LOGISTIC ORDER STATISTICS'

By ArraN BirNBAUM AND JACK DupmAN
New York University and Reed College

0. Summary. Expected values and standard deviations of order statistics
from a logistic distribution are given for sample sizes n = 1, 2, ---, 10 and
n = 15, 20, 50, and 100, and summarized in graphs to facilitate interpolation to
other sample sizes. For n < 10 the results are compared with asymptotic ap-
proximations. Related distribution theory is discussed briefly, and related
investigations and applications are cited.

1. Distribution theory. A random variable Y will be called logistic, or will
be said to have the logistic distribution, if Prob{Y = y} = \If(a + By), where
—o<a<©,B>0 —wo <y< o and¥(t)=¢/(l+e¢) = 1/(1+ 9.
The correspondmg density function is B¢ (a + By), where ¥(¢) = V() =
e/ (1 + ¢')’. Letting ¥(¢) = 1 — ¥(¢t), ¢(¢) = ¥(t) ¥(t). Tables of ¥ and ¢
have been glven by Berkson [1].

Interest in the logistic distribution stems in part from the fact that it very
closely approximates the normal distribution and seems an equally plausible
assumption in many contexts of application [2], [3], and from its convenient

mathematical and statistical properties. Haley [10] has shown that the “dis-
tance” d(8) = max,|¥(By) — ®(y)|, between the logistic c.d.f. ¥(By) with zero
mean and scale parameter 8 and the standard normal c.d.f. #(y), is minimized
by taking 8 = g = 0.5875, which gives d(8') < 0.01. Almost as good a fit in
this sense to the standard normal is given by the standard logistic c.d.f. ¥(8"y)
with zero mean and unit variance, in which 8” = 1/1.81380 = 0.5513 (as indi-

cated below).

Tet Vi, £ YV, £ --- £ Y, denote a sample of n independent observations
from a logistic distribution with « = 0, 8 = 1, ordered by increasing size. Then
it is found readily that the moment generating function (m.gf.) of an order

statistic Y, is
M(w,n,s) = E@E") =T (s+w)T (n—s+1—w)/T(s) T (n—s+1),

where T' denotes the usual gamma function.

We note that the m.gf. of Fisher’s z distribution with 2s and 2(n — s +1)
degrees of freedom, where z = log(F ) and F has the F-distribution, is
[(n — s+ 1)/s]”* M (w/2, n, s). (In particular, z with 2 and 2 degrees of
freedom has the m.g.f. M(w/2 1, 1), and hence has the logistic c.d.f. ¥(2z).)
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Thus
Prob {Y, < v} = Prob {22 < v + log[(n — s+ 1)/s]}
= Prob {F < [(n — s + 1)/s)e’}

where the z and F random variables each have 2s and 2(n — s + 1) degrees of
freedom. Thus the extensive available tables and theoretical knowledge of the
2z and F distributions provide conveniently corresponding extensive knowledge of
the distribution of logistic order statistics.

2. Moments. Cumulants or moments of z or Y, have been studied and used
in various applications by Cornish and Fisher [6] and [9], Plackett [12], and one
of the present authors [3]. The following tables are a by-product of the last
work.
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A comparative study of order statistics from several other distributions,
particularly their moments in small samples, was given by Hastings et al [11].
The form of their Tables 1 and 2 has been adopted in Table 1 below to facilitate
comparisons.

The cumulants of Y, are given by

ki (Ys) = (3"/0w’) log M (w, m,'s) lomo = Di(s) + (—=1)" De(n — s + 1),
where D; denotes the polygamma function of order £,
Di(z) = (8"/02") log T(x),

tabulated in [8]. (These formulae for M and the first four cumulants of Y, were
given in [12].) Thus E(Y,) = Di(s) — Di(n — s + 1) and Var(Y,) = Du(s) +
Dy(n — s+ 1). Setting n = s = 1 gives 2D,(1) = (8”)™* = (1.81380)" as the
variance of the logistic ec.d.f. ¥(y).

