ON TESTING MORE THAN ONE HYPOTHESIS

By J. N. Darrocu! anDp S. D. SiLvey
University of Manchester

1. Introduction. In two illuminating papers, Lehmann [5], [6] considered
some of the problems associated with testing more than one hypothesis within
the framework of multiple decision theory and his discussion provides an ideal
setting for describing the subject matter of the present paper.

Suppose we wish to test, against a general model @, two hypotheses H; and
H, concerning the distribution underlying certain observed data. This problem
induces a multiple decision problem in which the four possible decisions are

d® : H,and H, are both frue,

d" : H,is true, H, is false,

d°: H,is false, H, is true,
and d“: H, and H, are both false.

Now suppose that a test of H, is defined by the acceptance region AJ and the
rejection region A} (» = 1, 2). These separate tests induce a decision procedure
for the four-decision problem this induced procedure being defined by assigning
to the decision d*’ the region AjN 43 .

This raises the problem: given that the separate tests of H, and H; are “good”,
when is the induced procedure also ‘“‘good”’? Lehmann proves that this is so when
the loss function for the induced decision problem is the sum of the loss functions
for the individual tests and when “good” is interpreted as ‘“having uniformly
minimum risk within a wide class of procedures”.

While this is a powerful theoretical result there are several reasons why the
statistician finds it of little practical value. First he seldom visualises losses
explicitly and so finds it difficult to determine whether this additive condition is
satisfied for the problem he is facing. Secondly he is often interested not in the
complete multiple decision procedure induced by separate tests of the two hy-
potheses but only in the induced test of the hypothesis H; A H,, i.e., in the test
with acceptance region AN A3 . And thirdly he is not so much concerned that
this induced test be optimal as that it should be a reasonably good test.

In the present paper it is the induced test of H, A H, that will be our concern.
We shall limit discussion to the case where the separate tests of H; and H, are
likelihood ratio tests and we shall compare the test induced by these with a
likelihood ratio test of H; A H, against G. We shall assume that the latter test
has the shape of power function that we require of a test of Hy A H,. If the
induced test compares reasonably well with this direct likelihood ratio test, we
shall say that it is good: otherwise, that it is poor. We do not however wish to
imply it is always desirable that the induced test have this property.
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While many of the points we shall make are sufficiently well exhibited by the
case of two hypotheses, there are some which require consideration of three.
Again in this case we shall not be concerned with the full induced decision
procedure. But now there are four induced tests which may be of interest, those
of Hi A Hy, Hy A Hy, H; A H, and H; A H; A H; : and our problem is to
determine when all or some of these are good. Our primary interest, then, is
quite different from that of Lehmann [5], [6]. Where he was concerned with
theoretical aspects of the induced decision procedure, possibly for an infinite
family of hypotheses, we shall be concerned with the essentially practical problem
of using data to test a relatively small number of hypotheses which are of interest
in combination as well as individually.

2. Size and power of the induced tests. Let a denote the size of the test
of H; A H; induced by likelihood ratio tests against G of H; and H,, of sizes
a; and ay respectively. Then it is easily seen that & < oy + @2 . Moreover, if
these separate tests are similar, so also is the induced test of H; A H, and
o = max {ar, as}. Lastly if the component tests are similar and their test
statistics are independent, then @« = 1 — (1 — a1)(1 — @) . Whether or not
this last equality obtains, the preceding inequalities often enable us to pin down
« to within a reasonable interval, and the first of them always ensures that the
size of the induced test is not too large. Hence we may say that the size of the
induced test gives no cause for concern.

