THE ESTIMATION OF A FUNDAMENTAL INTERACTION PARAMETER
IN AN EMIGRATION-IMMIGRATION PROCESS
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0. Synopsis. A convenient method for estimating the infinitesimal transition
parameters of a continuous time, multivariate, Markovian emigration-immigra-
tion process {n(#)} is described when these can be expressed as known functions
of a single fundamental interaction (or migration) parameter . The estimator for
6 is constructed from the observed generalized mean square consecutive fluctua-
tion in a realised sequence of {n(¢)} at a finite number, &, of points in time:
t=0,72r -+, (k— 1)7. Formulae are derived for the large-sample variance
(k large) of the estimator, and its relative efficiency in such samples is investi-
gated.

1. Introduction and summary. Consider the multivariate emigration-immigra-
tion or Poisson-Markov process {n(t)} in continuous time with state space the
set of all vectors in Euclidean m-space having non-negative integral components.
Some properties of this process were derived in a previous paper (Ruben, 1962)
with special emphasis on the joint distribution of n(t), n(t.), - -+, n(%) from
the point of view of generating functions and on the moments and product
moments of the process. We recall in particular that the process is strictly sta-
tionary and Markovian and is completely described in terms of v and A, where v
is the process mean, v = En(¢), and A is an interaction-rate matrix defined in
terms of infinitesimal transition parameters A, , AY (7,8 = 1,2, -+, m; 7 = s).
Further, the covariance matrix of the process is NP(¢) for ¢ = 0, where N is the
diagonal matrix with diagonal elements », , - - - , vm (the components of v) and’

(1.1) P(t) = @ 'K(t)®.

Here @ is the matrix of row eigenvectors of A (® reduces A to diagonal canonical
form) and K is the diagonal matrix with diagonal elements exp (—«i?), -- -,
exp ( —«nl), » denoting the (real positive) eigenvalues of A.

The purpose of the present paper is to derive a convenient method of estima-
tion for the infinitesimal transition parameters, and therefore for the transition
probabilities,’ of {n(¢)} when these can be related in a known manner to a single
unknown fluctuation parameter 6, that is, when the given stochastic process is a
member of a singly-infinite class of vector Poisson-Markov processes.
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2 Note incidentally that (1.1) implies P(¢) = exp (—Az) for ¢ = 0.

3 Any estimate of 8 is, of course of predictive value. Prediction of n(¢ 4 7) from n(t) is
here facilitated by the property of linear regression of n(t + 7) on n(¥) (Ruben, 1962).
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The process {n(¢)} reduces formally to a birth and death process’ when
m = 1. The estimation of the infinitesimal transition parameters in such a process
has been considered by D. G. Kendall (1952), Anscombe (1953), Moran (1951,
1953), Darwin (1959), Rothschild (1953) and Bartlett (1955, pp. 246-252;
1962, pp. 77-79 and pp. 84-85). More generally, there is an extensive literature on
the estimation of parameters of Markov chains and processes with a finite state
space, and the reader is referred to Billingsley (1961b) for a large number of
references on this topic. (See also Billingsley, 1961a, for problems of statistical
inference in time continuous Markov processes with an infinite state space.)
We may cite the papers by Zahl (1955), Meier (1955) and Albert (1962) as
typical examples. In Zahl’s paper, the transition probabilities of stationary
Markov processes in continuous time with finite state space are estimated (as
in Markov chains) from the observed transition frequencies in a fixed number of
independent realisations of the process over a given span of time, observations
being taken at periodic intervals of time. Again, if observations are taken in
continuous time, then further information on the parameters may become avail-
able from the actual time instants at which transitions occur (Albert, 1962, and
Meier’s extension, 1955, of Zahl’s results). Now, as pointed out previously
(Ruben, 1962), the Poisson-Markov process may in specific applications be
generated by the independent, temporally homogeneous Markovian ‘“motion’
of an infinite ensemble of systems (particles, individuals, etc.) with respect to a
finite set of states (denoted by {E;, Es, - -+ , Em, E*} in the latter paper), and
accordingly the observed transition frequencies, or more comprehensively the
actual sample paths over a given interval of time, would here too provide esti-
mates of the transition probabilities. This, however, assumes distinguishability
of the systems, and if this property is lacking, or if it is not possible or expedient
to trace the history of individual systems, then clearly the occupancy numbers
n,(t) (n,(t), the rth component of n(¢), is the number of systems in F, at time ¢,
forr = 1,2, ---, m) provide the only basis for estimating the transition prob-
abilities.

Consider, then, the fluctuation of the occupancy numbers from the point of
view of estimation. For Markov processes in general it does not appear unreason-
able to expect that relatively efficient estimates of the transition probabilities
might frequently be obtained from consecutive fluctuations of realised values of
the process at discrete points in time. In particular, for one-parameter Markov
processes, including (stationary) one-parameter vector Poisson-Markov proc-
esses, the parameter in question may be estimated from a single estimation

