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1. Introduction and summary. This paper introduces a special calculus for the
analysis of factorial experiments. The calculus applies to the general case of
asymmetric factorial experiments and is not restricted to symmetric factorials
as is the current theory which relies on the theory of finite projective geometry.
The concise notation and operations of this calculus point up the relationship of
treatment combinations to interactions and the effect of patterns of arrangements
on the distribution of relevant quantities. One aim is to carry out complex
manipulations and operations with relative ease. The calculus enables many
large order arithmetic operations, necessary for analyzing factorial designs, to be
partly carried out by logical operations. This should be of importance in pro-
gramming the analysis of factorial designs on high speed computers.

The principal new results of this paper, aside from the new notation and
operations, are (i) the further development of a theory of confounding for
asymmetrical factorials (Section 4) and (ii) a new approach to the calculation of
polynomial regression (Section 5). In particular, the use of the calculus enables
one to write the inverse matrix of the normal equations for a polynomial model
as a partitioned matrix. As a result it only requires inverting matrices of smaller
order.

2. Elements and operations of the calculus. Consider an asymmetric factorial
experiment with n factors A;, Az, - -+, 4, such that the number of levels of
factor A; is m; . A particular selection of levels ¢ = (¢, %2, - - , ¢») is termed
a treatment combination, where 7, denotes the 7,th level of A, . The total num-
ber of treatment combinations is v = H}',,l m; .

Let Yi(¢ = 1,2, ---, v) denote the observation on the sth treatment combi-
nation. Then the effect® of the ¢th treatment combination is defined to be ¢; =
E(Y;) — > 21 E(Y)/v. Due to the factorial structure of the experiment, the
model for the treatment effects can be further expressed in terms-of the usual
main effect and interaction parameters. We shall denote the main effect, two-
factor interaction, - - - , n-factor interaction parameters by

as(z.s), a/rc(ir 5 'L.s), ctt alZ-nn('il ) 7:2 y CT Zn)
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These are taken to satisfy the usual linear constraints that the sum over the
levels of any factor is zero, e.g.,

mg my Mg
Z a.(is) =0, Z rs(tr , 1s) = Z Qre(r, %) =0, - .
ig=1 i= ig=1
Hence, for the ¢th treatment combination ¢ = (4, %2, - -- , %2.), We can write

the relation between the treatment effect and interactions as

n

(1) t: = Z as(is) + Z Z an(ir , 7:3) + -+ a12--~n(7:1 ) 12 y Ty i’l)

8=1
1<s<r<n

We distinguish between the model (1) and the combinatorial pattern or
design which characterizes the scheduling of the measurements. The design
describes the number of replicates for each treatment combination, the block-
ing or grouping of the treatments, the way in which the treatments are assigned
to the experimental units, etc. The design dictates the manner in which the
treatment effects (¢;) are to be estimated. In turn the estimation of the inter-
action parameters only depends explicitly on the variance-covariance matrix
of the estimated treatment effects. We regard an experiment as consisting of
both a model and a design. Our main interest, in this paper, is to investigate
relations between the treatment effects and interactions. The statistical prop-
erties of the estimated interactions will be completely characterized by the
distribution of the estimates of the treatment effects.

2.1 Direct product, symbolic direct product, and primitive elements. Throughout
this paper, unless otherwise stated, the following notation will be used:

1;:m; X 1 column vector with all elements unity;

0; :m; X 1 column vector with all elements zero;

I; :m; X m; unit matrix;

J: = 11; :m; X m; matrix with all elements unity.

Let A = (a:;) and B = (b,,;) be rectangular matrices of dimensions m X n
and p X ¢ respectively. Then the ¢right) direct product (DP) or Kronecker
product of the two has dimensions mp X ng and is written (cf., MacDuffee

81)

anB a2 B ce . B
A X B = ang a,22B cee az,,B
@B @mB -+ B
In general if A, (¢ = 1, 2, - - - , k) are matrices with dimensions m; X n;, their

joint direct product will be written as H,Ll x A; and has dimensions HLl m; X
k
i=17; .
We shall define n primitive elements a,, a2, -+, a,. The ¢th primitive
element is a vector having m; components and is given by

(2) ai = (ai(1), ai(2), -+ , ai(my)).
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The primitive elements will be used both as abstract and numerical quantities.
When used as numerical quantities they are simply the main effect terms in
(1). The formation of new elements from the primitive elements will be carried
out using the operation of the symbolic direct product (SDP). The symbol ®
will be used to denote the SDP. When the SDP operation is used, the primitive
elements and the new elements derived from them are abstract elements and
not numerical quantities. The SDP of (say) a, and a, is defined by

(aP ® aQ), = (ap(1)7 a’p(z)y SR ap(mp)) ® (aq(l)! aq(2), Tty aq(mq))
(3) = (apa(1,1), Bpg(1, 2), ++ , apg(1,my),
Upo(2, 1), -+, Ape(2, mg), -+ -, Gpe(mp, My)).
Similarly the SDP of (say) a,, a,, a, is

(a, ® a, ® a,)’

(4) = (apqr(]-y 17 1)7 anT(li ly 2)1 ) aqu(ly 1! m,), apqr(ly 21 1)1
5 Gpgr(1, 2,Me), v Qper (1, Mgy Me),y per(2, Mg, M),
"y Gpgr(Myp , Mg, My) ).
The SDP is only defined to be an operator on primitive elements or on new
elements derived from the SDP in conjunction with primitive elements. Note
that the SDP is associative, i.e.,

a,®a,®a =(a,®a) ®a, =a,® (a,® a,).

