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0. Summary. The properties of the power function of the test of tendency or
the “quadrant measure of association” are studied. A formula giving a lower
bound for the exact power function of this test with respect to normal bivariate
one-tailed (p > 0) alternatives is obtained. Further, an approximate formula
for this “minimum power” is suggested. Some numerical values are calculated
from the exact and approximate formulae for this lower bound of the power
function. A comparison with Konijn’s approximation is presented.

1. Testing for tendency. In this paper there is discussed the power function
of a test of independence based on the number of pairs (z:,¥:) (¢ = 1,2, --- ,N)
in a two-dimensional sample, for which (z; — Me,)(y; — Me,) > 0, where
Me, and Me, are the sample medians respectively.

There are several names for this measure of dependence: quadrant measure
of association ¢ [7],? medial correlation [6] and measure of tendency [4], [5].

The first idea of this measure regarding the population was suggested by
Sheppard [12], and its estimator was defined by Mosteller [9]. The distribution
of this statistic and its properties have been discussed by Blomgqvist® [1] and
by the author [4] independently. A comprehensive discussion of ¢ and the
relations between ¢ and Kendall’s 7, as well as between ¢ and Spearman’s o,
is given by Kruskal [7].

The problem is the following: We wish to test the null hypothesis, H,, that
the random variables X and Y are independent. To do this we take note of the
signs of the products (z; — Me,) (y; — Me,). First, we assume N = 2n. (The
case N = 2n 4 1 can be reduced by simple modification to the case N = 2n; see
(1], [4]).

In order to construct the test, a statistic U is introduced;

2n
(1) U= 2 u,

where
1, if (xz; — Me,)(y: — Me,) > 0,

(2) u; = )
0, otherwise.

Received July 4, 1961; revised November 22, 1961.
1 Present address: Statistics Dept., Agricultural College, Ul. Wojska Polskiego 71 C,
Poznan, Poland.
20, old Greek letter ‘koppa’ has been used by Kruskal (see [7]).
3 This estimator was denoted by ¢’ by Blomqvist. We shall use U in the remainder of
this paper.
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The probability under Hy:p = 0 is

(3) Pr{U = 2r|p =0} =(?>:= 21 i(?)z
2@ ()7

The test based on the statistic U is an easy and rapid non-parametric test of
independence. However, its asymptotic efficiency in the normal case is only 41%

2], [1].

TABLE 1

Ezact and approzimate values of the “minimum power’’ function of the test of tendency for
different sample sizes, 2n, and significance level, «, nearest to 0.05 and 0.01.

AN
AN o 0.0 0.2 0.4 0.6 0.8 0.9 1.0
AN
AN
N 2 .5000 .5641 .6310 .7048 .7952 . 8564 1.0000
2n N
9R \l—?
AN .5000 .4359 .3690 .2952 .2048 .1436 0.0000
N\ A
6 6 e* .0500 .1021 .1934 .3496 .6108 .7936 1.0000
at .0625 .1164 .2026 .3396 .5635 7344 1.0000
3 e .1032 .2092 .3731 .5967 .8497 .9545 1.0000
.1133 .2179 .3738 .5837 .8287 .9394 1.0000
10
10 e .0040 .0131 .0391 .1108 .3196 .5606 1.0000
.0057 .0180 .0467 1194 .3080 .5169 1.0000
12 | ¢ .0660 .1691 .3547 .6219 .8955 .9792 1.0000
L0717 1754 .3563 .6140 .8845 L9739 1.0000
16
14 e .0051 .0208 .0709 .2092 .5401 .8018 1.0000
.0063 .0241 .0765 .2139 .5292 .7802 1.0000
2 16 e .0115 .0469 1744 .3812 7628 .9950 1.0000
a .0133 .0508 .1535 .3807 L1517 .9306 1.0000
24 18 a .0216 .0831 .2396 .5330 .8789 .9801 1.0000
20 a .0748 .2340 .5157 .8241 .9849 .9993 1.0000
30
22 a .0147 .0708 .2369 .5651 .9153 .9909 1.0000
40 26 a .0298 .2280 .5537 .8769 .9951 .9999 1.0000
60 38 a .0198 2132 | .6081 .9358 .9994 | 1.0000 1.0000
60 a .0230 .3074 .8091 .9935 | 1.0000 | 1.0000 1.0000
100
60 ki .0228 .2345 7396 .9892 | 1.0000 | 1.0000 1.0000