4 The phrase “‘birth and death process’’ is here (as in Ruben, 1962) used elliptically and
purely formally in the general sense apparently adopted by Feller (1957, p. 407) for any
process in continuous time ¢ (¢ = 0) with state space the set of all non-negative integers in
which the only possible one-step transitions are those to neighbouring states and the zero
state is not necessarily absorbing. This is to be contrasted with (for example) Bartlett’s more
precise and generic terminology (1955, p. 78) in which the Poisson-Markov process with
m = 1 is still referred to as an emigration-immigration process.
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equation involving the consecutive fluctuations. For this purpose, we construct
a quantity D’ as an appropriate measure of the difference between the two (non-
independent) observations n(¢) and n(t -+ =) (equ. (2.2)), D’ being a positive
definite quadratic form in the components of n(¢ + 7) — n(z) for r > 0. (Com-
pare Mahalanobis’s D?, the sample analogue of the population metric A% used
in multivariate normal statistical analysis for sndependent samples, as discussed
for example, by Mahalanobis et al, 1936.) Since ED® = 1, the proposed estima-
tion equation for 8 is M (D*) = 1, where M (D?) denotes the mean of a set of
observed consecutive D?, while the expectation vector v, if unknown, isestimated
from the mean of the observed n(z). In brief, a generalised mean square successive
difference is used to provide an estimator 8, henceforth referred to as the mean
square consecutive fluctuation estimator (MSCFE), for 6. The large sample vari-
ance of f is derived in Section 3, and an interesting consequence is the existence
of a critical value® of = at which the MSCFE attains maximum precision. This
may be regarded as the design aspect of the problem and implies that observa-
tions should be made neither too frequently nor too infrequently. The critical
value of 7 — 0 as the v, — .

‘We have previously conjectured that the proposed mode of estimation may be
quite efficient. How efficient is it in fact? A partial answer to this difficult question
is provided by Sections 4 and 5. These sections enable the relative efficiency of
the MSCFE to be determined for the rather special infinite symmetric linear
model, specifically, when (i) the », are equal and large (», — «), (ii) A (and
therefore P) is symmetric and (iii) the A, and A’ are proportional to 6. It appears
in fact that under these conditions the large sample relative efficiency approaches
1 as 7 — 0. (More precisely, we need also »7 >> 1, » being the common value of
the »,.) In its turn, this suggests that the general large sample MSCFE has
uniformly high efficiency (high efficiency over an entire range of §) when the »,
are not small, provided also r is not small (that is, provided observations are
not made too infrequently), this conclusion holding at any rate over the effec-
tively linear portions of A, and A} (regarded here as analytic functions of 6).
Further investigation may well strengthen this tentative conclusion.

Notation.

(i) For convenience of printing, the arithmetic mean of a finite set of numbers
a1, az, -+ - will be denoted by M(a) (rather than by the more usual @). The
number of elements used to construct the mean will be understood from the
context.

(ii) The range of 7 and j will be 1 to k, unless otherwise specified, and the
range of p, ¢, r, s will be 1 to m. (Recall that k is the number of observations
and m the dimensionality of each observation.)

(ili) The arguments of matrices, and of elements of matrices, which are func-
tions of time will be suppressed, wherever convenient, and will then be under-

5 It is obvious on general grounds that such a critical value must exist for any reasonable
method of estimation, since when r = 0 and when r = « no information is available
about 6.
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stood to be 7. Thus P, R, P,,, R™ denote P(7), R(7), Py(7) and R™(r),
respectively.

(iv) All vectors in this paper are to be regarded as row vectors.

(v) For a given matrix with elements Qs , the sum of the elements in the
ath row and Bth column will be denoted by Q.. and Q.s, respectively, and the
sum of all the elements of the matrix by Q.. .

2. Derivation of the estimation equations. Since the covariance matrix of the
process is NP = NP(7), P being given by (1.1), while the dispersion matrix of
n(t) is N, i.e.,

Bl(n(t) —v)'(a(t+7) = v)] = NP, E[(n() —v)'(a@®) —v)]=N,

it follows that the dispersion matrix of d = n(r) — n(0) is

(2.1) R(r) =R = NI - P) + (NI - P))’,
where I denotes the unit m X m matrix. Define

(2.2) D* = m™(dR™'d").

Then

(23) ED® = 1.

Formula (2.3) suggests the use of

(24) MDY =1

as an estimation equation for 6, where

MDD = ;Di/(k - 1),

D% = m™(dR7'd,), dy = Ngp — N (a=1,--,k—1),
andthen;=n(t+ ( — 1)7) = (na, -+ ,Nm),fori =1, .-+ , k, are k consecu-
tive observed values of n(-) at times ¢, ¢t + =, ---, ¢ + (kK — 1)=. More ex-
plicitly, (2.4) is equivalent to
(2.4" m™ >, R M(d,d,) = 1,

p.q

where ((R™)) = R (p,¢=1, ---,m) and

B—1
M(d,d,) = (k — 1)_1; (Rat1,0 — Map) (Matig — Nag)-

Finally, if the quantities ». entering in the specification of R through (2.1) are
unknown, then unbiassed estimates of these are given by

(2.5) y=F"2n;.

It should be noted that (2.4) (or (2.4')) is a transcendental equation in 6
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(the R™ are functions of 9) and cannot therefore be solved explicitly for this
parameter. However, numerical solution by trial and error with the aid of inter-
polation is quite practicable. (See also Section 4 for the form of (2.4) and (2.4")
in a special case.)

3. Large-sample variance of the MSCFE. Denote the sampling errors of § and
. by Af and A#, , and, similarly, denote the sampling deviation of M (d, d,) from
its expected value R, by AM (d,d,). Then neglecting terms which are o(k™) in
probability,’ we obtain from (2.4")

(D RpdR*/30)A6 + D D (RpdR™/dv,)As, + D R™AM(d,d,) = O.
p,q N 2173 ».q

It is convenient to simplify the first and second terms with the aid of the identity
> p.a RpeR™® = m. This gives

> R, dR"/dv,
D,q

- quj R™0R ,/ 97,

and

> R,dR™/36 — > R™R,,/09.
p.q .9

Use of the last two relations then yields (to the stated degree of approximation)

> > (R™3R,,/0v,)A%, — > R™AM(d, d,)

Af = — 7 Pa D.q

> R*3R,,/0 ’

».q

whence, to order k',

{>" hy by Cov(3,, %) — 2 2 h, Covls,, M(d, d,))

