ON THE LINE—GRAPH OF THE COMPLETE BIGRAPH

By J. W. Moo~

Unaversity of Alberta

1. Introduction and summary. The line-graph, L(®), of any given simple
graph, G, is that graph whose points can be put in a one-to-one correspondence
with the edges of G in such a way that two points in L(G) are adjacent if, and
only if, their corresponding edges in G are adjacent. The complete m by n bi-
graph, B, , contains mn edges which join each point in one set of m points to
each point in a second set, disjoint from the first, containing n points. As general
references on terminology see, e.g., Harary [4] and Ore [8)].

If we suppose that m = n = 1 it can be seen that L(Bn,) has the following
three properties:

(1) The graph has mn points each of which is adjacent to m + n — 2 other
points.

(2) n (?) of the pairs of adjacent joints are mutually adjacent to m — 2

other points and the remaining m (g) pairs of adjacent points are mutually

adjacent to n — 2 other points.

(3) Any two distinct nonadjacent points are mutually adjacent to two points.

The object of this note is to show that if any graph satisfies these three condi-
tions then it is isomorphic to L(Bwm.) except possibly when (m, n) = (4, 4),
(4, 3) or (5, 4). This will generalize a result of Shrikhande [10] (see also Mesner
[7]) who, using different terminology, has already shown this for the case that
m = n. The corresponding problem for the line-graph of the ordinary complete
graph of n points has been treated by Connor [3], Shrikhande [9], Hoffman [5],
and Chang [1], [2].

2. A lemma.

LemMA. Let there be given a graph G satisfying Conditions (1), (2), and (3),
where m 2 n = 1, but (m, n) #= (4, 4) (5,4) or (4, 3). Let py and py, be two
adjacent points of G which are mutually adjacent to each of the m — 2 points in
A = {ps, -, Pim}. Let C1 = {pu, -+, pu} be the set of n — 1 points which
are adjacent to pu but not to p.s . Furthermore let there be at least m — 2 points in
AU C; such that each of these points and py are mutually adjacent to m — 2 other
points. Then AU puU pis and C1U py are the vertex sets of complete graphs of
m and n points, respectively, and no point of A is adjacent to any point of C; .

Proor. We consider first the case in which m = n = 5. No point in C; can
be adjacent to more than one point in A without violating Condition (3) with
respect to the point p;; . Therefore, each point in C, is adjacent to at least n — 3
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of the remaining n — 2 points in C; in order to satisfy Condition (2) with re-
spect to the point py . Then, if there exist two nonadjacent points in C; they
must be mutually adjacent to the remaining » — 3 points in C; as well as to py; .
This contradicts Condition (3) since n — 2 = 3 in the case being considered.
Hence every point in C, is adjacent to every other point in C; . If some point
in C;, pa say, is adjacent to some point in A then there are n — 1 points ad-
jacent to both ps and py . Thusn — 1 mustequal m — 2, by (2),or m = n + 1.

If m = n + 1 suppose that some point in 4, p;3 say, is adjacent to some
points of C; . It is easily seen that p;s cannot be adjacent to more than one point
of C; but not to all points of C; without violating Condition (3). But if py3 is
adjacent to all points of C; then the number of points which are adjacent to
both pu and pgs is, including pi2, at least n which contradicts Condition (2).
Hence pi; can be adjacent to at most one point in C; . From Condition (2) it
follows that there is at least one other point in A, py, say, which is not adjacent
to piz . But pi3 and pu are each adjacent to at least m — 5 of the remaining
m — 4 points of 4 and if m > 6 there will be at least one of these points which
is adjacent to both p;3 and pis . This, however, contradicts Condition (3) since
P13 and pyg are both adjacent to pu and pys .

The only alternative remaining to be treated, under the assumption that
m = n.+ 1 and that some edges join points in A to points in C; , is when m =
n + 1 = 6. In this case it is not difficult to see that the only configuration
which can satisfy Condition (2) without implying a contradiction of the type
just described is one in which each point of A is adjacent to a different point
in C; and p; is adjacent to pis, say, and py is adjacent to pis . Suppose that
pa and px are the different points in C; which are adjacent to pi; and 5, re-
spectively. Then ps and pis are not adjacent to each other but are mutually
adjacent to ps , P13, and pu , contradicting Condition (3). Hence no point of A
is adjacent to any point of C; under the given assumptions. This and the fourth
sentence of the hypothesis of the lemma implies that each point in A is adjacent
to every other point in A which suffices to complete the proof of the lemma
whenm = n = 5.