For presentation of tables of moments of logistic order statistics, we adopt the
notational scheme of [11] to facilitate comparisons with results therein for other
distributions. For each n and s, let 2 =n — s+ 1, and let X; = 8”Y,. Then
X: = X:= -+ 2 X, denotes a sample of n independent observations from a
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standard logistic distributiont ¥(x/B”) with zero mean and unit variance. Let
w(Xi|n) = E(X;) = B"E(Y,) = B"[Di(n — ¢ + 1) — Dy(4)]
and
o(X:|n) = [Var(X)I' = p[Da(i) + Do(n — i + 1)1

TABLE 1

Means and standard deviations of order statistics from standard logistic and standard normal
distributions. (L = exact logistic, AL = asymptotic logistic, N = exact normal, AN =
asymptotic normal. Values for N and AN are from [11].)

w(X:|n) o(X; | n)
n 7 N AN L AL N AN L AL
1 1 0 0 0 0 1.00000 1.2533 1.0000 1.103
2 1 .56419 .4307 .5513 .382 .82565 .9168 .8343 0.827
3 1 .84628 .6745 .8270 .606 74798 7867 7874 736
3 2 0 0 0 0 .66983 7236 .6262 .637
4 1 1.02938 .8416 1.0108 .764 70122 7144 7657 .690
4 2 0.29701 .2533 L2757 .223 .60038 .6340 .5622 .564
5 1 1.16296 .9674 1.1486 - .887 .66898 .6670 7532 .661
5 2 0.49502 .4307 .4594 .382 .55814 .5798 .5313 .524
5 3 0 0 0 0 .53557 .5605 .4900 .494
6 1 1.26721 1.0676 1.2589 .987 .64492 .6331 7451 .643
6 2 0.64176 .5659 .5973 .503 .52874 .5426 5131 .498
6 3 0.20155 .1800 .1838 .159 .49620 .5147 .4542 .455
7 1 1.35218 1.1504 1.3508 1.073 .62603 .6702 7394 .630
7 2 0.75737 .6745 7075 .606 .50670 .5150 .5012 .482
7 3 0.35271 .3186 .3216 .282 .46875 .4826 .4328 .431
7 4 0 (1] 0 0 45874 4737 .4154 .417
8 1 1.42360 1.2207 1.4295 1.147 .61066 .5867 7352 .620
8 2 0.85222 7647 .7994 .691 .48930 .4936 .4927 .469
8 3 0.47282 .4307 .4319 .382 .44807 .4584 .4182 414
8 4 0.15251 .1397 .1378 .123 43264 .4447 .3918 .392
9 1 1.48501 1.2816 1.4984 1.212 .59780 .5691 .7319 613
9 2 0.93230 .8416 8782 .764 47508 .4763 .4863 .460
9 3 0.57197 .5244 .5238 .467 43171 .4393 .4083 .401
9 4 0.27453 .2533 .2481 .223 .41303 4277 .3760 .376
9 5 0 0 0 0 .40751 .4178 .3668 .367
10 1 1.53875 1.3352 1.5597 1.270 .58681 .5557 .7294 .580
10 2 1.00135 .9085 L9471 .829 .46318 .4619 .4814 .453
10 3 0.65608 .6046 .6025 .541 .41826 .4238 .4006 .392
10 4 0.37572 .3488 .3340 .309 .39756 .4052 .3646 .363
10 5 0.12274 .1142 .1103 .100 .38857 .3973 .3498 .350
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. TABLE 2
Means and standard deviations of order statistics from the standard logistic
distribution
I LRI N I e e R Ele 4
15 1 0.0625 1.79268 0.72177 10 | 0.1961 0.79919 | 0.19868
2 0.1250 1.20197 0.46748 11 0.2157 0.73028 | 0.19137
3 0.1875 0.88390 0.37993 12 | 0.2353 0.66602 | 0.18523
4 0.2500 0.65418 0.33569 13 | 0.2549 0.60557 | 0.18003
5 0.3125 0.46622 0.31016 14| 0.2745 0.54826 | 0.17559
6 0.3750 0.30082 0.29510 15 | 0.2941 0.49356 | 0.17181
7 0.4375 0.14768 0.28704 16 | 0.3137 0.44105 | 0.16856
8 0.5000 0 0.28450 17 | 0.3333 0.39038 | 0.16580
18 | 0.3529 0.34124 | 0.15345
20 1 0.0476 1.95597 0.71931 19| 0.3725 0.29338 | 0.16148
2 0.0952 1.37562 0.46094 20 | 0.3922 0.24658 | 0.15984
3 0.1429 1.06933 0.37069 21 | 0.4118 0.20064 | 0.15852
4 0.1905 0.85312 0.32355 22 | 0.4314 0.15537 | 0.15748
5 0.2381 0.68083 0.29475 23 | 0.4510 0.11062 | 0.15672
6 0.2857 0.53381 0.27581 24 | 0.4706 0.06623 | 0.15621
7 0.3333 0.40254 0.26302 25 | 0.4902 0.02205 | 0.15596
8 0.3810 0.28137 0.25450
9 0.4286 0.16651 0.24927 || 100 1| 0.0099 2.85444 | 0.70926
10 0.4762 0.05513 " | 0.24677 2| 0.0198 2.29754 | 0.44623
3| 0.0297 2.01625 | 0.35095
50 1 0.0196 2.46952 0.71143 5| 0.0495 1.68322 | 0.26544
2 0:0392 1.90694 0.44978 10 | 0.0990 1.24248 | 0.18795
3 0.0588 1.61978 0.35559 15| 0.1485 0.97815 | 0.15656
4 0.0784 1.42428 0.30464 20 | 0.1980 0.78164 | 0.13914
5 0.0980 1.27446 0.27194 25 | 0.2475 0.62046 | 0.12818
6 0.1176 1.15194 0.24889 30 | 0.2970 0.48031 | 0.12089
7 0.1373 1.04752 0.23165 35| 0.3465 0.35344 | 0.11598
8 0.1569 0.95594 0.21822 40 | 0.3960 0.23505 | 0.11278
9 0.1765 0.87380 0.20747 45 | 0.4455 0.12178 | 0.11094
50 | 0.4950 0.01103 | 0.11027