(31) ™ Pt
+ > R™R" CovlM(d, d,), M(d, d,)]}
Varf ~ :
(Z R’”“aRm/ae)
p,q

where h, = D, , R?¢ R, ,/9,. To evaluate the h,, observe from (2.1) that
=(I—P)7‘q (p=r,q#7‘);

aqu= = (I—P)y . (p=rq=r),
w,  |=20—=P) (p=r,q=1),
=0 (all other values of p, q),

8 Rigourization of the familiar differential method used here to obtain the large-sample
standard error of 8 is straightforward but tedious. The rigourization can be carried out along
the lines of Cramér (1946, pp. 353-356) or, more elegantly, of Hoeffding and Robbins (1948).
Note also that a similar argument shows the large-sample bias of 8 to be O (k™).
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so that
hy = >, R — P)yy+ > R — P),p + R™-2(1 — P),,
DHFET

a=r

(3.2) = ; qu(I — Py + pz RM(I —P)rp = 2[(1 — P)R_l]rr .

The first two terms in the numerator of (3.1) represent that portion of sampling
error (of ) due to the sampling variability of the %, ; in particular, if the », are
known, (3.1) reduces to

) > R™R" CovlM(d, d,), M(d, d,)]
3.1 Var § ~ 247
SR ar (S EoRa0)’

pq

The last term in the numerator of (3.1) decomposes (as is shown below) into
two parts, one of which would appear, to the exclusion of the other part, if the
process were Gaussian and another which corrects for the finiteness of the v, .
(Recall from Ruben, 1962, that {n(¢)} is in the limit a Gaussian process.”) The
first two terms in the numerator of (3.1) are similar correcting terms. These cor-
recting terms induce a hump in the plot of the variance of 4, both in (3.1) and
(3.1"), against =, giving a critical value of 7 at which maximum precision is
attained:

We now proceed to evaluate the three covariances appearing in the numerator
of (3.1). These clearly involve the product moments of order two, three and four,
respectively, of the process, formulae for which are available (Ruben, 1962). It
will appear subsequently that the three terms in the numerator may in certain
situations be evaluated explicitly (i.e. algebraic formulae can be derived for the
sums of the covariances defining the three terms).

The following two points should be noted in using subsequent formulae. (a) As
is usual in large-sample variance formulae, parameters are replaced by estimates,
i.e. v, and 0 are replaced by 7, and 8 in (3.1) and (3.1"). (Correspondingly, P and
R are replaced, with the same degree of approximation, by P and R.) (b) Any
element of ¢(P), where ¢(-) is a non-singular rational function with scalar co-

7 The precise sense in which the limit property holds is as follows. Define the process
{y@®} by y(&) = (n() — v)N74, and let », — o such that lim,, ;0 #r/vs)t = Crs < 0.
Further, for given t; < i3 < -+ < #, let Q denote a matrix which may be partitioned into
k2 submatrices, each of order m X m, such that the (z, j)th submatrix has C,P(|t; — &) or
Cs+Ps.(|t; — t:]) for its (r, s)th element accordingas j = ¢ or j < <. Then the joint distribu-
tion of y(t1), y(t2), -+ , y(t&) tends, as v, — o, to a km-dimensional normal distribution
with expectation vector zero and dispersion (or correlation) matrix Q.

Note in particular that for equally spaced observations, t; = ¢ 4 (¢ — 1), the limiting dis-
persion (or correlation) matrix of the km standardized random variables yi» = (nir — v',)/i»’ﬁ
is as given above with P(Jt; — t;|) = PV"—I(z), and the dispersion matrix for finite ». has
NiPli—il (;)N-% or N-#(PI"—%l(7))’N- for its (¢, 7)th submatrix according as j = 7 or j < 4.
(I regret that an irritating, though rather obvious, transcription error inadvertently crept
into the last paragraph of my previous paper (1962) where the limiting dispersion matrix of
the y;, is incorrectly specified.)
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efficients® is obtained from the corresponding element of P on replacing
exp (—«7) by ¢(exp (—«.r)) (Ruben, 1962).
(1) Evaluation of Cov (¥, 7).

COV(‘ﬁr’ ﬁa) = k_z Z Cov(nir ) nis)
(2

= K7 [ 5 Pl(G = D7) + Zn Pul(G = 7))

. {k b + 25 (= ) (NP, + Z (k — a)(NPm}

(8,s = P,,(0) denotes, as usual, the Kronecker delta function). Defining

k—1

Gx(P) = ‘;1 (k — a)P®
= (k— PO — P)™* — P’I — P)*'(I — P)7%,

we have the exact formula Cov (7, ,%,) = k {kv.drs + [NG(P)]rs + [ING(P) s}
Since

(34) Gv(P) ~ (k — )P — P)™*
to order %, the large-sample approximation for the required covariance is given by
(3.5) Cov (3r, #) ~ k Y9:drs + »[PA — P) s + v[PT — P) L.
(ii) Ewvaluation of Cov [#,, M (d,d,)]. Since 7, is unbiassed,
Cov [#,, M(dydy)] = E[(3r — )M (dpdy)],

(3.3)

and therefore

k(k — 1) Covlp, , M(d, d,)]

= E[Z i (nw Vr) (an ) - (nj+1,p - Vp)}{(njq - Vq) - (nj+1,q - Vq) }:I

i=1j=1

= E[Z il (M — Vr)(nn) Vp)(njq - Vq) — (g — Vr)(njp - Vp)(nj-l-l,q - Vq)

i=1j=
- (nir - Vr)(niq - Vq)(nj-l-l.p - Vp) + (nir - Vr)(nj+1,p - vﬁ)(nj'l"l.q - Vq)}] .