This SDP is the same as that recently used by Shah [9]. It should be noted
that Connor used an equivalent operation in [1].

2.2 Combined operations. In our operations, simultaneous use will be made
of the DP and SDP in the same expression. Since the DP is only defined as
an operation on matrices and the SDP is only defined in connection with primi-
tive elements, we shall use the asterisk * to indicate either the DP or SDP oper-
ation when they both appear in the same expression.

Letu = (w, %, -, Un,) and W = (w;, Wy, -, Wn,) be vectors having
scalar components. Then the inner product u’a, is
(5) wa, = 2 way(i).

The expression u’a, when used alone will refer to a numerical quantity. On the
other hand, when used in conjunction with the asterisk product, the components
a,(7) will denote abstract quantities. We define the asterisk product

(6) wa,xwa, = 2 uiap(7) * g wja,(7) = g 2 UA ;0pq(2]) -

However the right hand side of (6) is exactly (u’ X w’)(a, ® a,). Hence we
can write

(7 wa,*xwa, = (W X w)(a, ® a,).
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We shall generalize the relation (7) to matrix operations. Let B and C be
rectangular matrices having dimensions » X m, and s X m, respectively. Fur-
ther let the rows of B and C be denoted by the vectors (by, bz, -+, b,) and

(ci,c2, -+, cs). Then we define the following operations:
(uw'a, * ci a,| [(v X ci)(a,, ® a,)|
wa, + Ca, = wa, *c2a, | _ | (0 X cz)(a, ® a,)
(8) ¢ : :
| u'a, * c a, | | (v X c.)(a, ® a,)_
= (v’ X C)(a, ® a,),
_bi a, » Ca, | _(bi X C)(a, ® a,)]
Ba, + Ca, = bza, + Ca, | _ | (b2 X C)(a, ® a,)
(9) o 5 5
| bla,xCa| (B X C)(a, ® ay)]

(B X C)(ap ® aq)-

In general if B; has dimensions n; X m; forz = 1, 2, --- , n we have

(10) (Bia;*Beaz --- *B,a,) = (BiX B, X - XB,)(a1® 2, ® -+ ® a,).
Consider the vector « = (a1, a2, *++, a,) such thaf a; takes on only the

values zero or one. Define

(11) ali = {1-’ if e =0,

a; if a; = 1.
Such quantities will arise in expressions like
12) ar'sazix .- wap"

Omitting the null vector, there will be 2" — 1 distinct a vectors. Hence there
will be 2" — 1 distinct terms having the form of (12).
For example with n = 3, let @« = (1, 0, 1). Then (12) can be written

af* xaz’+a;’ = a; ® (1, X a3)
and
as |_ (al(l) X 12) ® a3

a)_| @@)XL)®a |, y15ga,

= al ® =
a; [(al(ml) X 1) ® a;

Finally there is need for the analogue of (10), where a; is replaced by af*.
This results in

(13) Baar'sBaaz’# ---#B,az" = (BiX B; X --- X B,)(ar" s az*» --- »a;").
2.3 Linear restraints. In order to make the operations (10) -and (13) in-
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ternally consistent, it is necessary to assume that the components of the primi-
tive elements and the quantities derived from them using the SDP are linearly
dependent. We shall assume that these components always satisfy the restraints:

1:a5=07 8=1,27'.'7n;
1:. I, 0,

[L;((I;:I[ar(@a.]:l:of:l, rEs=1,2 - ,m
1;XLXI, 0, X O,
[Ile:XIf][aa(’Dar@as]=[qu03], q¢7¢s=1’2,...,n;
IqxI"xla

0, X O-
(14) :

LUXLX---XI,

] 0, X0: X --- X On_l
L X1,X---XI,

0;X0:;X ---X O,

. [a1®a2®---®an]=|_ .
LXLX---X1, olxozx-~~xon_lJ

As a direct consequence of these restraints, if there is at least one matrix
(say) the rth for which B, = 1; and «, = 1, we can then write

(ByXB:X - X1, X - XB,)(af' xas?* --- xa, ® --- xay") = O*

by using (10) and (14). This result can be summarized in the following lemma.

Lemma 1. Let {Bi} be matrices of dimension n; X m; for ¢ = 1,2, ---, n.
Further if there exists at least one term, (say) the rth, for which Bar™ = 1,a,,
then

B X B X - XB)af'xas?s ---xap") = Biar! * Byag? » --- +Bjaz" = O.

Another useful lemma on operations deals with matrices where each row sums
to zero. We shall term such a matrix a contrast matrix and shall denote it by
C;;ie., Cid; = O. Then one can readily prove the following:

LemMA 2. If there exists at least one term such that Bai* = Cl;= O, then

(le ng o )(B,,)(af“*a&'z* e *af‘.") = Blai"*Bga?’* oo *B,,a'f," = 0.

3. Relation of the calculus to factorial experiments. The previous section
outlined notation, operations, and some elementary lemmas. In this section,
we discuss the relation of the calculus to factorial experiments. The components
of the primitive elements defined by (2) are the main effect terms in the linear
model (1); the two-factor interaction parameters are the components of a, ®
a,(p # q); ete. The n-factor interaction parameters are the components of
a, ® a; ® -+ ® a,. These main effect and interaction parameters are not all
linearly independent, but can be taken to satisfy certain linear restraints. These
linear restraints are explicitly given by (14).