It is the power ‘of the induced test that may be questionable. Consider the
familiar example of linear regression on two concomitant variables z; and 2,
say, H; and H, being the hypotheses that the two regression coefficients 8, and
B: are zero. It is well known that it is ‘“‘dangerous” to test H; and H; separately
in case z; and x, are highly correlated. The reason for this is that the induced
test of H; A H, : 81 = B2 = 0 haslow power. We can illustrate this diagrammati-
cally for two general linear hypotheses, with 6 denoting the vector of expected
values of the observations, Q a linear space specified by G and w; and w; sub-
spaces of Q specified respectively by H; and H; . Suppose these subspaces are
such that there exist points of @ near both w; and w; but distant from w; w,
and suppose that the true ¢ is such a point, (Figure 1). It is apparent that, with
high probability, a likelihood ratio test of H; A H, against G would result in its
rejection, whereas the induced test would result in its acceptance. In other
words the induced test has low power at this 6, compared with that of a likelihood
ratio test of H, A H; against G of comparable size.

We shall now give this notion a more general expression. Let y =
(%1,%2, - , Y») denote a set of observations and suppose that their distribution
has probability density f(y, 8), where 6 = (6;,6y, ---,0,) is an unknown
parameter in R° . A general model G states that § ¢ Q, a subset of R°, and a
hypothesis H that 8 ¢  C Q. We shall write

Ly(H) = SUPbcw f(yJ 0)/Sup989 f(y, 0),

an unconventional notation which, however, proves useful in the ensuing dis-
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cussion. Further, if H; and H, state respectively that 6 ¢ w; and w., we shall
write

L,(H, I Hi) = SUPsew;nes f(Y, 0)/8UDbewy f(y, 0) = L,(H: A Hz)/L,(H,).

The random variable L(H) is the likelihood-ratio statistic for testing H against
G, and L(H; | H,) that for testing H; A H, against H; .

Now we can state in general terms what Figure 1 is really illustrating. Separate
tests of Hy and Hsy may induce a poor test of Hy A H, because it is possible that, for
some 8, with high probability, L(H,) and L(H,) are both “near 1”” while L(H, A H,)

s small.
ExampLE 1. In a 2 X 2 contingency table with probabilities {6.;} (7,5 = 1, 2;
> i 0:; = 1), consider the hypotheses

H1101.=02.=%; H220.1=0.2=%,

where 6;. = 61 + 0, and 6.; = 6;; + 62; . Suppose that the following results are
observed: ‘

482 33 . 515
3 482 485

485 515 I 1,000

We find that L,(H;) = L,(H:) = ¢ **°, while L,(H; A H,) = ¢ '™ . Now
if H, is true, —2 log L(H,) is distributed approximately as xi and the observed
value of this random variable is 0.900. Thus H, is a “most acceptable’’ hypothesis
when considered by itself. So also is H» . Hence separate tests of H; and H; of
conventional size induce acceptance of H; A H,. However, if H; A H, is true,
—2log L(H; A H,) is distributed approximately as x; and its observed value is
'28.354. Thus H; A H, is certainly not acceptable on the basis of a likelihood
ratio test, even of very conservative size.

This example illustrates exactly the same possibility as is represented diagram-
matically for the case of linear hypotheses in Figure 1. The true-6 is, in a likelihood
ratio sense, “near” both w; and w. but not “near” w;N w, .

We can now see what distinguishes situations in which the induced test has
reasonable power from those where it does not. It is possible for L(H; A H,) to
be much nearer 0 than min [L(H,), L(H,)]. If however these random variables
are jointly distributed in such a way that “proximity to 1”’ of both L(H;) and
L(H,) implies that L(H; A H;) is also “near 1", then the induced test of H; A H,
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cannot fail in respect of power as it does in the cases just considered; and it is
therefore a reasonable test.

These arguments regarding size and power extend to the case of three hypoth-
eses in the following way. So far as the induced tests of H, A H,, H, A H;
and H; A H, are concerned, there is nothing to add. As regards the size « of the
test of Hy A Hy; A Hjinduced by separate tests of sizes a; , a; and o3 respectively,
we may say

) a2+ a+as;

(ii) if the separate tests are similar, « = max {1, o2, a3};

(iii) if the separate tests are similar and the statistics L(H,), L(H.) and
L(H;) are independent, then & = 1 — (1 — 1) (1 — a2)(1 — a3).

