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1. Introduction.

1.1 Completely and incompletely specified linear regression models. Regression
analysis considered here will be concerned with the fitting of linear models for
prediction and the analysis of such fitted linear models. Given the specification
that the data arose from an investigation adequately represented by a linear
model with one predictand (dependent variable) and a definite number of pre-
dictors (independent variables), statistical theory provides routine mathemat-
ical techniques for obtaining estimates of the population regression coeffici-
ents. With the further assumption that the érrors are independently normally
distributed with mean zero and constant variance, statistical theory provides
additional routine mathematical procedures for testing hypotheses and set-
ting confidence intervals.

In the application of the theory of regression analysis to specific data, there is
often some uncertainty as to the exact number of predictors to include in the
specification of the linear model. Of course, there may also be some uncertainty
as to whether the most appropriate specification model should be linear in form,
particularly in some new area of research. In this study we shall limit the dis-
cussion to linear specification models or to such models which, upon appropriate
transformation, may be fitted and analyzed as linear models. In some cases an
assumed linear model may provide a good approximation of the true non-linear
population model if only a small range of values for the predictors is of interest.
We shall be dealing here with a special kind of “incompletely specified models”
in the sense that the exact number of predictors to be included in the final
fitted linear regression model will be determined by some decision rule based on
the data of the investigation.

R. A. Fisher [8] pointed out as early as 1922 that one of the fundamental
problems of theoretical statistics is the specification of an appropriate model
for an investigation. Even though in more recent times non-parametric or
distribution-free statistical inference procedures, not requiring a model specifi-
cation, have been and are being considerably extended, nevertheless most appli-
cations of statistics in scientific research are still parametric in nature.

In introducing the use of analysis of variance techniques in experimental
design situations, Fisher stipulated that for every well-designed experiment
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there can be only one correct analysis and test(s) of significance are completely
determined before the experimental results are available. In this case we may
refer to an analysis as being determined by a completely specified model. Pre-
sumably the advocates of this philosophy of inference might be expected to
extend it to regression analysis, since it is well known that such analysis may be
formulated in terms of analysis of variance procedures. However, in the use of
regression analysis in experimental design, situations frequently arise in which
the model is not completely specified, e.g., in deciding what degree polynomial
to fit in a response surface study. Also, with the wider application of regression
analysis, particularly in observational (non-experimental situation) investi-
gations, the exact number of predictors in the linear model is often incompletely
specified.

A completely specified linear regression model, appropriate to an investigation,
may be determined by the investigator in some cases from theoretical consider-
ations in the substantive field and/or from considerable experience with data
from previous similar investigations. In many cases, however, particularly in
new areas or fields of investigation, the investigator may turn to some objective
specification decision rule to supplement scarce a priori theoretical knowledge or
experience in the particular field of investigation or as an aid in determining an
appropriate model. For the most part, such specification decision rules have been
selected on intuitive grounds and have involved the use of preliminary test(s) of
significance without proper consideration of distortion (extent of bias and actual
versus nominal probability levels) of subsequent inference with regard to the
final fitted model.

1.2 Related papers. The problems to be discussed here fall in the general class
of problems designated as problems of incompletely specified models involving the
use of preliminary tests of significance. In the discussion presented here the pre-
liminary tests of significance are sequential in nature. Previous related papers in
this general area include studies by Banecroft [1], Mosteller [16], Kitagawa [12],
[11], Paull [17], Bechhofer [2], Bennett [3], [4], Huntsberger [10], Bozivich, Ban-
croft and Hartley [6], Larson [13], [14], and McCullough [15]. These studies are
concerned primarily with basic investigations of the consequences of the use of
certain decision rules involving preliminary tests of significance as aids in de-
termining appropriate model specifications and effects on subsequent inference.
It would seem appropriate to designate the class of all such problems of model
fitting and subsequent inference as the analysis of incompletely specified models.
In such investigations one is interested in such characteristics or properties as
the magnitudes of specification bias and mean square errors for estimation
problems; and effects on Type I and Type II errors for tests of the main hy-
potheses. It would appear most important to both theoretical and applied
statisticians to have these characteristics and properties spelled out even though
they may involve nuisance parameters and hence not be directly useable in the
inferential process in a simple manner (e.g., as would be a (-test, etc.). Such
studies provide insight as to how well specification bias and mean square errors
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are controlled by the particular decision rule considered under certain assumptions
regarding the magnitudes or range of magnitudes of the nuisance parameters
involved.

