THE PROBABILITY IN THE TAIL OF A DISTRIBUTION

By MeLvin L. Karz'
University of Chicago

Introduction. Let X,, X,, - - - denote a sequence of independent and identi-
cally distributed random variables. If the first moment of X is finite then it is
well known that n™*>_ry X — u with probability one where u = EX} . For
e>0andn = 1,2, --- define p,(e) = P{| Dt X — nu| > ne}; then pa(e) — 0
as n — « and it is the purpose of this paper to study the rate of convergence to
zero of the p,’s. Recently several papers have considered this problem, for
example [1], [3], and other papers have considered the same problem for se-
quences of random variables which are not necessarily independent and identi-
cally distributed, for example [5]. In all the papers investigating the rate of
convergence of the p,’s it is assumed that the moment generating function of the
X,’s is finite in some interval and then it is shown that p,(€¢) = O(p"(€)) where
p(e) < 1.1In [2] it is shown that the existence of the moment generating function
of the X,’s is both necessary and sufficient for p.(e¢) = O(p"(¢)) in the case of
independent and identically distributed random variables and necessary for
many other classes of processes.

In the case that the moment generating functions of the random variables
under consideration do not exist the problem of the rate of convergence of the
P.’s to zero does not seem to have been so well investigated and it is the purpose
of this paper to consider this problem for independent and identically distributed
random variables. The rate of convergence of p,(€) to zero is determined in
Theorem 1 if E|X:|* < o for some ¢ = 1. In Theorems 2 and 3 results are ob-
tained on the analogous problems if E|X;| = 4o and E|X;|* < o fort < 1,
or if moments higher than the first exist and the sums S (X — u) are normed
by n® where a > 1.

Theorem 1 of this paper has been proved in the case ¢ = 1 by Spitzer [1]
and the case t = 2 by Erdos [4]. The proofs of this paper rely heavily on the
methods of [4].

Theorems. Let {X:k = 1,2, -+ -} be a sequence of independent identically
distributed random variables.
TarorEM 1. Let t = 1. Then E|Xi|' < » and EX), = u if and only if

0

3 nttp {12 X — i
n=1 k=1
for all ¢ > 0. We shall defer the proof of Theorem 1 until Theorems 2 and 3 have
been proved.
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THEOREM 2. Let t >0 and r> 1. (a) If t=1 and : <7/t £ 1, then
E| X' < o and EX), = uimply D a0 °P{| Dty X — ny| > 0% < o
for all €« > 0. (b) If t = 1 and r/t > 1, then E|Xi|' < o« implies
Dona W P D Xkl > w7l < o forall e > 0. (c) If t < 1and r/t > 1,
then B|X|" < o tmplies D uey 0 "P{| D iy Xi| > n'''¢ < o for all ¢ > 0.

Thus, for example, if EX; = u and E|Xi|" < « Theorem 2 asserts that
pgi ‘1’8()1/7%8), P{| 2 i1 X — mu| > n*°¢ = o(1/n°) and P{| 251 Xi| > n’d =
o(1/n7).

Proor or TurorEM 2. To prove this theorem we may assume with no loss
of generality that ¢ = 1 and, if it exists, that £X; = 0. Following the methods

of [4] we define
An - { > nrlt}

a; = P{|X,| > 2"“}.

> Xi
k=1

and

Then it is easy to see that Z}Lo 27a; < o is equivalent to the condi-
tion B|X,|* < . Let 2° < n < 2" and define

AL = {1 X3 > 26=Dr1 for at least one k < n}
AP = {|Xg,| > 2" | Xi,] > 2™ for at least two  &'s < n},

where v is chosen so that [(» + 1)/2r] < v < 1, (1 — 9r) < 0 and
[1 — (2yr/t)] < 0. Such a choice is possible by hypothesis.

A1(L8) — {Zl Xk > 2(i—2)r/t}’
k=1

where Y. denotes the sum omitting those % with |X.| > n""*. Since /¢t > %
it follows that

(1) A, c AP U AP U AL,

Therefore to prove the theorem it will be sufficient to prove that
2 anTP(AY) < » forj =1, 2,3.
Since we have assumed EX; = 0 it is necessary in part (b) to prove that
D TP e X — mp| > 0 < forall e > 0.
However, since r/¢t > 1 this is equivalent to showing that
Do TP D o Xl > 0l < oo forall e > 0
and thus it is enough to show D ey v ?P(4Y) < o forj = 1, 2, 3. We begin
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by demonstrating that Y m_; 7 P(A") < . We have that
P(AY) = P{|X| > 277" for some k = n}