The power of the induced test of Hy A Hy; A H; will be satisfactory if
L(H, A H, A H;) cannot be small when L(H,), L(H;) and L(H;) are all
near 1. This is clearly a requirement which is quite distinet from the require-
ments concerning the pairs (H,, H;), (H:, H;) and (H;, H,). However, it is
basically of the same nature and introduces no essentially new difficulties.

It is apparent that the problem we are considering does not admit an exact
solution. On the other hand we may look for situations where exact relationships
among the test statistics involved ensure that induced tests are reasonably good.
Such exact relationships arise naturally from consideration of nested tests, and
we now discuss these in order to motivate the introduction of a relationship of
this type.

3. Nested tests. The nested method of constructing tests for two hypotheses
H, and H, is appropriate when we are interested in one of them, H, say, only if
we have previously accepted the other (Scheffé [8], Lehmann [6]). Using likeli-
hood ratio tests we would proceed as follows. First, test H; against G using the
statistic L(H;). Then, if H; is accepted, test H; A H, against H; using the
statistic L(H, | H;). This method has recently been considered by Hogg [3]
whose primary concern is with the independence of the statistics L(H;) and
L(H, | Hy); and, for the case of linear hypotheses, by Anderson [2] who describes
a set of circumstances in which it is an optimal procedure.

These two tests induce a test of H; A H, against G and it is fairly obvious that
this induced test is reasonably good. We can demonstrate this in an economical
fashion as follows. First, if the sizes of the component tests are oy and a; then
the remarks concerning the size a of the induced test made at the beginning of
Section 2 apply with equal force here and, in addition, @ > as . Further, the
power of this induced test is rendered satisfactory by the relationship

L(H, A Hy) = L(H\)L(H, | Hy),

which ensures that proximity to 1 of the component test statistics implies
L(H,; A H;) also near 1. Referring back to Example 1, we note that
—2log L(H, | Hy) = 27.454, so that the nested method apphed to that example
would lead to firm rejection of H; A H,, a result which verifies the advantage
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of the test of Hy A H, induced by this method over that induced by separate
tests of H; and H, . We note, however, that the nested method fails to provide a
satisfactory test of H, against @, since, as in this case, it may result in firm
rejection of H,, when, as the test of H, against G shows, this is a perfectly
acceptable hypothesis. Thus nested tests by themselves do not provide a solution
to our problem. But they do provide a natural means of identifying certain
situations where the test of H; A H, induced by separate tests is satisfactory.
For if

(3.1) L(H,;) = L(H, l H,)

this test will share the desirable properties of the test induced by the nested
tests. More specifically, (3.1) means that

(3.2) L(H, A Hy;) = L(H,)L(H>)

and this is just the kind of relationship we are seeking which ensures that L(H,)
and L(H,) cannot both be near 1 with high probability when L(H, A H;) is
small.

When we apply the nested method to three hypotheses there are six possible
nesting orders. With the order H,, H,, Hs we test H; against G; then if H, is
accepted, we test H; A Hj against H, ; and finally if H, and H, are accepted we
test Hy A Hy A Hyagainst H; A H, . As before these tests induce a good test of
H, A H, against G; and they also induce a good test of H; A H, A H; because
of the relation

L(H, A Hy A H;s) = L(H\)L(H, | H,)L(Hs | H A H,),

which ensures that L(H; A H, A Hj) cannot be small when the statistics of the
component tests are all near 1. Again the test of H; A H; A H; induced by
separate tests will share this desirable feature if L(H,|H,) = L(H,) and
L(Hs I H1 A Hz) = L(H3), SO that L(H1 A H2 A H3) = L(Hl)L(Hz)L(Hs).

In the next section we shall investigate the nature of hypotheses which satisfy
the kind of relationship we have just introduced.