Next consider the case in which n = 4 and m = 6. No point in C; can be
adjacent to m — 2 other points of AU C; by an earlier remark and the fact
that m — 2 = 4. Hence, from the hypothesis, each of the m — 2 points of A
must be adjacent to m — 3 other points of AU C,. Using again the fact that
no point in C; can be adjacent to more than one point in 4 it follows that there
is at least one point of A which is not adjacent to any point in C; and hence is
adjacent to each of the remaining m — 3 points of A. To avoid contradicting
Condition (3) it must be that AU pu U pye is the vertex set of a complete graph
of m points. Condition (2) now implies that no point of 4 is adjacent to any
point of C; and that C;U py is the vertex set of a complete graph of 4 points,
which completes the proof of the lemma for this case.

An entirely analogous argument proves the lemma when n = 3 and m = 5.
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Its validity when n = m = 3 follows from the results of Shrikhande [10] and
the remaining cases, when n = 1 or 2, are also easily established.

3. The main theorem.

THEOREM. Let there be given a graph G satisfying Conditions (1), (2) and (3),
where m = n = 1 but (m, n) #= (4, 4), (5,4), or (4, 3). Then G is isomorphic
to L(B ).

Proor. Condition (2) implies that there are 2n (;n) points p in G, counting

multiplicities, for which there exists another point ¢ of G such that p is adjacent
to ¢, and p and ¢ are mutually adjacent to m — 2 other points of G. Since

2n (g)/mn =m-—1

it follows that there exist two points, pu and pi2 say, which satisfy the hypothesis
of the lemma. Retaining the notation of the lemma let C2 = {px2, - - -, pas} be
the set of » — 1 points which are adjacent to p;2 but not to py ; by symmetry
it follows that CoU p;. is the vertex set of a complete graph of » points and no
point in C; is adjacent to any point in A. By applying Condition (3) to the
points of C; with respect to pi2 and to the points of C: with respect to pu we
see that each point of C; is adjacent to one, and only one, point of C; and vice
versa. We may assume that the points are labelled in such a way that p; is
adjacent to pj, forj = 2, .-+ n.

The hypotheses of the lemma are now satisfied with any pair of distinct
points, pi; and py; , playing the roles of the points earlier labelled as py; and py .
Hence we may assert that for each point py;, 7 = 1, - -+, m, there exists a set
of n — 1 points, €; = {p2j, -, Paj}, such that C;U py; is the vertex set of a
complete graph of n points and no- point of C; is adjacent to any point p;; , where
1 5% j. Also there are no points common to C; and C; and each point of C; is
adjacent to one and only one point of C;, for 4,5 = 1, --+, m, ¢ 5 j. This ex-
hausts the points and edges of G.

Let pys be that point of C; which is adjacent to ps . If pss is not adjacent to
Pz suppose that pss is the point of C; which is adjacent to ps and that ps is
the point of C; which is adjacent to ps; . Then the nonadjacent points ps and
pys are mutually adjacent to the distinet points pe;, pss, and ps which contra-
dicts Condition (3). Hence 23 and pz are adjacent. Letting p.; be that point of
C; which is adjacent to p.,;—1, for 7 = 4, -+ -, m, and repeating this argument
it can be seen that the points py;,7 = 1, - - - , m, form the vertex set of a com-
plete graph of m points. '

Next let pss be that point of C; which is adjacent to ps; and repeat the above
argument. Carrying through this procedure n — 1 times it is seen that the mn
points of G may be labelled p;;, ¢ = 1, -+, n,j = 1, , m, in such a way
that p;; is adjacent to p,, if, and only if, 2 = rorj = s, but not both. This shows
that G is isomorphic to L(Bn,) under the given COIldlthnS
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4. Special cases. The above theorem does not hold when (m, n) = (4, 4)
and Shrikhande [10] has shown that there is just one counter-example. The
determination of whether the theorem holds if (m, n) = (4, 3) or (5, 4) seems
to be somewhat involved. Hoffman [6] has described a method for enumerating
the counter-examples for the corresponding problem on the line-graph of the
ordinary complete graph. Even if his method could be adapted to the present
situation the effort required would likely be considerable.
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