* Exact probability from formula (8).
1 Approximate probability from formula (11).
1 Konijn approximation.
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In this paper we present two somewhat different approaches to this problem.
These allow us to obtain formal expressions for the exact and approximate
power function of the test.

2. Power function for one-tailed test of tendency (p > 0). Some formulae
for the asymptotic power function for a group of non-parametric tests of inde-
pendence were given by Konijn [6]. Applying his method to our case, with

finite n, does not seem to give very good agreement even for 2n = 100 (see
Table 1). ‘

To find the power function of the test against bivariate normal alternatives, we
assume without loss of generality, that X and Y are from a standardized normal

bivariate population with correlation p > 0, i.e., the joint distribution function
is defined as

@ Prie>hy>klo) =Lbke) = [ do [ fzu0) dy,
h k
where

f(z,y,0) = [2r(1 — o) exp {—[2(1 — ] 'le* — 202y + 4]}
Let us denote

(5) «®) = (2m [ " gy,

We will now denote the sample medians by Me, , Me, and the statistic U by
U’ respectively. Let

Pr{z — Me; > 0,y — Me; > 0 p} = L(Me., Me}, p) = p
Pr{z — Me. <0,y — Mey; > 0] p}
= a(Me,) — p1 = a(Me,) — L(Mez, Mey, p) = ps
(6) Pr{z — Me.> 0,y — Mey < 0| p}
= a(Me:) — ;1 = a(Mez) — ;1 = a(Me;) — L(Me,, Mey, p) = 14
Pr{z — Me, <0,y — Me, < 0] p}
=1—p—p—pu=1— a(Me,) — a(Me;) + L(Me,,Me,, p) = ps

(see Figure 1).
The probability that the criterion U’ takes the value 2r and the point (z, y)
can be a median point of the sample (of size 2n), is

Pr {U = 2r; 2n, Me, , Me, | p} = MT[E%———% (p123)" (P2 D4

- (7)o () (35

)ﬂ—f

(7
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Fic. 1

Hence the conditional probability that U’ = 2r, given that (z, y) can be a median
point of the sample, is

o s iomswt o - (562 [2CVED)]

If p = 0, then p; = a(Mez)a(Mey), po = a(Me,)[l — a(Mes)], ps = a(Mes)
[l — a(Mey)], ps = [I — a(Me:)][l — a(Me,)], and

9 Pips/Paps = 1

This means that under the null hypothesis the distribution does not depend on
the position of sample medians and is equal—as it is easy to see—to the prob-
ability given by formula (2).

But if p % 0, the probability (8) depends on the position of (Me,, Me;,).

It appears that, when p > 0, the probability (8) is a ménimum, when Me, =
Me, = 0. So when the sample medians are equal to the population medians we
obtain a lower bound for the power function. For convenience we will call it
“mintmum power” function.

To prove this we have to show that the function

(10) g(Me: , Mey , p) = pips/pepe

has its minimum at the point (0, 0), since (8) is a monotone increasing function
of g. A discussion of this point is given in the Appendices I and II.
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In the same way it appears that when p < 0, the probability (8) has a maxi-
mum at the point Me, = Me, = 0.

Calculated values of the “minimum power” function for the significance
level a, nearest to 0.05 and 0.01, 2n = 6, 10, 16, 20 and critical values 2r = 2R
are given in Table 1. For 2n > 20, the calculations are rather tedious, using the
ordinary electric calculating machine. The approximation (also given in Table
1) appears to be reasonably good.