1.3 Objectives of the present study. Many different “objective” rules and methods
of procedures have been suggested for determining, in situations of uncertainty,
the number of predictors to be included in the final fitted linear regression model
(see Summerfield and Lubin [20], Fireman and Wadleigh [7], Paperzak [18], and
Hollingsworth [9]). Two rules that have proved popular are the following:

(A) The experimenter has measurements available on the & + 1 variables
(y, 21, 22, 25, - -+ , x) . He wants to predict the values of y on the basis of the
values the z;’s will assume. He arbitrarily decides to test that the coefficient of
zx is 0 (i.e., zx does not need to be in the equation). If he accepts this hypothesis
he deletes z. and tests that the coefficient of 2;_; is 0. If he accepts the second
hypothesis he deletes z;_; from the prediction equation and tests the coefficient
of ;s to be zero, etc. He continues deleting variables in this manner until he
rejects a hypothesis that a coefficient is 0, or until he reaches the coefficient of
z, (r < k), then retains in his prediction equation the variable corresponding
to that coefficient or that of z, and all other variables whose coefficients he has
not yet tested. Thus, he is acting as if he has an a priori “order of importance”
ranking of 21, x5, - -+, 2; and is deleting the “least important” variables, in
order, from the'end of this equation.

(B) The experimenter has measurements available on the & + 1 variables
(Y, 21, 2,25, -+, Z). He also assumes that the first 7 (r < k) of these k vari-
ables are necessary for prediction of y. He then tests that the coefficient of z,,, is
zero. If he rejects this hypothesis he adds z,.: to the list of necessary variables
and tests that the coefficient of z,.» is 0. If he rejects this second hypothesis he
adds z,.» to the list of necessary variables and tests that the coefficient of z,.s is
0, etc. He continues adding variables to his prediction equation in this manner
until he arrives at a variable whose coefficient does not differ significantly from
0, at which point he does not add that variable to the equation, nor does he add
the variables whose coefficients he has not yet tested. Thus, in this case, the
experimenter is beginning with a “basic core” prediction equation and adding
on variables in order of importance.

Both of the above rules assume that the investigator has independent knowl-
edge, in advance, of the “order of importance” of the predictor variables. In
many cases such knowledge may be available to the investigator from theoretical
considerations in the particular substantive field and/or from previous experience
with similar data. If such is not the case, the investigator could conduct a pre-
liminary study with independent data, or use a subsample of the available data
to decide independently the “order of importance’ of the predictor variables.
One such ordering from independent data could be constructed by calling the
variable (z; , say) with the highest simple correlation with y the most important,
the variable (z;, say) with the highest partial correlation with y and z,, the
second most important, etc. (See Schultz and Goggans [19]).
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The objective of the present study is to provide a means of examining criti-
cally the consequences of the decision rules mentioned in (A) and (B) for de-
termining the number of predictors to be included in the linear regression
model, with regard to the bias and mean square error of the estimate of the
predictant y. This will be accomplished by deriving formulas for the bias and
mean square error of the estimates of the predictant y for both of the two rules
mentioned, assuming normal theory and that ¢” (the population variance of the
y’s) is known (also assuming that an order of importance and hence the order
of testing of the predictor coefficients is decided independent of the sample
values used in the analysis of the incompletely specified regression model). The
bias function in both cases turns out to be a linear function of the ‘“doubtful”
z;values (¢ = r + 1,7 + 2, - - - , k). While future publication of more extensive
tables is planned, as an illustration a few tabular values of a realistic range of
the nuisance parameters are given in the appendix, permitting numerical evalua-
tion of the two bias functions and the accompanying mean square errors for these
particular cases and for any assumed values of the “doubtful’’ z.’s. The integrals
defining the bias for the case of o” unknown are displayed, but no closed form has
been found for them.