¢ Throughout this paper, the symbol O will denote a null matrix whose dimensions will
be evident from the context.
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3.1 The matriz model. We shall write the relation of the treatment effects to
the interaction parameters (1) in matrix notation. In order to do this it is
necessary to order serially the treatment combinations. For this purpose let
0; = (1,2, ---, m;) denote a vector having m; elements such that the sth
element is s for s = 1, 2, - -- , m; . The SDP for the 6,’s is defined as

(15) (0P®0q)/=(11’12)"')17"4’217"')2mq’""mpl""’mme)'
The SDP among all the 8s (¢ = 1, 2, ---, n) will be denoted by ®, and is
(16) D, =0®600 - ---®0,.

The rows of ®, can be used to serially order the » = J]7- m. treatment com-
binations by designating the ¢th treatment combination to refer to the sth
row of @, . The element in the sth column of the ¢th row denotes the level of
factor A, in the sth treatment combination.

When working with arrays like (16) it will be necessary to single out particular
columns from the full array. This can be conveniently done by using the follow-
ing lemma.

LeEMMA 3. Let @, = 6; ® 6, ® --- ® 6, and select any s columns from @, .
Define the variable a; to be

1 4f 4th column 7s selected
a; = .
0 otherwise,

and
@y 1,' ’Lf a; = 0,
L 01' ’tf o = 1.

Then the array of the selected s columns from ®, can be written
(17) 0! % 052 % - -+ % 02",
In particular, the jth column is
(18) LXLX - X1;:iX0;X1uX--X1,.
Proor. When n = 2
®,=6®6,=[0; X1 1 X6
forn = 3
©;=0,0000==006=[® X1l X1 Xae)
where 1; X 1, X 03' is the third column. In general,
@, =0, ®0;=[0; ;X111 XX X1,1X8j,
where 1; X 1, X --- X 1,5 X 0; is the jth column of ®; . Note that the first
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7 columns of @, are 6, ® 0: ® --- ® 0; X H.'~'=,~+1 X 1, . Hence the first j col-
umns of ®, can be written in the partitioned form

j—1
‘I”X,I_,Iﬂxl —[@,_lxIIJx1,,Hx1 xe,x'I]IHxl]
which proves (18).

The proof for (17) is by induction. Let the s selected columns be the
j1 <j» < -+ < J, columns and assume (17) is true for the (s — 1) columns
Ji,J2, **+ »Jjsa . (For notational convenience we shall let j,_; = y and j, = 2.)
Then the s columns may be written

n z—1
[o{'l*e:u---*e,,x 11 x1,,IIx1 X 0, X II x1]

t=y+1 t=2z+1
z—1
=07 %05 --- %0, X II X1,®6,X H X 1;
t=y+1 1=z+1

a a
=07 %052 % - % 03"

We shall use Lemma 3 for writing the model (1) in matrix notation. Let t
be the » X 1 vector of treatment effects as ordered by the array @, ; i.e., the
ith treatment combination ¢ = (%;, %2, --- , %s) corresponds to the ¢th row of
@, . Then the level associated with the main effect parameter of A4, is the sth
element of 7; e.g., a.(¢.). The levels associated with the two factor interaction
parameter for 4, and A4, are the rth and sth elements of ¢, e.g., a..(, , %), ete.
Thus by choosing the appropriate columns of ®, we can achieve a correct iden-
tification of factor levels with the interaction parameters. That is, for the in-
teraction involving the s factors 4j , 4;,, -+, Aj, it is only necessary to
select the corresponding s columns from ®, . Replacing the 6; by a; in (17)
results in the interaction parameters associated with these factors being written
in the correct serial order.

In order to illustrate ideas, consider a three factor experiment with factors
A;, A;, A; and respective numbers of levels m;, mz, ms. Using Lemma 3,
the first column of ®;is 6; X 1, X 1; ; the second column is 1, X 6, X 13, etc.
The first two columns are 8; ® (8; X 1;), the first and third columns are 6, ®
(1; X 63), etc. Replacing the 0; in these expressions by a; gives the vector of
main effect and interaction parameters in the desired order. We thus have the
model

t= (a1 X1 X 1) + (1, XaX1) + (1 X1, X a)
+(@m®a;Xl) +(a®lXa) +(LiXa®a) + (a:®a®a;).

Note that each interaction vector is made up of » = 3 terms and can be written
as (af* » a5? » a5®). Therefore (19) can be written in the alternative form

(a7 * az® * as')}

(19)

3

(20) t=)

k=1 {a1+a 2taz=k
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where D s, yay+a;=k denotes the summation over all terms for which a; + s+
a3 = k. The model for the general case can be summarized in the following
theorem.

THEOREM 1. Let t denote the v X 1 vector of treatment effects which are ordered
serially by ®, . Let the variable a; take on the values zero or one. Then the model
relating the treatment effects to the main effect and interaction parameters correspond-
ing to (1) can be written

(ar* % ag?# -- *an”)}

(21) t= Z{
k=1 \ajtagt: - +ap=k

where the SUMMAtiON D, g+ +ani §0€s through all combmatwns of a; for which
the sum 1s exactly equal to k.

The proof of (21) is immediate by direct application of Lemma 3.

3.2 Operations on the matriz model. Since the model for treatment effects can
be written as a sum of terms of the type (af' xas? - -- xas"), it is possible to
now directly carry Lemmas 1 and 2 over to matrix multiplication on the
model. The two theorems presented below are the analogues of Lemmas 1 and 2.