On splitting up the summation with respect to ¢ into two parts, namely, ¢ = j
and ¢ > 7, and using a previous formula for third order product moments (Ruben,

8 Such a function is well-defined, for if $(P) = ¢1(P)(¢2(P))™* where ¢:(-) and ¢2(-) are
polynomials with scalar coefficients, ¢.(P) being non-singular, then also ¢(P) =
(¢2(P))~'¢1(P). (See Ruben, 1962.)
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1962, Equ. (3.20)), we obtain

j k=1

k(k — 1) Cov [3,, M(d,d,)] = ;1 ;lVr{Prp((j — ©)7)dpq
— Puy((§ — 1)7)Pp(7) — Prq((j - i)T)Pqp(T)
k=1 k—1
+ Prp((f— 2+ 1)7)8p4 + i;—l ng {Vpaqur( G —9)7)

— vpPp(7)Pu((i — j — 1)7)
— 2P () Ppe((4 — j — 1)7) + vpdpeLor((2 — § — 1)7)}.

Multiply both members of the last equation by R” and sum with respect to
p and g. The first term then contributes », ., R”[P7'G%(P)l:, , the second and
third terms each contribute —, Y .4 R*{P7"G%(P)]:pPpq , while the fourth term
contributes 7, Y, R*7[Gx(P)).p; similarly, the fifth term contributes
> oR77[Gi(P)],r , the sixth and seventh terms each contribute

- Z P,q ”qRMPqp P_le(P)]pr ’

while the eighth term contributes Y, v,R?’ [P 'Gi(P)],- . Collection of terms
followed by some reduction yields

k(k — 1) 25 R* Cov [#, , M(d, dy)]

(36) = 2 R™{(IN(I + P)PT'Gi(P)l» + IN(I + P)P'Gi(P)l,}

b4

-2 ; {(PR™) poNP'G1(P)]r, + (RT'NP) [P G(P)1} .

This formula is exact. For k large, (3.6) becomes, on using (3.4),
> R™ Cov [#,, M(d,d,)]

».q

387 =k ; R?*{IN(I + P)(I — P) ], + INI + P)(I — P) 7],

— 2K Z {VT(PR—I)M(I - P)m + (R_INP)M(I - P)pr}~

»

(iii) Evaluation of Cov [M(d,d,), M (d. ds)]. First (after some straightforward
though rather lengthy and tedious algebra), on using the previous formula for
the fourth order product moments of the process (Ruben, 1962, Equ. (3.21)),

E[(nip — Miga1,p) (Mg — Mig1,e) (Mjr — Njga,r) (Mjs — NMjga,e)]

RpRes + X530 o 4+ Y55, (G > 19),
(3.8) = { RpRrs + X35 . + Y5 , (7 < 9),

Rerqs + Rpqur + Rm 78 + Zp,q;r,s (] = Z);
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where
Xpiare = Upn®U® + U PUZ? (a < B)
with
U“? = NP — P’ (a < B),
Y;‘qur)’s = Vp(I - P)rs{apq(Pa_a)qr - qu(PB—a—l)qr}
+ Vpapq{asr(PB_aH)qs - Psr(Pﬁ_a)qs}
- Vpqu{asr(Pa_a)qs - Psr(Pﬁ_a_l)qs}
+ Vq(I - P)qp{(l - P)M(Pﬁ—a_l)pr
'I" 637(Pﬂ_a)ps - Psr(Pﬂ_a_l)ps} (a < B),
and
Zp,q;f.s = V0pedaqrdgs — Vpapqaqrp rs T Vpapqaqsp sr VpapqarsP ar
—Vpaprarspsq +Vp5praqurs +Vp5psaqrpsq _Vpaqsaqrpps
- anqrarspsp + anqraspprs + Vpaqsaprpsp - anspapqus
+ Vrarsapqpsp - Vraspapqprs - VsarpaqusT + Vsasrarpapq .
Therefore,
k—1 k—1
EIM(dyd)M (d,ds)] = (k — 1)—2;) j; El(Mip — Niga,p) (Mg — Mita,q)
(e — Mjprr) (Mgs — Mjgas)]
k—2  k—1 » .
= (k=172 > (RpRe + Xpis + Y3ii)s
i=1 j=i+l
k_l 1:_1 .. .
+ (b= 1) 2 3 By + Xl + Vikioa
=2 j=
+ (k — 1)_1(Rerqs + RpRyr + RpRrs + Zp,q;r,s)y
or
) k—1 k—1 » B
CovIM(d, d,), M(d. d.)] = (k — 1)‘2{2 > XS+ YEh,
=1 j=i+1
(3.9) k—1 i—1
+ 22 KB YD)+ (k= 17 Ry B B R ).
=2 j=

Formula (3.9) is the required covariance formula. On noting further that
> g sRPR Ry Rye = m = D 4rs R™R™ Ry Ry , the numerator in (3.1"), and
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the third term in the numerator of (3.1), may be expressed in the form
> R™R"™ Cov [M(d,d,), M(d,d,)]

D,q,7.8
= (k — 1)’2{p2 ; RPR™(XGi . + Yiilo)
,q,’r,S 7
(3.10) + MZTZS ;R”QR”(Xﬁ,"s’f%,q YD}

+ (k= 1) 2 RYR"Zygrs + (b — 1) (2m).
D,9,7,8

We remark that in (3.10) the Y and Z terms, which are linear in the », , may
be regarded as correction factors for the finiteness of the ». or for the non-Gaussian
character of {n(¢)}, the remaining terms, which are quadratic in the »,, then
giving the purely Gaussian components.

The series in (3.10) cannot in general be further reduced algebraically. Such a
reduction is however possible in special cases (see Section 4).

4. Some special cases.

(A) Known ratios of the ». . Assume that the ». may be expressed in the form
v» = g6, where the g, are known and ¢ is to be estimated. In relation to the
states Ky, ---, E, of the introductory section, this implies that the relative
“gizes” of these states are assumed known (at least approximately). Clearly, ¢
may be regarded as a kind of density parameter.

