parameters of Affine

Resolvable BIB Designs Parameters of the Corresponding SUB Arrangements

Serial No.

o ¥ 7 K N ] b r k ks m my m op am A
1 9 12 4 3 1 6 11 4 3 2 2 9 2 3 1 1
2 16 20 5 4 1 12 19 5 4 3 3 16 3 8 2 1
3 25 30 6 5 1 20 29 6 5 4 4 25 4 15 3 1
4 49 56 8 7 1 42 55 8 7 6 6 49 6 35 5 1
5 64 72 9 8 1 56 71 9 8 7T 7 64 7 48 6 1
6 81 90 10 9 1 72 8 10 9 8 8 8 8 63 7 1

and n > 2, then by cutting out a block and the treatments occurring in that block,
we obtain a SUB arrangement with parameters

v=nn—D{n-Dt+1}, b=n®m%t+n+1) —1,
r=n%t+n-+1, ko= n{(n — 1)t + 1},
(9.2) k= (n— 1{(n—1)t+ 1}, n.=n—1, ng = n’(nt + 1),
m=n{n—1t+1} —1, pw=n(r-—2){xr-1t+1}
om = n{(n — )t + 1} — 2, A=mnt+ 1.

Proor. Without loss of generality, let us assume that the first block in the
first replicate is cut out along with the treatments contained in it. This block
has zero treatments in common with any other block in the first replicate while
it has k%/v' = (n — 1)¢ + 1 treatments in common with any other block
of the ith replicate (¢ = 2,3, -+ , n’t + n + 1). Thus, by the removal of this
block and the treatments contained in it we get an unequal block arrangement
with the parameters v, b, r, k1, k2, 1, n2 and A as in (9.2). Every treatment
occurs with k; — 1 treatments in blocks of size k; once and it occurs with these
treatments A — 1 times in blocks of size k., while it occurs A times with the
other v — k, treatments in blocks of size &, . Thus, we get k&1 — 1 to be the num-
ber of first block associates and v — %, to be the number of second block asso-
ciates, i.e., we obtain u; and .. Finally, let us consider two first block asso-
ciates. The number of treatments common to the first block associates of the
first treatment, and the first block associates of the second treatment is the
number of treatments contained in the block in which they occur, excluding the
two treatments under consideration. Thus, a3 = ki — 2, completing the proof
of the theorem.

I

10. Construction of SUB arrangements from GD designs and BIB designs.
We prove
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TABLE 10.1
Parameters of SUB arrangements obtainable by the method of Theorem 10.1

Parameters of SUB Arrangements
Serial No. *

] b r kh k2 m (2 7 M2 Gm M
1 6 15 8 2 4 6 9 2 3 1 4 SR 4, a
2 8 24 9 2 4 12 12 3 4 2 3 SR 9, b
3 9 18 5 2 3 9 9 2 6 1 1 SR 12, a
4 9 18 8 2 6 9 9 2 6 1 4 SR 14, a
5 9 30 9 2 3 9 21 2 6 1 2 R 11, a
6 12 21 5 2 4 12 9 2 9 1 1 SR 20, a
7 12 21 8 2 8 12 9 2 9. 1 4 SR 26, a
8 12 30 9 2 6 18 12 3 8 2 3 SR 25, b
9 12 34 7T 2 3 18 16 3 8 2 1 SR 21, b
10 15 30 6 2 4 15 15 2 12 1 1 R 27, a
11 15 45 8 2 3 15 30 2 12 1 1 R 28, a
12 15 55 9 2 3 30 25 4 10 3 1 SR 36, ¢
13 16 40 7 2 4 24 16 3 12 2 1 SR 40, b
14 16 56 9 2 3 24 32 3 12 2 1 R 35, b
15 20 46 7 2 5 3 16 3 16 2 1 SR 51, b
16 20 65 9 2 4 40 25 4 15 3 1 SR 52, ¢
17 24 60 8 2 5 36 24 3 20 2 1 R 45, b
18 24 66 9 2 4 24 42 2 21 1 1 R 46, a
19 25 75 9 2 5 5 25 4 20 3 1 SR 64, ¢
20 27 81 10 2 4 27 54 2 24 1 1 R 54, a
21 28 77 10 3 4 28 49 6 21 5 1 SR 68, d
22 30 85 9 2 6 60 25 4 25 3 1 SR 70, ¢
23 35 8 10 3 5 35 49 6 28 5 1 SR 76, d
24 42 91 10 3 6 42 49 6 35 5 1 SR 80, d
25 49 94 10 3 7 49 49 6 42 5 1 SR 83, d