2. Procedure A. An experimenter has available » measurements on k + 1
variables (y, %1, 2, - -+ , 2x) and is interested in which of the kz-variables will
be necessary in a linear model to predict values of y. He arbitrarily decides to
test that the coefficient 8, of x; is zero. If he rejects this hypothesis he uses
Ty, &2, -+, o to predict y. If he accepts Bx to be zero he tests that 84—, the
coefficient of xx—; , is zero. If he rejects his second hypothesishe uses z; , 2z, -« - ,
211 to predict y. If he accepts Bi— to be zero he proceeds to test that the coeffi-
cient By_s of xx—s is zero, ete., continuing in this way until he reaches the variable
2, . At this point he simply stops testing and retains all the variables whose
coefficients have not been tested. (Thus the experimenter is acting as if he had
a priori knowledge that 'z, , z2, - -+, @, are necessary in predicting y and that
Tr41 18 “more important” than z; .)- Thus, mathematically, we have the following
situation: (The estimator of the true value of y used in any particular case is
denoted by »*, the subscript on y denotes the number of independent variables
included in the fitted linear regression equation.)

Event u* = Situation

A; yr—: Reject H; : Br—; = 0; Accept H;y : Br—iqa = 0; - -+
Accept H; : Bi—1 = 0; Accept Hy : B = 0.
i=0,1,2 -, k—r—1.

Ap—r y»  Accept Hi vy B = 0; Accept Hy—rz : Brqe = 05 -+
Accept H; : Br—1 = 0; Accept Hy : B = 0.

Hence we see that we have a problem concerning model specification, i.e., the
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data itself is used to tell us which of these £ — r + 1 models we should use in
predicting values of y.

2.1 Ezxpected value of y*. Assume the true model generating our data is y =
XPB + e, where y is the n X 1 vector of observed y values, X is the » X k matrix
of z-values, e is the » X 1 vector or error components. We further assume e is
multivariate normal with Ee = ¢ (the null vector) Eee’ = ¢’I, and that X'X =
I (the results for the nonorthogonal case can be derived very easily from the
orthogonal situation: see Section 4 for proof). The orthogonality assumption
plus the assumed distributional properties of e are sufficient for the numerators
of our tests of the 8’s (¢ = r 4+ 1,r 4+ 2, .-+ , k) to be independent. Let us first
look at the situation in which the error variance ¢? is known, then turn our atten-
tion to the case with ¢2 unknown.

With ¢® known the test criterion for the hypothesis 8; = 0is b/o* (¢ = r + 1,
r + 2,---, k). The corresponding hypothesis is rejected if bi/oc* = A (the
100a% point of the x; distribution), and accepted otherwise. Then the expected
value of y* obviously is By* = E(y: | Ao) P(Ao) + E(ys—1 | A1) P(41) + -+ +
E(y, | As—y) P(4k—,). Further

E(y:| Ar-i) P(Ak—i) = [Bo + B + -+ + Bicaina + 2B (b: | Ar) |P(As_y)
forc =r+1,r+4+2,:--,kand
E(y, | Ar—r) P(Ai—r) = [Bo + Bu1 + Boz + - -+ + B, ]P(As—r)

since all the estimators b; are mutually independent. Next let us define

Po=2esp{— £ O+ /o) sinh (8:00/2)

—\—B; /o 00 N

H, = {f + }[1/(2#)’] exp [—2°/2] de,
0 M—g; /0

t=r+1,r+ 2 ---, k Note that both F, and H; are functions only of A

and B;/0. It follows from the assumptions above that b, is distributed normally

with mean 8; and variance ¢*, 7 = 1, 2, 3, - - - , k and therefore

E(bklAO)P(AO) = [0/(2’"')*] Fr+ B Hy

k

E(bi—i|A:)P(A;) = II [1— H{lo/@r)'| Fizi + Bui Hisi)

J=k—i+1
i=1,2 -, k—r—1.
Making use of the following identities j—o P(A;) = 1,0 10 P(Arr_;) =
Hf,,=,+,~+1 [1 — H,] and combining various terms we can now write
k k

E(*) = 6o+ ; Bizit D, H (1 — H){lo/(2m)'| F; — 8:(1 — H)},

1=r+1 J=1+1
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where[[5—¢s1 (1 — H;) = 1. If we now define
bias = By* — [Bo + D =1 Bittd]

we have

bias = Z x; H (1 — Hj){lo/(2m)YIF;: — B:(1 — H))}

i=r+1 =i+

or

2:11 i ,LI (1 — H){{1/(2e)'1F: — (Bi/a)(1 — H)}.