An unbiassed estimator for ¢ is

(4.1) é = Z nie/k 22 gr

and the corresponding unbiassed estimators for the », are
(4.2) 5 = g

The estimation equation (2.4) for 6 is used as before with 7, replaced by 7 .
The large-sample variance formula (3.1) is no longer valid, but proceeding
analogously as in Section 3 the corresponding formula is readily obtained as

(m’ Var ¢/¢* — 2m Cov [, > R™ M (d,d,)]/
»,q
+ > R™R" Cov [M(d,d,), M(d,d.)|}
4.3 Var 8 ~ P
(43) ar (22 R™9R,4/6)"
»,q .

The third term in the numerator of (4.3) as well as the denominator are identical
with the corresponding terms of (3.1). To evaluate the new terms (i.e. the first
and second terms in the numerator of (4.3)), recall that the dispersion matrix
(ef. footnote 7) of the km variables n; may be partitioned into &* submatrices,
each of size m X m, such that the (s, j)th submatrix is NP'* or (P'""*)'N,
according asj = 7orj < ¢ (the covariance between n; and 7, being given by the
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element in the rth row and sth column of the (7, j)th submatrix). Hence (4.1)
gives on summation of the elements in the dispersion matrix,

Var ¢ = (k ;‘ 9" [kN + 2 ; (k — a)NP“:I
= (k Z ) kN 4+ 2NG,(P)]..,

(4.4)

where G(P) is evaluated in (3.3). Equation (4.4) is exact. For large &, (4.4)
reduces with the aid of (3.4) to

(4.5) Varg ~ k™ (22 ¢) "IN + P)(I — P)7]..
The second term in the numerator of (4.3) follows directy from the correspond-
ing term in (3.1). For
Cov g, 2 R™M(dydy)] = (22 9.7 22 Cov [, 2 R**M(d, dy)),
»,q T T D,q

where the 7, are the unrestricted estimators given by (2.5). On referring to (3.6),
we then obtain the exact formula

k(k — 1><;gr)-Cov 8, pZR“M(dp d,))
(4.6) = Zp) R™{(IN(I + P)P'G(P)]., + [N(I + P)P'G(P)],.}
-2 ZPZ {(PR™) pp[NPT'G4(P)]., + (R7'NP),,[PT'Gi(P)],.}

for all &, while for % large,
I( Z gr)-Cov [4, Z R™M (d, d,)]
r D9

47  ~ ; R™{[N(I+P)(I— P) '], + NI+ P)(I—P)7'],.}
-2 ‘pL {(PR™),, qZ v (I — P)¥ + (qZ vPepR*) (I — P)7'}.

(B) The symmetric model. Consider the case where A is symmetric and En(t)
has equal components: (i) A" = A, (ii) N = »I. Thus, if {n(¢)} is generated by
independent “migration” of elements between m -+ 1 states By, -+ , Em, E*
(see introductory section), then (i) implies that there is no preference of motion
as regards any two states E,, E;(As = \s) and (ii) states that the ‘“sizes” of
E,, -+, E,are equal (v may either be known or has to be estimated). Model
(B) is a specialisation of model (A) with g, = 1, i.e. ¢ = », and the further
striction that P is symmetric, so that the matrix R of Section 2 reduces to

(4.8) R = 2y(I — P).
The estimation equation (2.4") for 6 simplifies to
(4.9) @2m3) ™ X (I — P)* M (d,d,) = 1
pa
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where
(4.10) 5= (km)™" Z Ny .

The variance formula (4.3) is still applicable (with ¢ = »), and formulae
(44), (4.5), (4.6) and (4.7) for the first two terms in the numerator of (4.3)
reduce to

(411) Vars = (km) [k + 2Gx(P)].. ~ k¥ m™S[L + P)(I — P)7..
and
k(k — 1)m-Cov [3, 2 R**M(d,d,)]

(4.12) = ; I — P)”?[(I+ P)P'Gi(P)],. — 2 ; [P(I — P) ], [P 'Gi(P)],.
~ (k—1){ ; (I—=P)”[(I+P)(I— P)T,
- 2; [P(I —P)7,,(I — P)*}.

The third term in the numerator of (4.3), evaluated in (3.10), may also be re-
duced to more explicit form (as noted at the end of Section 3). In fact, since

Z RPQRTSU;i;J')UgJ) — T}S Zp [P2(.7'—i-1)(l _ P)Z]m’

D@78

— Z R™MR" U;f;” Ué:.:),

vits
so that
> RURCXGD . = 3 D PTI - PYY,, = X RURTXG.,,
Do » DTS
we obtain
2 D REXGD. = 3 E PGP — P,

= 2. 2 R"R"XS5 .,

P78 §<i
(this formula being exact), and to order &7,

pZ Z RPR*°X$5 o~ 3k — 1) ; [T+ P)™(I — P)lyp
21Q,7,8 7
= 2 D RPR"XY ..