TueorEM 2. Let B;, By, ---, B, be mairices such that B; has dimensions

(BiX By X --- X Byt

= > > (Biar! * Baaz? % - -+ x Baan™).
k=1 ajtagtee-ap=k

(22)

TuEOREM 3. Let the mairices B; be of three types; viz., B; = I;, B; = 1 , and
B; = C; (a contrast matriz, t.e., C;1; = O). Then the result of the mairix operation
Biai® is summarized in the following multiplication table where O denotes an
n; X 1 null vector.

ay = 0 a; = 1
B;=1I; 1; a;
(23) B;aj* = B; = 1: m; o)
TaEOREM 4. Let Bi; for j = 1, 2, - -+, s be contrast matrices, i.e. B; = Ci,; .

Further let the remaining B; matrices be row vectors with unity elements, i.e.,B; = 1; .
Then

(B XB: X -+ X Byt

- (U/H mﬁ) Cu a; *Cia;,* - x C., aia}

J=1

(24)
= (v/H1 mi,.){Cil XCiyX - - XCi,l{a,®a,® - ®a,}.
=
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Proor. Using Theorem 3
Biar'*«Bya;’# -+ xB,ay"
8
(v/IIl mi,-)[ci, a;, *Ci,a;,% -~ +C; a,]
)=
= fo, =ay,= " =a;, =1

O otherwise (O has dimension J] n: X 1).

=1

Since there exists only one vector « = (a1, a2, **, &) for which a;; = 1 for

j=1,2, ..., s with the remaining «; = 0 we have the desired result.
Define the square matrix M; of order m; to be
(25) Mi = miIi b Ji .

Since M;1; = O;, M;is a contrast matrix. Now
M;a; = m;a; — L‘ai = m;a;

by virtue of 1}a; = 0. Hence if C.; = M, , the right-hand side of (24) reduces

to v{a;, ® a;,, ® -+ ®a;,}. We summarize this result in a corollary.
CoroLLARY. Consider the conirast matrices M; = m;1; — J; and define
o Jli if z=0,
(26) Mt = {Mi i@ = 1.
Let xiy = x4y = +++ = s, = 1 with the remaining x; = 0. Then

27) a;, ® a;, ® -+ ® a;, = (/o) (MP* X M3* X --- X M™)t.

Good [3] has derived a closely related expression for the interaction in terms
of the direct product of certain matrices. As an example of the use of this corollary
consider the case where n = 3. Then we have

a; = (1/v)(M: X 1, X 1))t a, = (1/v) (11 X Mz X 13)t

a; = (1/v) (11 X 15 X Mj)t, a; ® a, = (1/v) (M; X M, X 15)t

a ® a; = (1/0) (M; X 1; X My)t, a, ® a3 = (1/v) (11 X M, X M)t
a ®a ®as = (1/v) (M; X My X Mj)t.

4. The estimation of interaction effects and designs for asymmetric con-
founding. In this section we conside} some properties of the estimators for the
various interaction parameters. It is shown that, when an incomplete block
design has a variance-covariance matrix of a certain form, it will be possible to
use the design for confounding in an asymmetrical factorial experiment. Let { be
the minimum variance unbiased estimate (among the class of estimators linear
in the observations) of t and denote by V(f) the variance-covariance matrix
of . Then the minimum variance linear unbiased estimate of an interaction
parameter is obtained by substituting f for t in (27). We summarize this in the
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following theorem, along with the expression for the variance-covariance matrix.
THEOREM 5. The minimum variance linear unbiased estimate of a p-factor

interaction (1 = p = n) is

(28) 4y ® 4, ® -+ ® &;, = (1/v)(MI* X M3* X --- X MOt

where x;, = Ts, = -+ = x5, = 1 and the remaining x; = 0. The variance-covariance
matrix of a p-factor interaction estimate and the covariance matrix between two
different vectors of interaction estimates are given respectively by

Var (4;, ® 4;, ® --- ® 4;,)

(29) z Z. o T T
= (1/){(MP* X M2? X --- X M) V(DM X Mz2 X --- X M)},
and ‘
Cov(d;, ® --- ®4;,,4;, ® --- ® 4,
(30)

= (1/D){(MFP X M5* X --- X M) V(E) (MIT X M3E X --- X M)},
where Ty = Ty = -+ =z, = 1,2, = af, = --- =z, = 1 and the remaining
zi,T) are zero.

Let the experiment design pattern to which the factorial arrangement is
superimposed be a block design with b blocks. .Denote by Y;; the measurement
of the sth treatment combination in the jth block. (This only has meaning if the
7th treatment appears in the jth block.) Consider the model

E(Yﬁ)=.""+ti+bi: i=1:2,"'7v;j=1,27"'7b;

where u is a constant, ¢; is the effect of the 7th treatment combination, and b; is
the effect of the sth block. Further assume the measurements are uncorrelated
with common variance o”.