* Reference to GD design from the Tables, and a, b, ¢, d stand for BIB designs with
parameters

v =3 =10 rr=2=k, N=1,

=4, b =6 =3 k=2 N=1,
vv=5 b=10, =4 k=2 N=1,
vV =T7=0", r'=3=Fk, MN=1,

respectively.
TaeoreM 10.1. Let N be the incidence mairiz of a GD design with parameters
(10.1) F=mn, b, kY, N, A >,
and let NT be the incidence matriz of a BIB design with parameters
(10.2) v =mn, b, v, K#kE, N=x -\
Then
(10.3) N = [I.XN{ | N3],
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where “X” denotes the Kronecker product of matrices, is the incidence matriz of a
SUB arrangement with parameters
v = mn, b =b*+ mb, r=r*4, k=F,
(10.4) ke = k*, m=mb, m=0b m=n-—1,
p2=n(m—1), am=n—2, )\=)\;.

Proor. The parameters v, b, 7, ki, k2, n1, n2, and A need no explanation.
From the method of construction we see that n — 1 treatments occur together
A — AY times with a particular treatment 0 in blocks of size k;, and they occur
together A times with 6 in blocks of size k» , while the other n(m — 1) treat-
ments occur together Ay times with @ in blocks of size k» . Hence p; and pe .
From the association scheme of GD design, we obtain a;; = n — 2, completing
the proof of the theorem.

11. Construction of SUB arrangements by the method of finite differences.
The method of differences had been extensively used by Bose [1], [2], and Sprott
[20] to obtain BIB designs. We shall give here the application of this method in
the construction of SUB arrangements with two unequal block sizes and X = 1.

Consider a finite module M with exactly v elements. Let a treatment corre-
spond to each element of this module. Suppose, it is possible to find ¢ blocks each
containing %; elements and # blocks each containing k, elements satisfying the
following conditions:

(1) Among the {tki(kx — 1) + tks(k, — 1)} differences formed, each non
zero element of the module occurs once,

(2) Let 61, 63, - -, 04,4, ¢e,—1) be the differences formed from blocks of size
ki, and among the tiky (kx — D{tki(ky — 1) — 1} differences 0 — 0{i #j =
1,2, -+, tka(ky — 1)} every number of the set 6, 6z, -+, 03k ki) IS TE-
peated @ times.

Let
(11.1) (xtl y iz ’ x’lkl)’ 1 17 2’ ) b,
(lexxﬂ:""xikz): =12, t,
be the & + & blocks satisfying the above conditions. Then

TuporeM 11.1. The v(t; + &) blocks obtained by adding ¢, an element of M,
to every member of a block of (11.1) and reducing it to (mod v), s a SUB arrange-
ment with parameters

v, b=v(t+ b)), r = bk + tkz, ky, ks, n = v,
ng = vk, w = hki(k — 1), pe = boko(kr — 1), a1, A=1
The proof can be given on similar lines to Section 6 of Bose and Nair [6].
12. Bounds on r for SUB arrangements with two unequal block sizes and
b = v. When b = v, we have from relations (2.1) that
(12.1) m(r — ki) = na(ky — 7).
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Since n; and m, are positive integers, r — k; £ 0, according as k, — r S 0.
If k{, — r = 0, then r — k; = 0 and the SUB arrangement becomes an ordinary
symmetrical BIB design. Otherwise, we get kb <r <k, or ke <r <k;.
Thus, we have

TaEOREM 12.1. In a SUB arrangement with two unequal block sizes k, and k. ,
and b = v, r lies in the open interval (ki , ke).