This function can now be fairly easily tabulated, the coefficients of x,’s being
dependent only on the parameters 8;/c,2 = r 4+ 1,7 + 2, - - - | k, and the signifi-
cance level « of the preliminary tests of hypotheses

Although a publication is planned of more extensive tables to be used in
finding the coefficients of the x,’s necessary to evaluate the bias/¢ function for
Procedure A, Table I (e = .05, A\ = 3.84), Table IT (a = .10, X = 2.71), Table
III (a = .32, A\ = 1), given in the appendix, provide a means of finding such
coefficients for realistic values of 8./a, if we have only two ‘“doubtful”’ predictors
and for the selected values of the significance level « of the preliminary tests of
significance. To evaluate the bias/o function simply enter the desired Table
with the assumed values of 8;/¢ and Bi_1/o and read off the coefficients of z; and
21 . Then for whatever values of x; and 2, we wish to predict y we need only
substitute them in the bias/c equation. Since the b,’s are normally distributed
with mean 8; and variance o°, then a realistic range for 8;/c is from —3 to +3.

ExampLE 1. Given a linear regression model with eight predictors of which
z7 and zs are “doubtful”’. Procedure A is to be used to decide whether or not to.
retain them, first testing 8 and then testing 87 (if necessary) to be zero, at the
a = .10 significance level. Then no matter what the outcome of the test(s), we
find the coefficients of xs = x; (the first predictor variable tested for retention)
and 27 = 21 (the second one tested) from Table II. Suppose we wish to predict
y with 7 = —1 and 23 = 1, assuming Bs/c = Bi/d = 3, B1/c = Bra/c = 2,
then

bias/c = (—.193) (—1) + (—.466)(1)
= —.253
while with 8/ = %, Bk—1/oc = 3 we have
bias/c = (—.087)(—1) + (—.262)(1)
= —.135.

(Note that all tabular values are negative for positive values of the Bi/o, 7 =
k — 1, k.) If we wish to evaluate the bias/s function with one or both of the
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(8:/0)’s(i = k — 1, k) negative, then the coefficient of the corresponding
z:(i = k — 1, k) is reversed in sign; i.e., if Bz/¢ < 0, the coefficient of zx from
the table is positive; similarly if Bi—i/oc < 0, the coefficient of zz_; from the
table is positive no matter what the value of 8/c.)

Next let us consider the expected value of the estimator * when o’ is un-
known. This case differs from the preceding only in that the test criteria for
the various hypotheses are different. To test that 8; is zero we would compare
bi/v with A, the 100a% point of the F distribution with one and n — &k — 1
degrees of freedom (v is the mean square due to deviations from regression).
We make the same assuinptions concermng linearity of the model, normahty
of the errors, and orthogonahty of the z’s as were made in the case with o’
known. The samme notation is adopted for the various estimators of y that might
be used (i.e., y* may be yi, ys—1, - - - , or ¥,) and for the events corresponding
to the various results of the hypotheses tested. v, of course, is distributed as

[0*/(n — k — 1)]xa—t—1 , and its distribution function will be called simply f(v).
The level of significance for each of the tests is again set at a. Equatlons (1),
(2), (3) and (4) apply here as well as to the case above with o’ known. The
difference between the cases becomes apparent when we try to evaluate the
terms of the form E(b; | Ax—1) P(As—1).

The term E(by | Ao)P(A4) has previously been evaluated by Larson [13].
For the next term to be evaluated we have

E(bj— | 41)P(4,) = ffﬂ b1 N (bis 5 Bz, )N (by 5 Bi, 0°) -f(v) dby—y dby db,

where R is the region bi/A < v < biy/A, |bx| < |bs—i| - The last specification of
R is implied by the first. The integration on v can be handled very easily with
some simple restrictions on the sample size. After completing this integration,
however, we are still left with the problem of evaluating a double, noncentral
normal integral, where the limits of integration for one variable inescapably
involve the second normal variable. So far it has not been found possible to
express this double integral in closed form. The other integrals involved in the
evaluation of Ey* will include similar integration difficulties, so no closed form
is presented for this case.

The integrals involved in Ey* above could be evaluated by numerical methods,
but such an undertaking would appear to be of a very complex nature.

2.2 Mean square error of y*. The same notation introduced previously shall
again be used here The only new calculation involved in evaluating the mean
square error of y* is to compute £ (y*)®. Here we shall be concerned only with
the case o° known, anticipating the fact that E (y )? will lead to the same in-
tegration difficulties encountered previously with ¢ * unknown.