(2) : .
< nP{|Xi| > 277" = nais < 2Vais .
Thus
S ATP(AP) = Y Y wrtatta, < 3 g@HHEeD,
(3) n=1 =0 2‘§n<2t+1 =0

0
= constant + Y 2" g, < 0.
7=0

To show Y a1 n ?P(AP) < « we proceed as follows.
P(AP) = P{|Xx,| > 0", | X,| > n”"" for at least two k’s < n}
(4) = Z P{ ‘kai > ,n'yr/t’ lezl > n‘/T/t}

15#ha<n

< W’PY|Xy| > n""Y.
Now P{|X| > n™} = (E|X|'/n"") = ¢/n" and therefore
® A

Throughout the proof ¢ will denote all constants. Thus even in one set of in-
equalities we shall use ¢ to denote two different constants. Thus it follows that
D anTP(AP) = ¢ Du i n*. However, v has been chosen so that
r(1 — 2y) < —1, since [(r 4+ 1)/2r] < v, and thus D ey n °P(4Y) < .

It remains to check the convergence properties of Y ey n "P(AY). We
begin by proving convergence in the case ¢ < 1 and /¢ > 1. Let 6 > 0 be such
that ¢ + 26 = 1 and define

X i X =
Xi = {0 otherwise.

Then P(4:”) = P{| 202 Xl > 257774 = P{| 20, X#| > 297, Further
2 £ n < 27 =n/8 < 297 and therefore

P(A®P)= P { > XA > n’“/s’”}
k=1
n t4-56
é ¢ EZ X;c'- /nr+5r/t
k=1

(6)

lIA

¢ Z EIX;cl-ll+6/nr+8r/t
k=1

IA

n
P nyr&/ t E X+ t nr+r&/ t‘
3 mixtly
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Therefore 7" ?P(AP) = ¢ n %" and since y has been chosen so that
(1 — ) > 0 it follows that if ¢ < 1 and v/t > & then Y oy 2" *P(4P) < .
This completes the proof of part (¢) of the theorem and we proceed to prove
thatif t > 1and & < r/t < 1 then Y a0 °P(AP) < « ie., part (a) will
be proved. Recall that we have chosen u = 0.

We now take j to be the smallest integer =¢, and we let M be a positive
integer to be determined later. Define o = EXi and note that « — 0 asn — «
since u has been chosen = 0. Define ¥, = Xi — « and note that EY, = 0.
We will find a bound for P(A) by using Markov’s inequality and this re-
quires that we find a bound for E|Y_r; ¥,|**?
oM j

= ZEY““ .~ +4+¢ >  EYiEYi ---EYi,

k1<ko<: <k,

(7)

ng

where r < Mj, and we bound E|Y i Yi|**’ by bounding each sum on the
right hand side of (7).

(8) EY’%M:’ — EIYkl2Mj—t|Yklt < (nwlt + lal)ZMj—tElel ‘I" laDt
and therefore
(9) ZILI Elech <e¢ n[(2Mjw/t)—'YT+11.

Now consider any other sum on the right hand side of (7) where at least one
of the exponents of the Y;,’s is greater than ¢. Suppose that for one of these
sums exactly ¢ of the exponents in each summand exceed ¢ and I of the ex-
ponents are less than or equal to ¢. Then this sum is bounded by

LT OTID YD g @0+l b)

( 10) L+H(yr/ {2/ yr) lg+1-11+@M j—2D)—qt} __ @M jyr[6) +q(—yr) +1(1—(2yr[t))

=cn cn

where d; , - -, d, are the exponents in each summand that exceed ¢{. Now v
has been chosen so that (1 — yr) < 0 and [1 — (2yr/¢)] < 0 and thus this
bound is maximized when ¢ = 1 and I = 0. That is all sums that have summands
where at least one exponent of a Y, is >¢ are bounded by

(11) ¢ n{(zMJ"YT/t)—’YT-H}.
If all the exponents of the Y, for a partieular sum on the right hand side of (7)

are =t, then a bound for such a sum is glven by ¢ n™’. However, if M is suffi-
ciently large

(12) (2Mgyr/t) — yr + 1 > Mj.
Choose an M sufficiently large so that (12) holds. Thus

2M j
<cn

n

2. Y

k=1

(@M jyr[t)—yr+1}

(13) E
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If r/t = 1, then

P(AP) = P{
P{
o

Now choose 7 so large that @ < % and since n/8 < 27 it follows that

$x] > 2ol
k=1

(14) S XH > z(i—z)}
k=1

Il

If

Z Yk+ no
k=1

> 2""2’}.

n n 2Mj R
(15) P(AP®) = P{Z Y > ﬁ} < {cE’ (Z Yk) /n‘““}.
=1 16 =1
Therefore, for n sufficiently large
(16) nr—2P(A1(L3)) < ¢ nZMj(‘y—l)—'r(‘y—l)—l.