4. Independent hypotheses. If, for two hypotheses, the Condition (3.1) or
the equivalent Condition (3.2) is satisfied we shall say that the hypotheses are
independent because of the obvious analogy with independent events. The
immediate question that arises is: do such hypotheses occur in practice? In
fact they do, as we now demonstrate.

Suppose that H; and H, are hypotheses about essentially different param-
eters. More precisely, suppose that

(i) 0 = (¢1, ¢2), where ¢, = (61,0s, - ,0,;) and ¢z = (0541, 05142,
<+, 05 4s,) Where 8 + 82 = s;

(ii) w; is defined by restrictions on ¢; only (¢ = 1, 2);

(iii) f(y, 8) can be expressed in the form f(y, ) = g1(y, ¢1)92(¥, ¢2), where
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g1 and ¢, depend only on the variables indicated. Then it is not difficult to verify
that H; and H, are independent.

The most obvious practical situations in which independence of two hypoth-
eses is achieved directly by the mechanism just described are those where the
observations from two independent experiments depending on totally different
parameters are combined to form the set y, and the two hypotheses are about the
different parameters. Such situations have two important features: (i) the
hypotheses are independent: (ii) the statistics used for testing them, L(H))
and L(H,) also are independent. However these are quite distinct concepts and
so far as the nature of the induced test of H; A H, is concerned it is the first
which is of primary importance.

There are situations where this condition alone ‘is satisfied and, moreover,
where the independence of the hypotheses is disguised by the fact that the param-
eters which are naturally introduced to describe underlying distributions are
not those which demonstrate explicitly how this independence is achieved. For
this reason we state as a theorem the following result whose proof is straight-
forward.

TueoreEM 1. If there exists a 1 1 transformation from the parameter space
to an alternatwe parameter space o such that

(i) ' is a Cartesian product space Q1 X Qr , where @, = {6,} (v = 1,2);

(ii) H, imposes restrictions on 0, only (v = 1,2);

(iii) f(y, 6) can be expressed in the form

7(y,0) = g:(y, 61)g2(y; 63),

then H, and H, are independent hypotheses.

What this theorem says really amounts to this: if H; and H, are hypotheses
about different parameters and. if the observations yield separate discriminatory
information about these parameters, then H; and H, are independent. Put this
way the theorem demonstrates the intuitive content of the word independent.
In practice the authors have found that when hypotheses are independent (this
being discovered by direct calculation of the appropriate statistics), it is possible
to find a transformation of the parameter space satisfying the conditions of the
theorem: and they are convinced that the theorem does demonstrate the strue- -
ture of independence of hypotheses in most practical situations, that in fact the
stated conditions are almost necessary as well as being sufficient.

Exampre 2. In a 2-factor contingency table with probabilities {6;;} (1,' =
1,2, --,r;5= 1,2 , 8; Doi;0:;; = 1) and marginal probablhtles 0.

D ibij, 0. = > 0ii, cons1der the three hypotheses:

H, : the factors are independent, i.e., 8;; = 0:.0.;,

H, : the 6,.’s satisfy certain conditions,; '

Hj : the 0.,s satisfy certain conditions.

It is possible to verify by direct calculation that the following pairs of hypotheses
are independent: (i) H, and H,, (ii) H, and H;, (iii) H: A H, and Hj, (iv)
H, A H; and H,: In general it is not true that H, and Hj are independent, a
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fact which Example 1 has already implicitly demonstrated: However (v) if
H, is true, then H, and H; are independent. This is implied, for instance, by
(ii) and (iii) since -

L(H, A Hy|H\) = L(H, A H, A H;)/L(Hy)
= L(H,) L(H, | Hy) L(H; .| H, ~ H;)/L(H,)
= L(H, | Hy) L(Hs) = L(H, | H,) L(H; | Hy).

To demonstrate the applicability of Theorem 1, we consider first (ii) and
(iii), and we suppose that no 6.; is zero. Then we transform from the parameter
space {6} to a new parameter space Q' by

0:;/0.; = 0i;, ~ 0.5= 0.;.