When the design is a completely randomized design, or a randomized block
design, the expressions for the variances of the interaction estimates reduced to
simple forms. Let #; denote the average for the ¢th treatment and let
Y = (41, P2, - ., U»). Then the treatment effects vector is estimated by
t = (I — J/v)Y, where I and .J have dimension » X v. Since V(Y) = (o°/r)I
(r is number of replicates), V(1) = (¢*/7)(I — J/v). Note that

I=LXLEX--XI, and J=5LXJ]X-::X]Jn
as v = ] i m:. Therefore (29), and (30) simplify to
(292) Var (4; ® 4;, ® -+ ® 4;,) = (1/r){M;; X M;, X -+ X Mip}"2
(30a) Cov (4; ® --- ® 4;,, 4,®  --®4;)=0,XO0,.
Also by virtue of (29a) and (30a), the sum of squares

n -1
or (Hlm> (8, ®4;,, ® - ®4,) (4 ® 4, ® - ®4a,)}
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will have a o*x* distribution under the null hypothesis of no interaction effect.
As another example, suppose the block design is a balanced incomplete block
design with efficiency factor E. The the variance-covariance matrix of tis

V() = A(Er)™ (I - %J)

Thus the variance-covariance matrix for a p-factor interaction and the sum of
squares are the same as for a randomized block design except that r is replaced
by (Er).

The sums of squares, variances, and covariances when confounding with a
balanced incomplete block design are the same as for randomized block designs
with the exception of a multiplying factor. The problem arises—under what
conditions will confounding with an arbitrary block design also result in s¢mple
sums of squares, variances, and covariances? Theorem 6 provides a partial
solution. It is well known that if the variance-covariance matrix of a generalized
p-factor interaction term (say) V(4,) satisfies the condition V(4,)’ = AV(&,)(Aa
scalar), then 45,/ follows a ¢°x” distribution when the null hypothesis is true
and the observations are independent normal variates with common variance. If
this condition holds for all estimates of interaction terms (possibly with dif-
ferent \’s), then it is equivalent to having all covariances between different
interactions identically zero, cf., Lancaster [6]. Further these conditions de-
pend only on the V(%) associated with the particular incomplete block design.
When V(t) takes the form given in Theorem 6 all these conditions are met.

TuEOREM 6. Let the x; be defined as in Theorem 5. Define the m; X m; matriz
D} by

s L if 6 =1,
D: ‘{J,- it 6 = 0.

Let constants c(8;, 62, + -+, 8,) be defined as a function of the &s. Then if \6)
can be written tn the form

(31) V(i)=a22{6 > c(al,62,~~-,an)[Di‘xD§2x-~xDi."]},

8=0 1+ +Oa=8

with ¢(1,1,~+- , 1) £ 0, we will have
2

i 4 4 =_2 M, ; .. )
(32) (l) Var (ail ® ai2 ® cct ® ﬁ’tp) - TUE(C) [M‘u x M’Lz x x M’Lp],

where E(c) is a function of the ¢’s in V(&) and depends on the particular factors
present in the interaction.

(ii) All covariances (30) between interaction terms having at least one factor
not in common are identically zero;

(iii) the quadratic forms

(33) (E(c)vr II mf‘)(ﬁil ®8,® - ®4,) (4, ®4,® - ®4;)
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will be distributed as x’o” variate with [[i=1 (m: — 1)* degrees of freedom under
the hypothesis of no interaction effects and assuming the observations are independent,
following a normal distribution with common variance o

Block designs which can be written in the form (31) are randomized block
designs, balanced incomplete block designs, group divisibles designs, designs
obtained by taking the direct product of incidence matrices such as those in-
vestigated by Shah [10] and Vartak [11]. This latter class of designs includes
many higher order associate class partially balanced designs. Extensive applica-
tions of these results are given in Kurkjian [5].

With respect to the randomized block designs, V(t) = (o*/r)(I — (1/v)]).
Hence ¢(1, 1, -+, 1) = 7 ,¢0,0, ---,0) = —(r»)™" and the remaining
c(81,0, -+, 8,) are zero. A similar result holds for balanced incomplete block
designs except that (Er) replaces r.

When a group divisible design is used for a factorial design, the number of
treatments can be written as the product of two integers (say) v = gh. Assign
the n factors into two groups of n, and n, factors respectively (n = n; + n,),
such that the product of the number of levels in the first group is g,
ie. g = ]l m,. Similarly the product of the number of levels in the second
group is h. Then the variance-covariance matrix of the design can be written

VE) = [r(k — DIk — e) (I X T) + (&0 — ) (Jo X T) + es(Jo X Ju)}o’,

where I, , I, J, , Ja refer to square matrices of dimension g or 4 and the constants
¢, ¢z, and ¢; depend on the particular design. (The constants ¢; and c, are
functions of the design parameters and are included with most tabulations of
group divisible designs. The value of the constant c; is not necessary for the
analysis.) Therefore V(f) can be put in the form of (31) with

e(1,1, -+, 1) = (k —ea)/lr(k — 1)],¢(0,0, ---,0) = ¢/[r(k — 1)]
6(0, O, t.'. ) 0’ 17 l’t'. ) 1) = (Cl - 62)/[7'(70 - 1)]

The efficiency factors E(c) can be found by applying (29).

Theorem 6 is the key theorem for confounding in asymmetric experiments.
Any incomplete block design having a variance-covariance matrix for the treat-
ment estimates which can be put in the form given by (31) may be used for
the confounding of a factorial experiment. The resulting analysis is straight-
forward and relatively easy.

5. The polynomial model. When all the factors in an experiment are quanti-
tative, the model (1) can be written as a polynomial in » independent variables.
In this section we shall adapt the operations and notation of Section 3 to the
polynomial model and show how the usual calculations for computing a regres-
sion equation may be eased.

