Table 1
Exact and Approximate Tail Areas for the t-distribution with
n Degrees of Freedom

Exact ^(*) Taik Area	Approximation		
	n = 7	n = 15	n = 40
.001	.000 816	.001 06	.001 02
.000 05	.000 042 8	$.000\ 051\ 5$.000 050 3
.000 01	.000 008 66	$.000 \ 010 \ 2$.000 010 05
.000 001	.000 000 873	$.000\ 001\ 02$.000 001 003
.000 000 1	.000 000 087 7	$.000\ 000\ 102$.000 000 100 1

^(*) These tail areas are exact to the extent that Federighi's [1] tabled quantiles are exact.

REFERENCES

- Federighi, Enrich T. (1959). Extended tables of the percentage points of Student's t-distribution. J. Amer. Statist. Assoc. 54 683-688.
- [2] Mills, John P. (1926). Table of the ratio: area to bounding ordinate for any portion of normal curve. Biometrika 18 395-400.

A FINITE CRITERION FOR INDECOMPOSABLE CHANNELS1

By A. J. THOMASIAN

University of California, Berkeley

Let M be the class of all $n \times n$ Markov matrices, $n \ge 2$, and let $I \subset M$ be the set of all indecomposable matrices. A Markov matrix is indecomposable if, [3] p. 179, it contains only one ergodic class; or equivalently, if, [4] p. 355, it contains only one irreducible set. Let A(1) be a non-empty subset of M, and for $k \ge 1$ let A(k) be the set of all $m \in M$ such that m can be expressed as a product of at most k, not necessarily distinct, elements of A(1). Also let $A = U_1^{\infty}A(k)$. The following theorem clears up a point concerning indecomposable channels [1], [2], [5] p. 74.

THEOREM. If $A(2^{n^2}) \subset I$ then $A \subset I$.

PROOF. For $m \in M$ let m' be the $n \times n$ matrix of zeroes and ones obtained by replacing every positive entry of m by a one; and for $B \subset M$ let $B' = \{m' \mid m \in B\}$. Now if a_i , $b_i \in M$; $a'_i = b'_i$; $i = 1, 2, \dots, k$ then $(a_1a_2 \dots a_k)' = (b_1b_2 \dots b_k)'$ because the (i, j)th entry $(a_1a_2 \dots a_k)_{ij}$ of $(a_1a_2 \dots a_k)$ is positive if and only if there exists a sequence of states i_1 , i_2 , \dots , i_{k-1} such that $(a_1)_{ii_1}(a_2)_{i_1i_2} \dots$ $(a_k)_{i_{k-1}j} > 0$. Also, clearly, $B \subset I$ if and only if $B' \subset I'$; i.e., the locations of the

Received May 3, 1962.

¹ This research was supported in part by the Information Systems Branch of the Office of Naval Research under Contract Nonr-222(53).

zero entries in $m \in M$ determines whether or not $m \in I$. Now A'(1), A'(2), \cdots is an increasing sequence of subsets of M', which has less than 2^{n^2} elements, so there must be a smallest $r, 1 \leq r \leq 2^{n^2}$, such that A'(r) = A'(r+1). To complete the proof we need only show that A'(r) = A' since if $A(r) \subset A(2^{n^2}) \subset I$ then $A' = A'(r) \subset I'$ so $A \subset I$. Thus we need only prove that if $k \geq 1$ and A'(k) = A'(k+1) then A'(k+1) = A'(k+2). Now if $m \in A(k+2)$ then m = bc, where $b \in A(k+1)$ and $c \in A(1)$ so there exists a $d \in A(k)$ with b' = d' so $m' = (dc)' \in A'(k+1)$ and the proof is complete.

We conclude with three comments. Clearly A'(1) determines whether or not $A \subset I$ so that if A(1) is an infinite set, which is not the case for indecomposable channels, then A(1) may, for the purpose of determining whether or not $A \subset I$, be replaced by any finite $B \subset M$ with B' = A'(1). If $m \in A$ has a state which is periodic with period d > 1 then $m^d \notin I$ and $m^d \in A$ so $A \subset I$. For any A(1), $(A(2^{n^2}))' = A'$.

REFERENCES

- Blackwell, D. (1961). Exponential error bounds for finite state channels. Proc. Fourth Berkeley Symp. Math. Statist. Prob. 1 57-63. Univ. of California Press, Berkeley.
- [2] Blackwell, D., Breiman, L., and Thomasian, A. J. (1958). Proof of Shannon's transmission theorem for finite-state indecomposable channels. Ann. Math. Statist. 18 1209-1220.
- [3] Doob, J. L. (1953). Stochastic Processes. Wiley, New York.
- [4] FELLER, WILLIAM (1957). An Introduction to Probability Theory and its Applications 1 (2nd ed.). Wiley, New York.
- [5] Wolfowitz, J. (1961). Coding Theorems of Information Theory. Springer-Verlag, Berlin; and Prentice-Hall, Englewood Cliffs, N. J.

NOTE ON QUEUES IN TANDEM¹

By Edgar Reich

University of Minnesota

1. Introduction. Assume that Q_k , $k = 1, 2, \dots, m$, is a single server queue where customers are served with an exponential service time distribution of mean $1/\mu_k$. We shall assume that the *j*th customer, C_j , arrives at Q_1 at time t_j , where $\{t_j\}$ are the events of a Poisson process, and λ the number of arrivals per unit time. The queues Q_k are arranged in tandem; that is, after C_j 's service at Q_k is completed he proceeds to Q_{k+1} and joins the queue there. We shall extend a result of our previous paper [1] for the foregoing situation.

Let T_{jk} denote C_j 's waiting time at Q_k , including the duration of C_j 's service at Q_k . The purpose of the present note is to show, using the results of [1], that under "equilibrium" conditions the probabilistic description of the random

Received March 26, 1962.

¹ This work was done with support under Contract Nonr-710(16).