IfQ = {67 = (611,012, -+, 0): 0 < 6;; =1, >.0i; = 1, eachj} and Q5 =
{60 = (81,02, +,0.):0<06;<1,2,;6; =1}, then® =9 X 9. The
transformatlon is clearly 1—1. Further H, imposes restrictions only on the
0:/s. In fact H, says: for fixed 7, o7, ;j is constant (= 6;.). H; A ‘H, also imposes
restrictions only on the 6;7s. H; imposes restrictions only on the 6.;s. And
finally 0;; = 6;; 0";, i.., the likelihood function factorises as required in the
theorem. Hence by this almost trivial transformation of the parameter space
.we can demonstrate the truth of (ii) and (iii). -

The transformation required to demonstrate the truth of (i) and (iv) is
obvious. Finally the transformation required to demonstrate (v) again is not
abstruse. For if H; is true, @ has dimension r + s — 2. The transformation
0;, =6;. 5 =1,2, ---,r)and 6.; = 0-; (j = 1,2, ---, s) may easily be seen
to satisfy the requirements of Theorem 1, as far as (v) is concerned.

There are three interesting points which emerge from Example 2. First, by
definition, independence of two hypotheses means that the likelihood ratio
statistic for testing one does not depend on whether or not we assume the other
to be true and so, if the:likelihood ratio test of given size for that one against G
is similar, this test is also unaffected by, what we assume about the other. In the
above example it is not surprising to find that a likelihood ratio test of a hypoth-
esis about one set of marginal probabilities is not changed by knowledge that
the factors are independent. At first sight it is more surprising to find that a
likelihood ratio test of independence of the factors is unaffected by, for example,
knowledge of the true marginal probabllltles associated with one factor. This
of course follows from the pairwise independences.just established.

The second point is more general. It follows from (i) and (iii) or from (ii)
and (iv), that

(4.1) L(H; A Hy A Hy) = L(H,) L(Hs) L(Hy)

~and consequently that separate tests of the three hypotheses induce a good test
of H, A H, A Hj;. But we cannot deduce’this directly from the nesting order
H, , H; , H, because in general we do not have L(H; | Hy) = L(H;) nor L(H, | H,
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A H;) = L(H,). This illustrates the point that, so far as the induced test of
H; A H; A H;is concerned it is (4.1) that is the crucial condition and not pair-
wise independences that lead to it: and it may be possible that the induced test
of H; A H, A Hjis good when none of the pairwise induced tests are. However
it does seem likely that in nearly all situations where (4.1) is satisfied there will
be pairwise independences among hypotheses which enable this result to be
derived from some nesting order. The authors have not met a counter-example.

Finally Example 2 raises the question of independence of more than two hypoth-
eses. Here the analogy with independence of events continues to be close. For
complete independence of three hypotheses we require four conditions:
L(H, A H,) = L(H,) L(H;) and the two other pairwise conditions; and also
L(H, A Hy A H;) = L(H,) L(H,) L(H;). In general no subset of these is
sufficient. (In Example 2, three of them are satisfied, but the fourth is not.)

There is an obvious extension of Theorem 1. which establishes sufficient con-
ditions for three hypotheses to be completely independent and we conclude this
section with an example illustrating its applicability.

ExampLE 3. Let the probabilities in a 3-factor contingency table, with factors
o,Bandybe{fin} (1 =1,2 -+, r;5=1,2 ---,8; k=1,2, -, t), where
all ¢’s are known to be non-zero. Consider the three hypotheses

H, : « is independent of 8 and 7,

H, : B is independent of v,

H; : the v marginal probabilities satisfy certain conditions. The intuitively
appealing result that these hypotheses are independent may be proved by a
simple transformation of the parameter space as follows. Let 0:/6.5 = 0ij,
0.54/0... = 03, and 6., =6, , 50 the ¢’s are all positive, ) 0i% = 1 for each
Jand k, >, 0i = 1 for each k and > 0 = 1. This establishes a 1-1 trans-
formation from the original parameter space to a new space which is a Cartesian
product space €1 X @5 X Qs , Q being the space of 6:;’s, @ that of the 6;;’s
and Q; that of the 6’s.