3. Approximate “minimum power” function (p > 0). If the population
medians, e, , NMe, are known, we can define the statistic V, in an N-element
paired sample

(11) V = iz_lv,- ,
where
1, if (z; — IMe,) (ys — Me,) > 0 with probability p,
" 0, otherwise.
Then
(12) Pr{V =z m|N,p} =’im(]:7) p'(1 —p)" 7, m=0,12 ---,N.

In the case of the bivariate normal population
(13) p=p+p=1- (1/x) arc cos p.

But if the population medians are unknown (which usually happens in practice)
we must estimate e, and Ne, by Me, and Me, respectively. By a heuristic

TABLE 2

Ezact and approximate distribution under the null hypothesis (p = 0)

Prob N 0 2 4 6 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26
VAN

Pyt g | 1-0000 | .9500 | .5000 |.0500
Pt 1.0000 | .9375 | .5000 |.0625
2 1o | 1:0000 | 9960 | .8968 |.5000 |.1032 |.0040
P 1.0000 | .9942 | .8867 |.5000 [.1133 |.0057
P 16 | 1:0000 | 1.0000 | .9950 |.9341 |.6904 |.3097 |.0660 |.0051 |.0001
Py 1.0000 | .9999 | .9936 |.9432 |.6854 |.3145 |.0717 |.0063 |.0001
P g0 | 1:0000 | .9999 | .9994 |.9884 |.0105 |.6718 |.3281 |.0894 |.0L15 |.0005
P, 1.0000 | 1.0000 | .9993 |.9867 |.9054 |.6682 |.3318 |.0946 |.0133 |.0007
P 24 1.0000 |.9984 |.9805 |.8899 |.6579 |.3422 |.1102 |.0196 |.0017 |.0001
Py 1.0000 |.9980 |.9784 |.8852 |.6550 |.3450 |.1147 |.0216 |.0020 |.0001
Py 30 1.0000 |.9999 |.9986 |.9866 |.9285 |.7670 |.5000 |.2330 |.0715 |.0134 |.0014 |.0001
P, 1.0000 |.9999 |.9985 |.9852 |.9252 |.7635 |.5000 |.2365 |.0748 |.0147 |.0016 |.0001

* Exact probability.
{ Approximate probability.
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Fra. 2. Approximate ‘“minimum power’’ functions of the test of tendency
* The numbers over the curves are 2n(2R).

TABLE 3

Approximate sample sizes, 2n, and critical values, 2R, for various p > 0 and
a =~ B =~ 0.05; 0.01 for one-tatled test

a>~B=>~0.05 a~f=>~001

P

2n 2R 2n 2R
0.2 654 350 1436 764
0.4 154 88 306 174
0.6 68 38 118 72
0.8 26 18 52 36
0.9 20 16 30 22
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argument (in its idea similar to the problem of estimation of a median in grouped
data) we are led to the following approximate formula

Pr{V = m|N, p} gp'_;_< )p(l )T
+(1—p)§:< >p(1 p)"

Hence, the power (8) of the test based on the statistic U with sample size 2n
and critical value 2R can be approximately expressed

1 — B8 =Pr{U = 2R |p} ~Pr{V = 2R | p}

15) ~p zfj <2n>p(1 p)" " + (l—p)\Z( )p(l p)" ™.

$=2R—1

(14)

If the null hypothesis (p = 0) is true, then p = } and the probability (3) takes
the form

(16) Pr{Uz=2r|p =0} ~Pr{V =2r|p=0} 212,.. (2:’)

Table 2 shows the exact and approximate values of the probabilities under
the null hypothess and Table 1 compares the exact and approximate ‘“‘minimum
power” function for 2n = 6, 10, 16, 20 for the one-tailed test (» > 0). The
other values of the “minimum power” function (2n = 24, 30, 40, 60, 100)
are calculated from the approximate formula (15). Some of the approximate
“minimum power” functions are presented graphically in Figure 2.

It would be interesting to find how large the sample should be, if we wish the
probabilities of the errors of both, first and second kinds—a and f—to be ap-
prox1mately the same, i.e., o =~ 8. Some results of calculations on this point are
shown in Table 3. The calculatlons are based on the central limit theorem. The
sample size for 2n > 30 is evaluated as the nearest even integer larger than

2 . 41— p) +4p(1 + It + L
* (1—2p)

(17)
where

(21r)—§/‘ e dy = a.