Values of u(X; |n) and o(X;|n) forl <4 = [n+ 1/2],1 = n < 10 are given in
Table 1 under heading L (logistic). By symmetry, u(X; [n) = —u(Xn i +1|n)
and o(X;|n) = ¢(X, - ;41| n). Table 2 gives such values also for n = 15,
20, 50 and 100. Figures 1 and 2 give graphs of u(X,;|n) and ¢(X;|n) as func-
tions of log(¢/n + 1) and n + 1/7 respectively, for n = 5, 10, 15, 20, 50 and 100.
These may be useful for interpolation to other values of n.

As in [11], Table 1 also includes approximations given by the asymptotic
formulas (following Cramér [7], p. 369) u(X:|n) = ”log(g:/p:) and o(X, | n)
= 8”(npig:)~*, where p; = i/n + 1 and ¢; = n — ¢ + 1/n + 1. These approxi-
mations appear under heading AL (asymptotic logistic). '

It would be desirable to augment these results by exact computations of
covariances of some logistic order statistics, Cov(X;, X;); evidently numerical
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integration is required, and this has not been undertaken. The asymptotic
approximation to the covariance of two order statistics takes a particularly
simple form with the standard logistic distribution:

COV(Xi ) Xi) = ﬁ”(n(Ic’Pj)‘_l, 1= .7

These relations greatly simplify the formal solutions of various problems of
determination of best linear combinations of order statistics for various estima-
tion problems concerning parameters of a logistic distribution, but such formal
solutions must be regarded with caution because of the asymptotic approxima-
tions used. Exact determination of some covariances of logistic order statistics
would be useful to help determine the range of effective accuracy of such ap-
proximations and of results derived from them.

Blom [4], [5] has given a class of “nearly best unbiased” estimators, linear in
order statistics, which, under general conditions satisfied here, are nearly as
efficient as the best unbiased such estimators, and whose determination requires
the means but not the covariances of order statistics. Thus such estimators can
be determined by use of Tables 1 and 2.
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