However, (y — 1) < 0 and 2Mj > r and therefore

0

(17) D TP(AP) < .

n=1

If # < 7/t < 1 we first note that it follows from integration by parts and the
existence of £X; that

(18) nl"'”f zP (dz) — 0 asn — oo,

lz|>nrrit
Thus

P(A®) ézP { DY+ nal>c n’”}

k=1

(19) ;
=< P{Z Y| >cen(1 — ¢ nl_”ta)}.

k=1

However,
|[1eionrrit ®dP| = |[Z0 2dP — a| = |a|

and thus n""%a — 0 asn — o since EX; = 0. Therefore for large n

= n 2mj .
Z Y=z ¢ nr/t} < {c B (Z Yk) /n2M;r/t}
=1 &~

and as before we have that Y oy " *P(A) < . This completes the proof
of part (a). It remains to prove part (b).
Recall that for part (b) of the theorem we assume that ¢ = 1 and 7/t > 1.

(20) P(AP) < P{
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Therefore for sufficiently large n

P(A®) =P { > Xk’ > 2“‘*2”“}
k=1

P{ >cen’t — na}
P{Z Y > cn'”}.
k=1

Note that under the hypotheses of part (b) « is not necessarily converging to
zero as n — o but since /¢ > 1 this is immaterial. Finally we apply Markov’s
inequality to (21) and it follows from (13) that Y, n"2P(4¥) < .

A partial converse to Theorem 2 is provided by Theorem 3.

TaEOREM 3. Let £t >0 and r = 2. (a) If t=1 and + <r/t =1, then
Doman P 2o X — | > n7't < o for all € > 0 implies that B|Xi|' <
and EXy = p. (b) Ift = Landr/t > 1,then Y ay 0 °P{| D> ry Xal > n'''¢ < o
for all € > 0 implies that E|Xi|' < . (¢) If t <1 and r/t > 2, then
DS an TP Xi| > 0t < w for all € > 0 implies E|Xi|' < .

Proor. To prove that in part (a) EX; = u we just observe that the hy-
potheses of the theorem imply that P{lim. 7Y ri (Xz — u) = 0} = 1 and
thus EX) = u. To check that F|X)|' < o in part (a) and in parts (b) and (c)
we follow the method of [4] exactly. If we set ¥ = |Xi|"" it follows as in [4] that
P{I>my Xi| > 07 = nP{|Y.]| > en}. Thus D ey 0" P{| Dy Xi| > 0% <
implies that D ey 7" 'P{|V.| > ¢ n} < o and therefore E|Y,|" < . Since
E|Y.|" = E|X,|" the proof is complete.

We proceed now to the proof of Theorem 1.

Proor orF TurEorem 1. It follows from Theorem 2, for ¢ > 1, and
from Spitzer [7], for ¢ = 1, that if EX; = u and E|Xi|' < « then
ELl nHP{lZ;L,_ X — nul > nef < o forall e > 0. If ¢t = 2 it follows from
Theorem 3 that if D aey n""P{|D> 1y Xz — nu| > ne} < o for all € > 0 then
EX, = wand E|Xi|* < «. For ¢t = 1 Spitzer has proved this fact and therefore
we must only show thisfor 1 < ¢ < 2.

If Do n 2P| Dy X — np| > ne < w foralle > 0and 1 < ¢ < 2 then

2P Dy Xi — np| > ne < oo for all € > 0 and from Spitzer’s result
it follows that EX; = u. To show that E|X,|' < « we may again employ the
method of [4] provided we can show that nP{|X,| > 2n} — 0 as n — « and
that there exists a constant = > 0, independent of ¥ and n, for n sufficiently
large such that

(21) En: Y,
k=1

IIA

PSS (X = wl <ol 2 7
k£l

However, since we know that EX, exists it follows from the moments lemma,
[6, pg. 242] that nP{|X.| > 2n} — 0 and from the Law of Large Numbers that
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7 exists. Therefore the results of [4] are applicable and we obtain that
P{I2oa Xl > n} = nP{|X.| > cn}. (u has been set = 0.) Thus
Dowan'T'P{X,| > ¢n} < « and hence E|X)|' < .
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