5.1. Scaled model. Since all factors are quantitative, the ¢th treatment com-
bination may be designated by 7 = (1, 2, -+ , Z»:) Where z,; denotes the
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quantitative level of factor 4, . Define the m, X ¢, matrixX,(s = 1,2, --- ,n) by

2 q
Ts1 Zs1 cte xsi
2 a
X | e2 Ts2 Tt xs;
L . . )
2 q
Lsmy Lsmg e xs:n,

where ¢, need only satisfy the condition ¢, < m,. In order to make a direct
correspondence with Section 3, it is necessary to consider a transformation of
X, . For this purpose define the m; X ¢, matrix Z, by

(35) 2, = Xs - Jsxs/ms = Msxs/ms .
Note that 1’2, = O and that each element in the rth column of &, is of degree
r in the variables xy , Zs2, - -, Tsm, . We shall refer to the development in
terms of E; as the scaled model.

Also define new primitive elements by , b, - - -, b, by
(36) b, = (b, b, -+, b))

where new elements are formed by using the SDP. The b, will be used in the

same manner as the a, . However note that the number of components in b, is

different from a, . The components of b, will be used to denote the coefficients

of the linear, quadratic, - - - , up to the ¢, degree of the E, variables. The ele-

ments of b, ® b, will denote the linear by linear coeflicients of 8, and Z,, etc.
The relation between the a, and the b, primitive elements is

(37) a, = b, .
Using the analogy with (11)
1,' lf g = 0,
(2by)*
Bb;, if a; = 1.

By convention we take (2:b;)* = E'b;”. In the case of quantitative variables
it will be convenient to define 8, B2, -, B. to be variables which take on
only the values zero or one and use these in place of the a; . The only additional

conventions are

1{ lf B,‘ = O
()% =
(38) 8, if gi=1
1 if ;=0
A ‘

b,’ lf B,‘ = 1.
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Then we have
af'xastx .- xar = (Bib)® x (2abo)® % - - x (8,b,)""
= (' xelx - XxEHh b e - ® b,
where 8; = ;. The second bracket in the right-hand side of (39) will contain

terms such as (say) (b1)' ® (b;)° = b, ® 1. This quantity is to be taken as
simply b, ; i.e.

(40) b,®1=h,.

Using this convention is equivalent to suppressing all b elements which are
raised to the zero power.

In order to satisfy the linear restraints (14) it is necessary that =, satisfy
1;2; = O. Then we have 1;a; = 1;2,b; = 0 and the remammg restraints given
by (14) are satisfied by virtue of (39). The requirement 1’Z; = O involves no
loss in generality as it is simply a change of scale.

Using (37), (38), (39), and (40) the model may now be written in the poly-
nomial form

(39)

n

41) t=3 B XEEX - XEDE bY@ - ® bfr]}.

k=1 {B1+ﬁ2+' o +Bn=k

Note that the parameters of the generalized pth factor interaction can also
be written as

a, ®a;,® --- ®a,,
= (ByXE;y X - XEB,)(b;; ®b;, ® --- ®by,),
and substituting (27) in (42) ‘
(Biy XByp X - XEBy)(by; ®b;, ® -+ ® by,)

(42)

= (1/v) (M7* X MZ* X --- X M)t
where z;;, = 24 = -+ = xp = 1 and the remaining z; = 0. Pre-multiplying
(43) by (2i X Ei, X -+ X E;,)’ and solving for b, ® b;, ® -+ ® by, re-
sults in

by, ®b;, ® --- @by, = (1/0)[W;; ®W;, ® -+ ® W, ]
(44) /

CEL X EL X e X ELIIME X M2 X - X M7t
where W, = (._.s._s) -1
Since M? = mM, , (44) can be re-written in terms of the original variables as

(45) by ®b;, ® -+ ® by, = ([T 75) 63 X G X --- X Gt
v

=1

where

Gr o JLi i 2 =0
CTXIMX) XM, i oa = 1.
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The significance of (44) or (45) is that it can be used to estimate the coeffi-
cients in a large order polynomial model without inverting a large order matrix.
One need only invert matrices of the type (2:8,) = (X:M.X,/m,) which are
of dimension g, . This result is a generalization of work by Cornish [2] and is
related to recent work by Lieblein [7].

The above development was predicated on transforming the original inde-
pendent variables X, into the scaled variables 2, . This was done so that the
columns of &, sum to zero; i.e., 1,2, = O. On the other hand if one further
imposed the requirement that the columns of =, were mutually orthogonal,
then the development would correspond to curve fitting using orthogonal
polynomials.

5.2. The unscaled model. Often one requires that both the model and the
coefficients be written in terms of the original unscaled variables. Substituting
B, = MX,/m, in the polynomial model (41) and re-arranging terms enables
one to write

t=(L X1 X X1
(46) u
2
k=1 (B1+Ba2+- - +Bn=k

where the ¢ coefficients now replace the b coefficients. In order to write the ¢
coefficients as a function of the b coefficients define

XD XXX - XX e - ® cﬁ"l}

1,,(¢s X g- identity matrix) if z, =1
(47) B.(z,) = {1;)(5'
m,

if z,=0.

After some algebra the generalized pth order coefficient can be written in terms
of the b coefficients as

Co = U—IZ (—l)k
k=1

(48)
[LX] X 1,XX - XX @b’ ® -+ ® bf:']}.

{51+32+' "Bk

n—p
€, ®cC, ® - ® ¢, = kZ())(—l)"

Z [Bl(xl) X Bz(xz) XX Bn(xn}]
(49) ' ﬁl(ﬁ.-—ﬂ’f">=k—<n—p>
.[bi+ﬁ1—ﬁf1 ® b;+ﬂz—ﬁ§2 ® - ® b;m—a:‘"]}
where in (49) z;, = z;, = -+ = z;, = 1 and the remaining z; = 0.