We have

E(y*)’ = E(yi | A P(Ao) + E(yiy| 40 P(4))
+ o 4 By | Ar) P(4i).
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Expanding these terms we have
1—1 2 1—1
B 40P = (3 + Zgym) + o (10 + 5 20)
j= Jj=

i1
+ 2 <Bo + ; B; xj) E(b; | Ap—i)x: + E(b% IAk—z)xf] P(Aw-)
i=r 4 Lr42 -,k
7 2 T
E(y:| Avr) P(Arr) = [(/30 4 ; Bi x,~> + 7 (1/n + Z_‘i x2>] P(Ai-).

Thus the only new expectations to be evaluated are those of the appropriate
squares of the regression coefficients.
Defining G; = 2exp {—%(A + B/d")} cosh (B:(\)¥/0), ¢ = r + 1, r + 2,
, k, and applying integration by parts we find

E(by| Ao)P(4Ao) = o*(\/27)iGy + [o/(2m)B Fi + (¢ + B Hy,

E(b} | Api) P(As—i) = H [1 — Hl{’(\/2r)G: + [0/ (2r)"18: F:

=i+
+(0' +33)H1} i=1‘+1,7’+2,"',k—1,

where F; and H; are as defined in Section 2.1. Combining these terms and making
use of the identities mentioned earlier we have

* k
mean squize error y- - _ <l + ; xf)

+2_Z+x{ﬁ W}(Zﬁ’ )L 0t~ A

The (mean square error ¥*)/o° was calculated from the above formula for the
two parts of Example 1 in Section 2.1 and found to be 1/n + x4+ 2.698,
1/n 4+ i + 2.012, respectively.

3. Procedure B. An experimenter again has available » measurements on
k -+ 1 variables (y, 1,22, - - - , &) and is interested in which of the k z-variables
will be necessary in a linear model to predict values of y. He arbitrarily decides
to test that the coefficient 8,41 of x,4; is zero. If he accepts this hypothesis he
simply uses x;, %2, - - -, %, to predict y. If he rejects this hypothesis he tests
that 8,42, the coefficient of x,.s, is zero. If he accepts this second hypothesis
then he uses x; , o2, - - - , Z,41 t0 predict y. If he rejects this second hypothesis
he tests the hypothesis that 8,35, the coefficient of x,.s, is zero, etc. He con-
tinues adding variables to his model in this way until he either finally accepts
a hypothesis and stops testing, retaining all the variables he found to differ
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significantly from zero in addition to z; , s, - - - , z,, or he finally reaches 8 and
finds it to differ significantly from zero as well and uses all k variables to predict
y. (The experimenter again is acting as though he had a priori information that
ranks the variables in order of importance.) Mathematically we have the fol-
lowing (again the estimator used in any particular case is denoted by y™* and
the subsecript on y denotes the number of independent variables included in the
estimator).

Event y* = Situation

A; Yrei Accept H; : Bryiya = 0; Reject H,_y : Brys = 0; - - -
Reject Hy : Bry1 = 0,
1=0,1,2,---,k—r—1,

Ai_r yr  Reject Hyry : B = 0; Reject Hy—r—z : Bt—q = 0; - - -
Reject Ho : ﬁr+1 = 0.

Thus we have a problem of model specification; i.e., the particular model decided
upon is the result of a series of results of testing hypotheses.

3.1 Expected value of y*. The same assumptions concerning the linearity of
the model, the distribution of the errors and the orthogonality of the z-vectors
are made here as were made in Section 2.1. A slight alteration in the proof
given in Section 4 illustrates that the expected value or bias of y™* for the non-
orthogonal case can easily be derived from the orthogonal situation. The ortho-
gonality assumption is sufficient for our testsof the 8;’s (s = r + 1,7+ 2, - - - , k)
to be independent. We first look at the situation with ¢® known. The test cri-
terion for the hypothesis 8; = 0is b3/ 6 = r + 1,7 + 2, - - - , k). This quan-
tity is compared with A, the 100a % point of the xi distribution. Then
Ey* = E(y, | A)P(Ao) + E(Yrna | A)P(4) + -+ + E(ye | Ax—r) P(As)

?

and
E(y; | Ai—r)P(Ai—r)

= [B + ;ﬁjx,- + _ZJrlx,,bE’(bm[Ai_,)]P(A,-_,),i —r41,r4+2 -,k

Adding these expectations together, we find

k—r

Ey* = By + ; Bx: + x,+1j;1E'(b,+1‘]A,-)P(A,-)

k—r

+ 42 szE(bm |A)P(Ay) + - + xB(bi| Aier) P(Ar—r).