Now 0% = 0ij 651 0; , so that the likelihood function is expressible as a prod-
uct of three functions, one depending only on a variable in Q; , one on a vari-
able in and one on a variable in Qs . Moreover H; imposes restrictions on
elements of Q; only (¢ = 1, 2, 3). The extension of Theorem 1 then shows that
H,, H; and H; are independent.

6. Linear hypotheses with known residual variance. A discussion of the
problem with which we are concerned would be incomplete without considera-
tion of linear hypotheses, and it transpires that investigation of this case sheds
new light on the role of orthogonality in design. '

We suppose, then, that an n-dimensional vector y of observations is generated
by the model G: y = 0 + ¢, where ¢ is an observation on a N(0, ¢* I,,) random
vector and 6, a vector of means, lies in a subspace Q of R". A linear hypothesis
is one which states that 6 belongs to a subspace of Q. Suppose that H; and H»
are linear hypotheses which specify respectively the subspaces w; and w,, and
let Py, Py, P; and P;, be the matrix representations of the linear transformations
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which project R™ orthogonally on @, w; , w; and w; N w, respectively. Then if all
vectors involved are regarded as the column vector representations of elements
of R™ with respect to a fixed orthogonal basis, each P is symmetric as well as
being idempotent.

It is convenient for our purposes to consider first the case when o* is known.
Then it is not difficult to verify that —2 log L,(H;) = 3 (P, — P.)y/s* and
—21log L,(H, A Hy) = 4 (P, — Pp)y/s". Hence, in this case, H; and H, are
independent hypotheses, i.e., L(H; A H,) = L(H,) L(H,) if and only if

(5.1) Po—Pu=Po—P1+Po—P2.

We recall that Py — P; is the matrix representation of the orthogonal projector
of R" on wf , the orthogonal complement n @ of w, . The sum of two orthogonal
projectors is an orthogonal projector if and only if their ranges are orthogonal
and in this case the range of the sum is the direct sum of the ranges. From these
results it follows that (5.1) is true if andonly if wf 1 w7 so that we now have
established the following result.

TuaroREM 2. With the usual normal model when o* is known, the linear hypotheses
H, and H, are independent if and only if i L i .

Now this case of linear hypotheses with ¢° known has certain special features
of considerable importance in large sample theory and these are established in

TarorEM 3. With the usual normal model when o’ is known, pairwise independ-
ence of linear hypotheses implies that

(1) the hypotheses are completely independent,

(ii) thetr likelihood ratio test statistics are independent.

Proor. It is sufficient to consider three hypotheses. Suppose that they specify
the subspaces w;, we, w; ; then, by Theorem 2, they are pairwise independent
if and only if wf L w7, for each 7 and j.In this case it is not difficult to establish
that there exists an orthogonal transformation P and, writing ¢ = P9, a parti-
tioning [¢o , ¢1, - - -, b4] of ¢ such that

(i) G says that ¢, = 0,

(ii) H;says that ¢, = Oand ¢; = 0, (¢ = 1, 2, 3).

In addition, if z = Py and [z, 21, - - -, 23] is the partitioning of 2’ corresponding
to that of ¢’, then for 6 & @ it can be shown that f(y, 8, ¢°) is expressible in the
form

(5-2) f(y7 0, ‘72) = g4(z4, 0'2) iI=IO gi(Z.‘, i, 0'2)'

This factorisation in terms of the ¢’s demonstrates, by the extension of Theorem 1
to more than two hypotheses, the complete independence of H;, H, and Hj;,
when ¢® is known. The factorisation in terms of the 2’s, which are independent
random variables, demonstrates that, again when o is known, L(H;), L(H,)
and L(H;) are independent. The proof of the theorem is completed by the
remark that the above argument very obviously extends to more than these

hypotheses
By now it is apparent that there is a connection between “orthogonality of