5.3. Estimates and variance-covariance matrices. The estimates for the b or ¢
coefficients are obtained by replacing the vector t by its minimum variance
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unbiased estimate. Also since the b coefficients can be written as a function of
the a parameters, it is an easy matter to find the variance-covariance matrix
of the estimates for the b regression coefficients. Similarly, since the ¢ coefficients
can be expressed in terms of the b coefficients, the variance-covariance matrix
of the estimates for the ¢ coefficients can be readily obtained. The results for
the b coefficients are summarized below in Theorem 7.

THEOREM 7. Let t be the minimum variance linear unbiased estimate of t with
variance-covariance matriz V(1). Let x;y = x4y = -+ = z;, = 1 and the remaining

= 0. Then

Var (b;, ® b;,, ® --- ® Bi,,)

y4 ’
[H X Wt,—“] [Var (4, ® 4;, ® - ® 4;,)] [H X Wi,E':,]
_1
v?

s=1 s=1

[Il X W,.sﬁ.] [(I}l X M?") V(i) (]I=I1 b M:)]
[I:I1 X W,-saﬁ-,]l;

(50)

Cov (b;, ® b;, ® --- ® b;,, b;, ® b, ® --- ® b;,)
i
= [I_Il X Wi.Eé.] [Cov (4;, ® -+ ® 4;,,4;, ® -+ ® 4,)]

q ’
: [H X Wi, E;‘.:I

s=1

P n
3 [l cws ][ ) o )
’
[Hxw.=.],
where xf, = x}, = -+ = qu = 1 and the remaining 7 = 0; if

V(i) = o/r(I = (1)),
then (50) and (51) reduce to

~ ~ n X P
(52) Var (b, ® by, ® --- ® bs,) =’ ( m3’ / rv) {H X W} :

t=1

(51)

and
(53) COV(Bi1®Bi2®"'®Bip, Bj1®5j2®“'®bfq)=0

where O is a ([[2mi,) X (1% mi,) null matriz.

The corresponding results for the ¢ coefficients are more complicated. How-
ever for the case of no block effects, which is the usual regression model, the
results can be expressed simply. These are summarized in Theorem 8.
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THEOREMSLetE(Y,,)—u+t,forz=12 L7 =1, 2,
and Var Y = ¢’1/r, where the t; are given in matriz form by (46). Further let
=1 + m,-‘l(l,-XiW,X,-l,-), iy = iy = =00 = xi,, = 1,
x;!: = xfz = = x?q =1,

and take the remaining x; and x; to be equal to zero. Then the variance-covariance
matrices of the & coefficients are

2 n
(54) Var & = :—5[11 2 — 1] ;

t=1

by
(55) Var (8, ® &, ® --- ®&,) = = [11 o ] [H X W.-.] ;
8=1

=1

Cov (¢, ®¢,® - ®¢€,,E,®E,® -+ ®&,)

_ ( 1)1""‘1 o I:H mz"zt (l—x.)(l—x’)] [I_Il x W‘(x,‘ ,x:k):l y

n

_1\» 2 n
Cov (éo , éil ® éz‘, ® - ® éz’,,) = g‘—:v)‘i I:I]i Z}—x‘:l [III X W(xi ’0):| ’

(56)

where

W.(0,0) = W.(0,1) = LiX;W;

Wi(1,0) = W,X, i w.(1,1) =W

Due to the fact that Y i—; & = 0, the estimate for u is the grand average,

ie., i = D11 D i= Yi;/vr. Furthermore £ is not correlated with the %; and
hence not with any linear function of them. In particular 4 is not correlated
with the estimates of the b or ¢ coefficients. Since both u and ¢, are constant
terms, we could combine them to write cpp = u + ¢o and denote the estimate
by éw = fi + & . Consequently Var é = Var i + Var é and the covariances
between &y and the ¢ coefficients remain exactly the same. We can summarize

this in a corollary.
COROLLARY. Let ¢ = p 4+ ¢o, and fi = (1/vr) Dics D1 Yi; with & as the
estimate for ¢y . Then ép = i + & and

Var ¢ = —II Zi;
(57) A=

Cov (éi, ® é,'z ® - ® éip, éoo) = Cov (éil ® é,'z ® - ® éi,,, éo)
5.4. An example: To illustrate the preceding ideas consider an example with
n = 3. Then (41) becomes
t= (2, X1 X1)b 4+ (1; X B: X 13)b: + (1; X 1 X Es)bs
+ (B X2 X1)(by®b) + (B X 1, X E;)(b; ® by)
+ (11 X B: X B3) (b ® bs) 4+ (B; X B2 X E3) (b ® by ® bs).
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The solutions for the b coefficients in terms of t result in (using (44))

b; ® b,

by = v {W.E:1[M; X 1 X 13]t}
by = v {WeBs[11 X M, X 13t}
by = o {WaZs[11 X 15 X Mt}
v Wi X Wel[=21 X Z2][M; X M X 15t}

b: ® by = v {[W2 X Wi][E; X Zs][11 X M, X M)t}
b ® by ® by = v {[W; X W2 X Wl[E1 X 25 X =s][M; X M, X M)t}

In terms of the unscaled model, the c coefficients can be written using (47),
(48), and (49) as