Again b, is distributed as N(b; ; 8, a),1=1,2 -,k so

k—r

; E(br+1 l Aj)P(Ai) = _(_éf@ Fr-l—l + Br1 Hr+1 )
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k—r 1—1

5 B0 AP =TT Ha| 2ot o],

J=t—1r m=r+
t=r+2r+ 3, ---,k, where F, and H; are as defined in Section 2.1. Thus
BO+Zﬁixt+Z szHl: iF +ﬂz %]
i=r+1 =r+1 (2 )

where H,-=,+1 H; = 1. Defining bias/c as in Section 2.1, we find

i—1 7
bias/o = Z x,[ F: [I H; - ( H H,):I
S L@oY o Jor1
The coefficients of the z.’s in the bias/o function are fairly easily tabulated and
depend only on the values of the (8:/0)’s and the level of significance a, as
they did with the preceding rule.

Although it is planned to include in the publication mentioned earlier more
extensive tables to be used in finding the coefficients of the x.’s necessary to
evaluate the bias/s function for Procedure B, Table IV (o« = .05, A = 3.84),
Table V (e = .10, A = 2.71), Table VI (a = .32, A\ = 1), given in the appendix,
provide a means of finding such coeflicients for realistic values of 8;/0, if we
have only two “doubtful”’ predictors and for the selected values of the significance
level « of the preliminary tests of significance. To evaluate the bias/s function
simply enter the desired Table with the assumed value of 8:/c and 8_;/o and
read off the coefficients of x; and z;_; . Then for whatever values of z; and x;_;
we wish to predict ¥ we need only substitute them in the bias/c equation. Again,
since the b,’s are normally distributed with mean B; and variance ¢72, then a
realistic range of 8;/c is from —3 to +3.

ExampPLE 2. Given a linear regression model with eight predictors of which
z7 and xg are “doubtful.” Procedure B is to be used to decide whether or not
to retain them, first testing 8; and then Bs (if necessary) to be zero at the o =
.10 significance level. Then no matter what the outcome of the test(s), we find
the coefficients of x7 = x;—; (the first predictor variable tested for retention)
and zz = x; (the second one tested) from Table V. Suppose we wish to predict
y with z; = —1 and x5 = 1, assuming 8;/c = Bi_1/oc = 2, Bs/oc = Bi/o = §,
then

bias/o = (—1)(—.345) + (1)(—.825)
= — 480,
while with 8;/0 = Bi_1/0 = 3, Bs/c = Br/c = % we have
bias/s = (—1)(—.101) 4 (1)(—.283)
= —.182.

(Note that, as for Procedure A, all tabular values are negative for positive
values of the (8;/a)’s (¢ = k — 1, k), for Procedure B. If we wish to evaluate
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the bias/e function with one or both of the (8i/a)’s (i = k — 1, k) negative,
then the coefficient of the corresponding z; (+ = &k — 1, k) is reversed in sign;
ie., if Bx_1/o < O the coefficient of z;—; from the table is positive; similarly if
Br/oc < 0, the coefficient of z; from the table is positive, no matter what the
value of Bi_1/0.)

In considering the Ey* with ¢* unknown the same difficulty is encountered
here as was mentioned in Section 2.1. That is, the expectation can be expressed
in terms of integrals but the integrals can not be expressed in closed form. These
integrals again could be evaluated for particular cases with the aid of numerical
integration, but the resulting tables might not justify the necessary expenditures.

3.2 Mean square error of y*. The same notation introduced previously shall
again be used here. The only new calculation involved in evaluating the mean
square error of y* is to compute E(y*)?. Here we shall be concerned only with
the case o° known, anticipating the fact that E(y™)® will lead to the same in-
tegration difficulties encountered in trying to evaluate Ey* with ¢° unknown.
We have

E(y*® = E(yr | A)P(4o) + E(gin | 4) + -+ + E(yi| Aeer) P(As).

Expanding these terms we have

[(ﬁo + ;1 B; x)2 + (l/n + ;1 x")] P(4o)
B2 4P ={(50+ B puzn) + 7 (10 + 3 22)

i

+2 <Bo + g_jl B xm> ,Zl z; E(b; | Air)

J=r+

E(yf | Ao)P(Ao)

1 i—1 ,
+2 2 Y @an B(bi| Ary)E(bn | Aiy)
J=r+’2nénj=r+1

j=r+1

+ Z x,E(bZIAH)}P(A,_,) i=r+1,r+2 -k

Essentially, then, the only new integrations are those involving the expected
value of the squares of the regression coefficients. These are evaluated exactly
as was done in Section 2.2 and will not be repeated. Combining terms we find
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The (mean square error)/ o was calculated from the above formula for the two
parts of Example 2 in Section 3.1 and found to be 1/n -+ Siaar + 2.029,
1/n + X im1a: + 1.950, respectively.