APPENDIX I
We have to prove that

oo w-[EO/EC )

where g > 0 is a monotone increasing function of g, i.e., (d/dg)¥(g) > 0.
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Let us present (1) in more convenient form

o o= [EC/[EC) - [Be]/[Eee)

where
2
3) (?)=a,~>0, iz 01,

The derivative with respect to g is

(0 e - (Z)(E “”gi)n - @ ing ) o)
) [Zeo]

It is sufficient to show that the numerator of (4) is positive.
S = (Z iaig"‘l)<2 aigi> - <Z iaigi_’)(z aigi)
T=r 1=0 1=1 T=r
n r—1 n r—1
(5) = <Z=: z’aig"’)<zo afg') - (Z az'f)(é iaﬂ"’)

n r—1

=22 aag (i —j) >0

t=r j=o

Hence (d/dg)¥(g) > 0, so ¥(g) is the monotone increasing function of g.

APPENDIX II
We introduce the notations

A1) = (2r) ™ a(t) = f, "ot di,

1 Y 1
L(h, k, p) = m[h ‘/1; eXP{_ (1—_’)23 [«’02 — 2pzy + yzl} dy dx
1

* 2 * 2
= — PR f e dw dx
- 2w dn (k—p2) [ (1—p2)}

1 [® _ep —w2/2

= — e e dw dy.
27 i (h—py) /(1—p2)}

Let

p1=L(h, k,p) = L,po = a(k) — L, ps = a(h) — L,ps =1 — a(h) — a(k) +
L.
We wish to find an extremum of the function

(1) g(h, k, p) = pips/Deps -
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We take the function G = log g and find the roots of the equations
(2) 3G/dh = 0, 3G/ 3k =
We have dL/oh = —z(h)a[(k — ph)/(1 — p°)?]. Then,

%’:Z(h){ <(1 p:,)%)[ + oﬁ)l——i]

+ (1 - “((1 = ﬁg*))[l LT W= L]} !

and similarly, changing k into %, and vice-versa, we get

= |- ((f = Z’;)[% + = L]

+ (1 - "‘(<}1L = Zf»))[l  CETOES Ao L]} '

The equations (2) are satisfied for h = k = 0, since we have

G oG 1§ 11 1 11 1 3
o R PR A PR B

where Ly = L(0, 0, p).

G
R

={_ammmf_ [e(h) + CoL/oM]* whwmﬁ_kkw>+(ﬂvwﬂ}
L 1—a(h) —ak) + LI * [a(k) — LP [a(h) — LP

n {62L/6h2 n (9z/0h) + (&°L/oK%) n 8’L/ ok n (82/0h) + (9°L/ok )},

We evaluate 9°G/oh’;

L 1—ah) —alk)+ L  oalk) — L a(h) — L
where
0°L/3h? = (dz/oh)a((k — ph)/(1 — p°)})
— 2(h)z((k — ph)/(1 — &)%) -p/(1 — o).
¥’a _ 1 1 1] p 1 1
3) Oh? hk—0 ‘Fr{[(% — Loy f%] 1 - [— = Lo]}

_ 1 [ Li—% 2 ]
drLo(3 — Lo) LLo(3 — Lo) (1 — p)]°

We obtain the same value for (9°G/0k”) hi—o .
The mixed derivative is

). - m i et
0ROk |h=tmo 4w G —Lye L™ 0= =L ' Llf-

(4)
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Denote
Oh? |h=k=0 Ok? |h—k—0+ ’ 9ROk |hmk=o
We have
1 2 2 1
(5) A+B"47{"L'%+<1—p2>%'Lo<%—Lo>(1“’)}
S RESWIES)
21I'Lo(% - Lo) Lo 1 + P ’
Similarly

o 1 La (14> *]
© 4 B_27FL0(%—L0)|:%—L0 (1—p>‘

Denoting Lo/ — Ly = a > 0, [(1 — p)/(1 + p)]' = b > 0, and multiplying
(5) by (6) we obtain

-5 = (srg=m) ¢ 2 -3)

Ifa>h > A — B> 0,

S =t OV
QlI= QlH

ifa<bd < A*— B> 0.
Hence, there is an extremum at the point » = k = 0.