Acknowledgment. I am thankful to Professor M. C. Chakrabarti for his
kind guidance in preparing this paper.

REFERENCES

[1] Bosg, R. C. (1939). On the construction of balanced incomplete block designs. Ann.
Eugen. 9 353-399. :
[2] Bosg, R. C. (1942). Some new series of balanced incomplete block designs. Bull. Cal-
cutta Math. Soc. 34 17-31.
[3] Bosg, R. C. (1942). A note on the resolvability of balanced incomplete block designs.
Sankhya 6 105-110.
[4] Bosk, R. C. and Connor, W. S. (1952). Combinatorial properties of group divisible
incomplete block designs. Ann. Math. Statist. 23 367-383.
[5] Bosg, R. C. and MEsSNER, DALE M. (1959). On linear associative algebras corresponding
to association schemes of partially balanced designs. Ann. Math. Statist. 30
21-38.
[6] Bose, R. C. and Nair, K. R. (1939). Partially balanced incomplete block designs.
Sankhya 4 337-372.
[7] Bosg, R. C. and SaiMamoTo, T. (1952). Classification and analysis of partially balanced
incomplete block designs with two associate classes. J. Amer. Statist. Assn. 47
151-184.
[8] Bosg, R. C. and SHRIKEANDE, S. S. (1960). On the construction of sets of pairwise
orthogonal latin squares and the falsity of a conjecture of Euler. Trans. Amer.
Math. Soc. 95 191-209.
[9] Bosg, R. C. and SHRIKHANDE, S. S. (1960). On the composition of balanced incomplete
block designs. Canad. J. Math. 12 177-188.
[10] Bosg, R. C., CratworTHY, W. H. and SHRIKHANDE, S. S. (1954). Tables of partially
balanced incomplete block designs, Inst. of Stat., Univ. of North Carolina,
Reprint Ser. No. 50.
[11] Bosg, R. C., SHRIKHANDE, S. S., and PARkER, E. T. (1960). Further results on the
construction of mutually orthogonal latin square and the falsity of Euler’s con-
jecture. Canad. J. Math. 12 189-203.
[11a] ConNoR, W. S. and CraTworTHY, W. H. (1954). Some theorems for partially balanced
designs. Ann. Math. Statist. 26 100-112.
[12] K1EFER, J. (1958). On the nonrandomized optimality and randomized nonoptimality
of symmetrical designs. Ann. Math. Statist. 29 675-699.
[13] KisrEN, K. (1940-41). Symmetrical unequal block arrangements. Sankhya 6 329-344.
[14] KsHIRSAGAR, A. M. (1958). A note on incomplete block designs. Ann. Math. Statist.
29 907-910.
[15] MoTE, V. L. (1958). On a minimax property of balanced incomplete block designs.
Ann. Math. Statist. 31 910-914.
[16] Rao, V. R. (1958). A note on balanced designs. Ann. Math. Statist. 29 290-294.
[17] Smras, B. V. (1959). A generalization of partially balanced incomplete block designs.
Ann. Math. Statist. 30 1041-1050.



TWO UNEQUAL BLOCK SIZES | 633

[18] SHRIKHANDE, S. S. (1959). On a characterization of the triangular association scheme.
Ann. Math. Statist. 30 39-47. .

{19] SurikHANDE, S. 8. (1959). The uniqueness of the L, association scheme. Ann. Math.
Statist. 30 781-798.

[20] SproTT, D. A. (1954). A note on balanced incomplete block designs. Canad. J. Math.
6 341-346.

[21] YaTes, F. (1936-37). Incomplete randomized blocks. Ann. Eugen. T 121-140.



