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TABLE 1

Ezact and Approximate Tail Areas for the t-distribution with
n Degrees of Freedom

Exact(® Approximation

Taik Area n =717 n =15 n = 40
.001 .000 816 .001 06 .001 02

.000 05 .000 042 8 .000 051 5 .000 050 3
.000 01 .000 008 66 .000 010 2 .000 010 05
.000 001 .000 000 873 .000 001 02 .000 001 003
.000 000 1 .000 000 087 7 .000 000 102 .000 000 100 1

9 These tail areas are exact to the extent that Federighi’s [1] tabled quantiles are ex-
act.
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A FINITE CRITERION FOR INDECOMPOSABLE CHANNELS'

By A. J. THOoMASIAN
University of California, Berkeley

Let M be the class of all n X n Markov matrices, n = 2, and let I < M be
the set of all indecomposable matrices. A Markov matrix is indecomposable if,
[3] p. 179, it contains only one ergodic class; or equivalently, if, [4] p. 355, it con-
tains only one irreducible set. Let A(1) be a non-empty subset of M, and for
k = 11let A(k) be the set of all m ¢ M such that m can be expressed as a product
of at most k, not necessarily distinct, elements of A(1). Also let A = UTA(k).
The following theorem clears up a point concerning indecomposable channels
(1], 2], 5] p. 74. |

TueoreMm. If A(2") c I then A C 1.

Proor. For m & M let m’ be the n X n matrix of zeroes and ones obtained by
replacing every positive entry of m by a one; and for B < M let B’ = {m' | m ¢ B}.
Now if a;, bse M;a; = b ;4= 1,2, -+, k then (a0, - - - an)’ = (biby - -+ )’
because the (4, j)th entry (amas - - - ax)i; of (aas - - - az) is positive if and only
if there exists a sequence of states 41, %2, - -+, %1 such that (@1) is;(@2) e * -
(a) i,_,; > 0. Also, clearly, B C I if and only if B’ < I';i.e., the locations of the
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zero entries in m ¢ M determines whether or not m ¢ I. Now A’ (1) A'(2), -+ is
an increasing sequence of subsets of M which has less than 2" elements 80
there must be a smallest r, 1 = r = 2™ such that A'(r) = A'(r + 1). To com-
plete the proof we need only show that A (r) = A’ since if A(r) € A(2™) c I
then A" = A'(r) € I' so A < I. Thus we need only prove that if ¥ = 1and
A'(k) = A'(k + 1) then A"(k + 1) = A"(k 4 2). Now if m ¢ A(k + 2) then
m = be, where b ¢ A(k + 1) and ¢ £ A(1) so there exists a d ¢ A (k) withd" = d’
som’ = (d¢)" ¢ A'(k + 1) and the proof is complete.

We conclude with three comments. Clearly A’(1) determines whether or not
A C I so that if A(1) is an infinite set, which is not the case for indecomposable
channels, then 4 (1) may, for the purpose of determining whether or not 4 c I,
be replaced by any finite B < M with B' = A’(1). If m ¢ A has a state which
is perig)die with period d > 1 then m? 2 I and md ¢ A so A ¢ I. For any A(1),
(4(2™))
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NOTE ON QUEUES IN TANDEM!

By Epcar RricH
Unaversity of Minnesota

1. Introduction. Assume that Qx, k = 1,2, -+, m, is a single server queue
where customers are served with an exponential service time distribution of mean
1/ux . We shall assume that the jth customer, C;, arrives at @; at time ¢; , where
{t;} are the events of a Poisson process, and A the number of arrivals per unit
time. The queues Q) are arranged in tandem; that is, after C'/s service at @ is
completed he proceeds to Qy+; and joins the queue there. We shall extend a result
of our previous paper [1] for the foregoing situation.

Let T, denote C ;s waiting time at Qy , ¢ncluding the duration of C';’s service
at Qs . The purpose of the present note is to show, using the results of [1], that
under “equilibrium” conditions the probabilistic description of the random
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