We now have to show that it is a minimum, i.e.,

8’G/on* > 0.
From formula (3) we can see that it is sufficient to show that
—1
(7) Li’%" — I3 @ Ep/ﬁ)* > 0.
It is known that
(8) Lo = L(0,0,p) =+ 4 (2r) 'arcsinp = 1 + 6.
The inequality (7) can be written
(9) 8 4+ [(1 = #)"/2016 — 75 > 0.

The roots of the left side are
Ba= (4p) 7 [— (1 — )P £ 11

Since p > 0, 5 = (2r) " arc sin p > 0, then only 3, = (40)71 — (1 — oA
has a meaning.
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The inequality (9) is satisfied, if 6 > &, i.e.,

(10) ¢(p) = mtarcsin p — (20)7[1 — (1 — 0)'] > 0.
We put arc sin p = 6. Then (10) can be written in the form
(11) ¥(9) = (6/7) — (2sin ) '(1 — cos §) > 0,

since0 £ p = 1,0 < 0 = ir. We can see that
lim,.o ¢(p) = limg.o ¥(6) = O, e(1) =¥(3r) = 0.

The inequality (11) will be satisfied, if, further limg.,o ¥’(6) > 0 and ¥”(8) <0
for0 < 6 < ir. Now

1

" 2(1 + cos6)’ v(0) =

1
—Z>O.

S

v =1

sin 6

50 —coso® < ° for0 < 6 < i

v(0) = —

This shows that the function (1) bas a minimum at the point (0, 0).

REFERENCES

[1] BromQqvisT, N. (1950). On a measure of dependence between two random variables.
Ann. Math. Statist. 21 593-600.

{2] CocERAN, W.G. (1937). The efficiencies of the binomial series tests of significance of
a mean and of a correlation coefficient. J. Roy. Statist. Soc. 100 69-73.

[3] Dixon, W. J. (1954). Power under normality of several non-parametric tests. Ann.
Math. Statist. 256 610-614. :

[4] ELanot, REcina C. (1956). O pewnych testach interakeji w do§wiadczeniach
wieloletnich i wielokrotnych. Zagadnienie rejonizacji. Zastosowania Mat. 3
8-45.

[5] ELanot, REciNa C. (1957). A non-parametric test of tendency. Bull. Acad. Pol.
Sct. b 187-190.

[6] Konwsn, H. S. (1956). On the power of certain tests for independence in bivariate
populations, Ann. Math. Statist. 27 300-323.

[7] KruskAL, W. H. (1958). Ordinal measures of association. J. Amer. Statist. Assn.
53 814-861. )

[8] NoETHER, G. E. (1955). On a theorem of Pitman. Ann. Math. Statist. 26 64-68.

[9] MosTELLER, F. (1946). On some useful “inefficient’’ statistics. Ann. Math. Statist.
17 377-408.

[10] Romig, M. G. (1947). 50-100 Binomial Tables, Wiley, New York.

[11] Pearson, E. S. and Harteey, M. O. (1956). Biometrika Tables for Statisticians.
I, Cambridge Univ. Press.

[12] SuEPPARD, W. F. (1899). On the application of the theory of error to cases of normal
distribution and normal correlation. Phil. Trans. Roy. Soc., London, Ser. A.
129 Sects. 27, 30.

[13] NaT’L. BUREAU OF STANDARDS (1950). Tables of the Binomial Probability Distribu-
tion and Related Functions. National Bureau of Standards, Applied Math.
Ser. 6.

[14] NAT'L. BUREAU OF STaNDARDS (1959). Tables of the Bivariate Normal Distribution
Function and Related Functions. Applied Math. Ser. 50.