564 J. N. DARROCH AND S. D. SILVEY

design” and independence of hypotheses. An experimental design is orthogonal
relative to a general linear model G and linear hypotheses H, , H,, ---, H, if,
with this design, the subspaces specified respectively by G, Hy, Hs, ---, H,
satisfy the condition wf 1 «f, all ¢ % j. Thus when ¢” is known, orthogonality
of design implies both independence of hypotheses and independence of their
likelihood ratio statistics. We are then dealing effectively with hypotheses re-
lating to separate independent experiments and the situation is ideal.

6. Linear hypotheses with unknown residual variance. We now ask: what
does lack of knowledge of ¢ cost us with reference to the above ideal situation?
The presence of an unknown o” in each of the g functions in (5.2) prevents our
concluding from this identity either that the hypotheses are independent or that
their likelihood ratio test statistics are; and it suggests that neither conclusion is
valid. Unfortunately this is so, as is readily verified—indeed it is well-known
that orthogonality in design certainly does not imply (when ¢ is unknown)
independence of the likelihood ratio statistics for testing the individual hy-
potheses: they all involve the same “residual sum of squares”.

But while we lose these desirable properties by not knowing ¢°, we do not
lose the characteristic of the orthogonal design which ensures that, for example,
good tests of H; and H, induce a good test of H; A H,. We recall that the main
function of independence of hypotheses is to prevent the possibility of L(H;)
and L(H,) taking values near 1 while L(H, A H,) takes very small values,
with hlgh probability. Orthogonality of design continues to prevent this even
when ¢” is unknown. Of course this is a generally accepted result, though it has
never been stated explicitly in the present form. The mechamsm by which this
prevention is achieved is demonstrated by the following argument, in which we
consider the test of H; A H, A H;induced by separate tests of three hypotheses
H 1, H 2 a,nd H. 3.

We have, in the notation of Section 5,

(Ly(Hy A Hy A H) V" —1 =4 (I — Pus)y/y' (I — Py)y — 1
=y'(I — Py+ P, — Py + Pp, — Pu)y/y -(I — Po)y — 1

_YU =Py |y (Pr—Pu)y |y (Pu— Py
y'(I'— Po)y y'(I — Poy y'(I — Poy

Now orthogonality of des1gn implies P, — Py, = Py — Py, and Pyy — Py =
Py — P;, because, in the o known case, it implies L(H, | H;) = L(H,) and
L(H; | Hy A H;) = L(H;), from which the matrix identities are easily deduced.

Also
Y (Po— P)y/y (I = Po)y = y'(I — Pi)y/y'(I — Po)y — 1= [L,(H)] ™" — 1.
Hence orthogonality of design implies \

[L(H, A Hy & H)" — 1 = X {[L(H)" — 1}

=1 .
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Thus if each of L,(H,), L,(H.) and L,(H;) is near 1, so also is L,(H, A H,
A H;). And so by likelihood ratio standards separate tests of H,, H, and H;
induce a test of H; A H, A H; of reasonable power.

While the above argument is framed in terms of three hypotheses it is clearly
a general one. It would appear to demonstrate in an unambiguous way just why
orthogonality of design is generally accepted as desirable. It also lends force to
the contention that mild departures from orthogonality are of little consequence,
though the question of how far it is possible to depart from orthogonality without
seriously affecting the powers of induced tests is one whose answer would involve
extensive computation.

7. Large sample theory. The theory of Section 5, as well as having theoretical
interest on its own account, is of considerable practical value from the large
sample point of view, because it is often possible to interpret large sample
problems as essentially linear problems.