»yirys J<t

Thus
(k=17 > X RUR"XSD.+ X X R™R"XSH )

D078 §>0 0,q7s8 §<i

+ (k - 1)_1(2/”7/) ~ (k - 1)—1 TZ {(1 —_ e—nr‘r)/(l + e—x,-r)}
+ (k=17 @2m) = (k — 1) ;{(3 /(1 4 ),
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since the trace of the matrix ¢(P(r)) is D_(¢ ™) for any rational function ¥(-)
with scalar coefficients. Formula (3.10) now becomes (to order k")

> R™R"” Cov[M(d,d,), M(d,d,)]

Pq,7s 8

~ k=D 2{@+ )/ + )

r

(4.13) + (k=12 {2 X RPREYSE)

P78 J>1

+ 22 2 R™R°YIH S

Py7ys §<t

+ (=1 > R™R"Z,qr -

0,78

From the previous definition of ¥ and Z, we find that to order £ (again omitting
the algebraic details) the last three terms on the right of (4.13) are given as
follows:’

Z ZRPqusy(i,f)
1Q37 8
DotsTs >4 e

= ()7 (k — 1) Z (I—P)*{1 — 2[P(I — P)™,,

+ [P — P) P — P) 7'y}

GBD L @) - 1) T a-»)7i - 20 - PR - P,
+ ()7 = 1) T (1= P)(I - )T — P) 7Y,
= Z ; R“R“Y’,Sf';f;,q

and

> R™R"Zpqms

Drq?S

(413.2) = (40)7'{2 § [(I—-P)")* -8 pZ (I =P)”[P(I — P) '],
+2 g (I — P)”(I — P)®P,, + 4 ; [(I — P)"P,,}.

(4.13) (taken in conjunction with (4.13.1) and (4.13.2)) is the desired formula
for the third term in the numerator of (4.3). We note that the dominant part
(v — ) of this term is the expression involving exponentials.

Finally, a simple representation of the denominator in (4.3) is now possible.

9 Y and Z have been previously evaluated as the sum of nine and sixteen terms, respec-
tively. Consequently, the left-hand members of (4.13.1) and (4.13.2) are likewise expressible
as the sum of nine and sixteen terms, respectively. The separate terms in these two sets of
terms are, however, not distinet, and collection of like terms, after suitable simplification,
produces the expressions on the right of (4.13.1) and (4.13.2).
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Define a, = 09«,/36, and denote the diagonal matrix with diagonal elements
@1, -+, @n by A. Since (recall the definitions of P and R in (1.1) and (4.8))
dR/360 = (2»7)-©'AK®,
we have R™'9R/30 = r-@ 'AK(I — K)'®, and consequently
(3° R™3R,,/06)" = "t {®@'AK(I — K)'®}
p.q
—K T 2
2 a,e

This completes the evaluation of the four terms in formula (4.3) for the large-
sample variance of the MSCFE in the symmetric model, these terms being given
by (4.11), (4.12), (4.13) (taken in conjunction with (4.13.1) and (4.13.2)) and

(4.14). Observe in particular that the dominant part (» — o) of the large-
sample variance is given by

B 1 2 3 + e—xrr a, e—lcrr 2
(4:15) Va,r0~(lc—1) T Z(m)/<z_>,

(4.14)

T r 1 — g%

and that the right-hand member of (4.15) is an increasing function in = which
tends to

2m 1
kE— 1 olog«/06)°

(4.16)

as 7 — 0 (the corresponding coefficient of variation being
{2m/(k — 1)}}/ 2 (69 log «./86))

and to « as 7 — . However, when the correcting non-Gaussian components of
variance are taken into account the variance function is seen to tend to « both
as 7 — « and as 7 — 0, and to have a minimum at some r > 0. For finite »,
then, there is a critical (non-zero) value of = at which maximum precision is
attained. A similar conclusion holds for the general Poisson-Markov model.

We remark that (4.16) is the limiting value, as + — 0, of the expression in
(4.15), itself the limiting value, as » — «, of the large-sample variance (i.e.,
(4.16) is the intercept of the particular variance curve » = o, plotted against r,
on the vertical axis). It is in fact readily established that the large-sample
variance in (4.3) tends to the expression (4.16) as » — « and 7 — 0 such that
yr— o} :

(C) The symmetric linear™ model. (Known ratios of the transition parameters. )

10 A further interesting limiting result of a rather different kind may be noted here.
We find from (4.3) (and the subsequent expressions for the four terms on the right of (4.3))
that, for continuous observations over a fixed span of time 7', Var 6/62 is proportional to
1/T. This follows on letting 7 — 0 and & — « such that (k — 1)r = T

1 The general Poisson-Markov process is linear in the sense that n(t 4+ 7) — v =
() — v)P(r) 4 =(t), where E[(e(t1))2(fs)] = O for #; # ¢ . Linearity in the text refers
specifically to the iransition parameters.
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This is the symmetric model of (B) with the further condition that the transition
parameters A, and A} are linear in 0: more precisely, these parameters are multi-
ples of 9. Thus the symmetric linear model has the properties (i) Al = A
(i) N = oI and (iii) Ms = ¢ns0, ¥ = ¢y 0, where the c,, and ¢; are assumed to
be known for our present purposes. The quantity 6 represents an intrinsic migra-
tion or interaction parameter, while the ¢, may clearly be regarded as measures
of the separation between the states E1, - -- , E, . Note further that (iii) may be
a reasonable approximation if the transition parameters are regular in the
neighbourhood of § = 0.

It may perhaps appear that this model is too restrictive to cover any practical
applications. Our justification for considering it is two-fold. First, the model
allows as to gain some insight into the efficiency of the MSCFE under more
general conditions, inasmuch as a lower bound to the variance of any unbiassed
estimator of § may be determined when (i), (ii) and (iii) hold. This is done in
Section 5. Next, practical applications of the model, even if only approximate,
can be found. One such application occurs in the study of the migration of par-
ticles and organisms (Ruben and Rothschild, 1953; Patil, 1955, 1957) between
disjoint regions Ei , - - - , En, and E¥, where E; , - - - , E., are finite and of equal
size while E*, the complement to UT' E, , is infinite, n,(¢) denotes the number of
particles in K, at time ¢ and » is the expected value of n.(¢), estimation of » being
equivalent to estimation of the (constant) number density of the particles. On
a kinematic hypothesis derived from general gas kinetic theory, it may be shown
that if {n(¢)} is approximated by a Markovian emigration-immigration process
(the adequacy of such an approximation has been examined from a heuristic
standpoint by Ruben and Rothschild, 1953, and more rigorously by Patil, 1955,
1957), then the infinitesimal transition parameters are simple functions of the
regions. Here 0 is the mean speed of the particles. We remark further that in this
application (ii) (i.e. regions of equal size) automatically implies (i).