Cy) =

¢ =bi—
Cs = by —
C3=b3—-

-[(

{

b ® by = v {[W: X Wil[=:1 X =3][M; X 1; X Mt}
{
{

L X‘) by + (12 XZ) by + (13 X3> b3:| + [(1 X1y 1 Xz)(tn ® bs)
ma m ms my
+ (1;3“ L Xs)(bl ® b) + (12 ’2‘ % b X3)<b2 ® ba):l

_ I:(]_l X, 12 Xz 13 Xs)(bl ® b, ® bg)]

my

<Iql x 12 Xz)(bl ® by) + ( L X3)(b ® bs)]
1, X2

1 >(b1 ® b ® bs),
ms

+ (Iql X

(11 X1 % qu>(b1 ® by) + (qu X >(bz ®bs)

4 (11 X, 1 X;

a2

p )(bl ® b, ® b;),
(11 X1 Iqa>(b1 ® by) + (1" X % qu)(bz ® by)

n (11 X, 5 12 x2
my

1 Xs)(b ®1b; ® bs),

X Iqa)(bl ® b2 ® b3))

Cl®02=bl®b2_<191x192x
12X2

ci®c;=Db ® b; — (Iql X X Iq.)(bl ® b, ® by),

11 ).€}

Cz®cs=b2®b3"( Xqu)(Iqs)(th@bz@bs)

ci®c:®¢c3=Db ® b, ® b;.
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If there are no block effects, the variance-covariance matrix for the ¢ coeffi-
cients can be written using Theorem 8. A few representative variance-covariance
matrices are

Var é = (o*/m)[zizs — 1], Var éo = (o°/v) [e1223]

Var & = (mo?/rv) (222) W1,  Var (& ® &) = (miameo’/rv) (23) (Wi X W)
Var (6, ® & ® &) = (mlmgmgaz/rv) (W; X W2 X W3)

Cov (&1, éw) = — (0°/rv) (223) (WiX11y)

Cov (&, &) = (¢*/m) (25) (WiXily X 1:X,W2)

Cov (&, 86 ® &) = —(¢*/m) (WiXil; X 1X,W; X 1:X;W;)

Cov (8,6 ® & ® &) = (mo’/ro) (Wi X 1,X;W: X 1.X,Ws)

Cov (& ® &,86 ® & ® &) = — (mumaa’/ro) (Wi X W2 X 1:X;W3).

5.5. Inverse matrixz of normal equations. A by-product of Theorem 8 is that it
enables one to immediately write the inverse matrix (in partitioned form) of
the normal equations for the case of polynomial regression. Consider the case of
no block effects, Var Y = ¢’I, and take n = 2. Using (46), E(Y) can be written

E(Y) = (11 X L)co + (X1 X L)er + (I X Xp)e + (X1 X Xz) (€1 @ ¢2)

where ¢ = pu + ¢ is a scalar, c; are ¢; X 1 vectors, and ¢; ® czis a qi¢2 X 1
vector. Hence the matrix of normal equations for solving for the estimates of the
¢’s has dimension (1 + ¢1) (1 + ¢.). It can be written in the partitioned form:

my Mo mo 1; Xl my 1; Xz 1{ Xl x 1; X2

[ my X1 15 mXiX XLXLX XXXLX

(58) | mxL LXXXL mXX LIXEX
inilx Xl XXXl XNLXXX XXXXX

Since the elements of the inverse matrix are the corresponding variances and
covariances of the & coefficients (except for the multiplier ¢’), Theorem 8 can
be used to write the inverse matrix in partitioned form. The inverse to (58)
takes the form

59) ,
2129 —2(11 X Wy) —21(12 X W) 1,X, W X 1,X, W,

1 —2,(W1X; 1) mize Wi WiXil X 15X, W, —m(Wi X 15X; W)
M1 My — (W2 X5 1,) 1X, Wi X WoXo1, maz1 Wa —ma(1 X1 W1 X W)

WiXil X WeXoly —ma(Wi X W Xoly) —me(WiXili X Wo)  muma(Wi X Wo)

Note that the inverse matrix only involves determining W; = mi(XiMX) 7,
i = 1, 2. Thus the matrix of normal equations which is of dimension (1 + ¢1) -
(1 4+ ¢;) can be inverted by inverting two smaller matrices of dimension ¢
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and ¢., and doing the indicated direct product multiplication. Note that if
@1 = ¢ = 1, the model is

E(Y:) = co + ci(1)z1s + c2(Dx2s + cra(11) 245 224

and the W, which need to be inverted are
msg —1 mg
W = (XiM:X,)'m; = [E (zi; — 9'31')2] , T = (Z xij)/mi-
ps =1

Hence the W, are scalars and the inverse matrix (59) can be written explicitly
without any real matrix inversion. If (59) is not used, then a 4 X 4 matrix
inversion is necessary.

The matrix of normal equations (58) and its corresponding inverse (59) refer
to the case of » = 2 independent variables (factors). Theorem 8, however,
applies to the general case of n factors. Hence it is an easy matter to write the
corresponding inverse matrix of normal equations for an arbitrary number of
factors. In general for n factors, the normal equations will be of dimension
II7-: (1 + g¢:). Using Theorem 8, the inverse matrix can be written in parti-
tioned form by inverting n matrices having dimensions ¢;, g2, -+ - , g, respec-
tively. Therefore one can solve for the ¢ regression coeflicient in the original
model, without first solving for the b regression coefficients of the scaled model.
Furthermore, when all ¢; = 1, the inverse matrix for the normal equations can
be readily written without calculating any inverse matrices.
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