Suppose that we have a large number n of independent observations on a
random variable (real or vector valued) whose distribution depends on an un-
known parameter 6 in R°. Let on = {6: hy;(8) = 0,5 =1,2, ---, r1} and
wy = {0:he; () = 0,7 =1,2, ---, 7y}, the h’s being well-behaved real-valued
functions and let H; be the hypothesis that the true parameter is in w; (7 =
1, 2). Usually, if the true parameter is not near either of these subsets (if, in
fact, its distance from w; is more than O(n™*), this will be so obvious that no
test is necessary (Wald [10]). So from the theoretical point of view we may
assume that @, the set of possible parameters, consists of w; 1 w: and points of
R’ near this set. This, together with consistency of maximum likelihood esti-
mates enables us to treat this large sample problem as essentially a linear prob-
lem with known variance matriz of residuals, in the kind of way indicated, for
example, by Lehmann [7]. In this way the question of independence of H; and
H, is translated into a question of ‘“local orthogonality’’, which may be treated
by a slight modification of the methods of Section 5 in which vectors involved
are regarded as representations with respect to a non-orthogonal basis of elements
of R°. We shall not go into details of this argument which uses fairly well-known
principles. It transpires that the crucial condition for large sample independence
of H, and H, is that

(7.1) H, B H, = 0, forevery §in w;N w,.

Here H; is the s X r; matrix of partial derivatives at  of the functions h,;,
j=1,2,---,r; (¢ = 1, 2), and B is the information matrix for 6. Because of
the connection with linear theory, ¢° known, large sample independence of
H, and H, implies large sample independence of their likelihood ratio test statis-
tics also. We note that if H; and H, are independent for all sample sizes and if,
further, the conditions of Theorem 1 are satisfied, then (7.1) is easily seen to be
satisfied for every 6 in Q.

In a recent paper Aitchison [1] has given a.fuller account of this aspect of large
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sample theory from a different point of view. In this paper he introduced the
notion of the separability of two hypotheses with respect to any method of test
construction. Now separability with respect to the likelihood ratio method is
what we have called independence. However Aitchison was mainly concerned
with large sample likelihood ratio separability and the reader is referred to his
paper for further details relating to Condition (7.1)."

We now digress briefly from strict likelihood ratio tests to make two remarks
about the “partitioning of x°” when testing hypotheses about multinomial
samples (see Lancaster [4], for example). Because the x* statistic for testing H
is asymptotically equivalent to —2 log L(H), it follows that if H, and H; are
independent in large samples then the x® statistic approximately partitions
additively. On the other hand, if H, and H, are independent in small samples
it does not follow that the x” statistic for testing H; A H, against G is expressible
as the sum of the x* statistics for testing H; and H, against G. This is a particu-
lar case of a more general result which is readily demonstrated, namely that the
Lagrangian multiplier statistic (see Silvey [9]) does not usually partition under
the conditions of Theorem 1.

8. Concluding remarks. Up to this point we have concentrated attention
on distinguishing the characteristics of situations where good tests of H; and
H, induce a good test of H; A H,.We have avoided the question of what to do
if we are not in such a desirable situation and we wish to have good tests of all
three hypotheses. The trouble is apparent: the induced test must be abandoned
and there will be parts of the sample space in which a direct test of Hy A H.
is not compatible with the tests of H; and of H,. Clearly we must in general
modify our demands for, in asking for a four-decision procedure which produces
good tests of H, , H; and H; A H, (according to our definition of good), we are
demanding more information from the experiment than it is capable of provid-
ing. (We exclude the nested situation from these remarks because, if we are
interested in H; , say, only if we have previously accepted H, , then only three
decisions are involved, namely H, , H; A H;, H; A i)

The incompatibility which characterises dependent hypotheses occurs at those
points of the sample space which are in the acceptance regions of H; and H; and
in the rejection region of H; A H,. An obvious compromise of the four decision
procedure is to assign these points to the hypothesis (H; A H)v(H, A Hy).
This is the practice in the regression problem of constructing as simple a pre-
dictor as possible when it is found that one of two correlated variables z: , 2:
must be included, but it is not clear which. The choice between H; A H, and
H, A H, is then made either arbitrarily or on the basis of some non-statistical
consideration.
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