Since (C) is a special case of (B), the variance formulae in (B) hold here too
with the simplification that a, = «./0. In particular, (4.16) reduces to

26"

(the corresponding coefficient of variation being 2/{(k — 1 ym}).

As a special example of (C), consider the case where the ., are all equal and
where the A} are also equal. This will illustrate the use of the estimation Equation
(2.4") in more general situations. In relation to the particle migration problem
discussed previously, equality of the \,, and A} will obtain under certain condi-
tions of symmetry with regard to the regions E; , B, - - - , En (e.g., for laminar
motion and m = 3, when E; , E, , E; are formed by division of a circle into three
equiangular sectors).

For equal A, and A, A has all its diagonal elements equal to —\ and all its
off-diagonal elements equal to (m — 1)\ + ¥, where \ denotes the common value
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of the A\, and \* the common value of the A} . Here

—1p M7 — O\ N7
o fmle T — e ] (r # ),
Prs(T) = {m—le—)\*f + (1 _ m—l)e—()\*+m)\)r (7’ — 8),
and therefore forl = 0, 1, -- -,
1 e—-l)\*r e—-l A*4mh) T
m l:l et ] — g rmnr (r#s)

(P(I = P) ) = 1 1 —L Ny
Lﬁr:—vﬂL(l _ﬁ>1_—7—<*+m—> (r=s).
Note that ! = 0 in the last formula gives R™ = (2»)"'(I — P)" which are needed
for the use of (2.4'). The latter equation reduces to
(m7o + (1 — m Do} M(d5 + di) + 2m™ (v, — )M (didz) = 2m3,

where v; = (1 — ™) 0, = (1 — ™™™ and 5 is given by (4.10).
Also, v

Pd—P) . = me™ /(1 — ™) (1=0,1,---).
On applying these results in the precision formulae, we find after some reduction
(4.18) Var 8 ~ (k — 1)76*(M + »'C),

where

2= B e +a) + (m — 1) 4 m)(1 +25)”
[21(1 — z)tlog o1 + (m — Dxe(l — x2)~ log )2 ’

fm@A + 2)Q — 2)™" — 2mF(1 — 2) (1 — a2)
_ + 3D + B)(1 — 2)”'(A — 22)~"}
Tl =z tlog 2 + (m — D)x(1 — xo)~' log x)?

and D, E, F, z; and x; are defined by
D = Du(z, 2) = 2m[l — (1 — m Ny, — m 2]’
14 (14 2m e + 2(1 — mDas] + 4m™ (1 — m™) (2 — m)°
—8m[l — (1 — m Doy — m wo]lm 2y + (1 — m e — 1),
E = En(z,z) = 2m(1 — 2) ™"
1 —mTe — (1 —m D2l — (2 —m Dz + (2 — m D]’

F=Fulzi,m) =1—m 2 — (1 —m a2l — (2 —m e+ (2 —m am,

C

—N\* —ayf —(\*+m) —ag0
T = e rEea1r’x2=e(+m)rEea2f.

The matrix A has a; as its leading element and the m — 1 remaining diagonal
elements are each a; .
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The term [6°/(k — 1)]M in (4.18) represents in general the dominant part
of the error of estimation, while [6°/{(k — 1)»}]C represents a correction factor.

b. The efficiency of the MSCFE. We now discuss the large-sample relative
efficiency of the MSCFE for model (C) in the limiting case v — .

The elements of the variance-covariance matrix of a finite set of unbiassed
estimators are bounded below by the corresponding elements of the inverse of
the information matrix. In particular, then, the variance of any unbiassed esti-
mator of 6 is bounded below by J”, where J is the 2 X 2 information matrix for
6 and » based on a set {n;} of & vector observations. Furthermore, since the
process {n(¢)} tends to a Gaussian process (in the sense of footnote 7) as v — o,
and since for a normal Markov sequence of vectors the maximum likelihood
estimators (MLE’s) may be shown to be governed by the classic asymptotic
theory of such estimation based on independent observations (cf. Bartlett, 1955,
pp. 246-247; Mann and Wald, 1943; Billingsley, 1961a), the above lower bounds
are actually attained asymptotically and the large-sample efficiency of the
MSCFE is legitimately measured in terms of the ratio of the large-sample
variance of the MLE" of 6 to that of the MSCFE when » is sufficiently large.
The likelihood surface provides indeed a whole family of curves, relating informa-
tion on 6 to 7, for varying values of » (each value of » gives a member of the
family ). The latter curves have each a single minimal value at a certain critical
value of 7 which tends to 0 as » — . To enable the efficiency of generalized
mean-square fluctuation to be gauged for reasonably large » we examine the
limiting member in the family (» — «) together with the associated maximal
precision at 7 = 0.

The limiting likelihood (» — «) of » and 0 based on the set of observations
{n}is
(5.1) L= @o) (Wil Fexpl— 32 Wiy (nip = ») (nig = »)/(20))
where W, is a matrix which is partitionable into %* submatrices, each of size
m X m, such that the (¢, 7)th submatrix is P'""*(W, is the correlation matrix
of the n;,, the correlation between n., and n;, being given by the element in
the pth row and gth column of the (¢, 7)th submatrix), and Wi/} denotes the
element in the pth row and gth column of the (¢, §)th submatrix of Wz". Elemen-
tary manipulations on W, (of which the first step is the subtraction of the second
column of submatrices from the first) readily gives W, = [I — P?||W,_|, and
since [Wy| = [I| = 1,

(52) Wil = - PP = ([T - a0 =120,

on using a previous result (Ruben, 1962; Equ. (2.19)) for the determinant of a
non-singular rational function of P with scalar coefficients. Next, to determine
the inverse of Wy, , observe that when P is scalar, P = z, the inverse is given by

12 Tt should be remarked that maximum likelihood estimation of 6 is intractable.
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a Jacobi matrix (continuant) weighted by an appropriate factor, in the form

1 —x 0 .o 0 0
—z 142° — .. 0 O

W' =

2

| 0 0 0 s —x 1]
This suggests that the inverse of W, when m > 1 is a generalized Jacobi matrix
weighted by an appropriate generalized diagonal matrix, in the form

I —P 0 0 O]
-P I+P* —-P .- 0 O
wio| 0 -P I+ P’ 0 0
—1_

) 0 0 —P I

1 — PH™ 0 0 0 T
0 IT—-pHy™? 0
0 x—-pH "' ... 0

|0 0 0 I-p)"

i.e., the submatrices, Wi"'”, of Wy are given by

W]E;]'l) — (I _ P2)—1 — W]Ek.k)

5 Wi = (14 P)(I — P)™ (@ =28,k —1),

.3

) wiee™ = —P@ — P = WY (a=1,2,---,k— 1)
Wis? =0 ' (loo — 8] > 1).

The validity of (5.3) may now be verified by multiplication of W, and wi!
in partitioned form. Finally, to obtain the first two derivatives with respect to
9 of the various submatrices of Wi needed for the information matrix, note
that for any nonsingular rational function ¢(P) of P,

(5.4) (8/00)¢(P) = (8/36){®@ Y(K)®} = —70 "AKYy/(K)O.
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We then find from (5.1) and (5.2)
2

4 k 1 i,
—a—zlogL = —-—nl'l‘— Z ngpjzznzpnlq’

22 ¥ 5

_ 32 1 Z lgw') <1_M>
5o 8 L = 5 .22 g5 Vhiba )
(5.5) a 2 —2%,T
- 9k — 1) 2> e T
wlOgL = 2<k I)T ; (1 _ e—ZKrT)Z
1 EX i
+ 2 i,jzp,q 06? lgp]t)z(n'm — »)(njg — v),

whence by (5.4)

awk(;l.l)/ao

= —27-0'AK*(I — K») '@ = oW /a0,
oW /a0
= —47-@'AKY (I — K*)’@ (¢ =2,8,+,k—1),
(5.6) OWi**/a9
= 7@ AK(I + KO I — K») 7?0 = oW "™ /a6
(a=1,2 -,k —1),
oW /a6
=0 (la = 8l > 1),
and
OWit /06
= 47 @AKYI + KT — K) 7’0 = 9°'WFP /a6,
Wi /06"
= 820 "AKYI + KH(I — K %0 (a=2,3,+,k—1),
(5.7) Wi /56"
— —07A¥(K + 6K° + K°)(I — K*)’0 = o*'W{*?/a6°
(¢ =1,2,-++,k — 1),
OWi*P /a6
=0 (la — B > 1).
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The elements of the information matrix are now derived from (5.5) with the
aid of (5.6) and (5.7). We have

 ow 1. y o
p(-Tpet ) by LS et 4 (i — i)
6v2 1/ 2,302
(5.8)
l Wi,
Vi,f,P,q
since

2 Wi Pog(lj — dl7) = tr(Wi'Wi) = km,

07,29

and on further simplification

E( 8” log L> km _3_ (211 — PO,

3 22
+ (& — 2)[d + PHAT — P)7..
(5.9) —2(k — DPA — PH ..}
_ km

57 T [(kI (k —2)P)T+P)7l..

~ (k/»)IT - P) I+ P) 1.,

after neglecting negative powers of » higher than the first and remembering that
k is considered large. Again,

8 log L _ 1 d iy o
E( avdl ) I M'Zp’qgg Wiisa Poo(|d — l7)

= — 13 ([—4,67AKT — K) %

21/ D.q
— 4k — 2)r0"AKRXI — K ™0),, Py (0)
+ 2(k — 1)7[07'AK(I + K*)(I — K*) 7@, Pyo(7)}

_ 2k — 1)r

(5.10) ir{®@'AK (I — K*) 0}

— (’“—:—1—)’ (@ AKYI + K*)(I — K*) 0}
= (L:v—lﬁ tr{® AKY(I — K*) '@}

—2K T
Pt

=(k—1)7‘z a,

v - 1 — 6—2"'1.
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Proceeding in a similar manner,

& 9" log L _ 2 aye

Z Wi Poolld — 1l 7)

2 'lu]ypvq

2 —2%,T —2K T
k_l)TZZare (1-]—6 )

. (1 — 6—2:(,-1)2 4

after some reduction. The large-sample variances of the MLE’s of » and 6, de-
noted by # and 4, are therefore given from (5.8), (5.9) and (5.10) by

(5.11) Var 5 ~ Ey = P)(Il TP
and
(5.12) Var 6 ~ . _1 o (Z a e‘(i‘rfile:txj;:w)>_l’
the two estimators being uncorrelated to order »*. Now
(5.13) lim Var 8 = —202— ,

720 (kb — 1)m

and since this is also the limiting value of Var 8 as 7 — 0 on the variance curve
of & corresponding to » = « (see Equ. (4.17), we conclude that the proposed
method of estimation based on generalized mean-square fluctuations in a long
sequence of vector observations (% large) is highly efficient in model (C) over
all 9 if the frequency of observations is high' (7 small) and » is sufficiently large
for these observations to be regarded as normally distributed. This result suggests
that the method of estimation may have high efficiency in more general circum-
stances for high », and sufficiently frequent observations, at any rate over the
effectively linear portions of A, and Ay , regarded as analytic functions of 6.
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