4. Non-orthogonal Cases. All the derivations presented in Sections 2 and 3
made use of the assumption that the independent variables z;, z3, -+, 2%
are orthogonal. It is quite easy to prove, using essentially the algebra of the
canonical form, that the bias and mean square error functions for both procedures
are independent of the orthogonality assumption.

In a given non-orthogonal case, a reparametrization of the model, consisting
of linear combinations of the values of z;, 22, - -+ , 2 and the “inverse” linear
combinations of the parameters 8;, 82, - -+ B, will suffice to transform to a
new set of zi variables (z1,s, -+, zr) and a new set of parameters
(B, Bs, -+, Br) such that the orthogonality assumption is satisfied. Then,
for any particular values of the z.’s, say ®y, &, - - , Zr , With such a trans-
formation we have that Z ZiBi = Z TioBi , Z Zioh: = E Tighi , Where i , Bi
and b; are the corresponding transformed values. Obviously, then, since the
bias and mean square error functions depend on the z.’s, 8:’s and b.’s only through
such sums of products, both functions remain invariant under the orthogonalizing
reparametrization. 4

5. Discussion of bias and mean square error functions of the two procedures.

5.1 Evaluation of the bias functions. We wish to use the results obtained in
this study to determine how serious the bias is for Procedure A and Procedure
B. Further, if possible, we would like to know whether the bias for either or
both of the two procedures will be compensated for by a reduced prediction
error.

Let 6.4 and 65 represent respectively the bias/¢ function for Procedure A and
Procedure B. As pointed out earlier the coefficients of the zi’s (¢ =r + 1,
r+2,---,k) in both 8, and 8z are functions only of the parameters Bi/a,
(t=r+1,r+2,---,k) and the significance level a (or A, the equivalent
100a:% point of the x* distribution). Although the Bi/o, (1 =r+ 1,7+ 2,
.-+, k) are generally unknown, as mentioned earlier, it is unlikely that these
values will lie outside the range of —3 to +3. Hence, more extensive tables can
be prepared of the magnitudes of the coefficients of the corresponding z:’s of
64 and 65 for —3 = B:/¢ = +3 and varying values of « or A\. Additional tables
are planned for a later publication.

However, making use of the tabular values presented in this paper and those
additional values in Larson [13] (the tables in Larson [13] present bias co-
efficients for 4 “doubtful” predictors, significance levels of & = .32 (A = 1) and
a= .05 (A = 3.84) in addition to @ = .10 (A = 2.71), and B:/c = 3(})3)
it is found that all coefficients in both bias functions increase as a decreases from
.32 t0 .05. The individual coefficients vary in different ways as their corresponding
(B:i/)’s increase in value, but generally increasing values of the bias coefficients
corresponds to 8;/c assuming the values %, 1, § or 2 with a decrease in the bias
coefficient as its 8:/o continues to § and 3 in magnitude.
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With = .32 or .10 and assuming up to 4 “doubtful” predictors the co-
efficients in 8, are in every case smaller in magnitude than those for the corre-
sponding z, in &5 (for the values of 8;/s considered). With a = .05, the relative
sizes of the two seem to fluctuate but still the coefficients for 6, are generally
smaller than those for 6, .

Additional information may be obtained from limiting values. If all 8;/c
(f=r+4+1,r+2, - k) were actually zero, then 8, and 85 would be zero and
the predictant * would be unbiased for Procedure A or Procedure B. If we set
A = 0, corresponding to always rejecting Ho and thus always using all % pre-
dictors, we again find 6, and 85 to be zero. If we take the limit as A — o, corre-
sponding to always accepting each hypothesis and thus always using only the
first r independent variables,” we would find §, and &, approaching
— > ki1 (Bi/o)x: , the negative of the terms which would always be ignored
(here the B; are divided by o to be consistent with the definitions of 6, and 65).

Considering only the magnitude of the bias functions, and the particular
tabular values considered for B;/oc (i =r+ 1,74+ 2, ---, k) and «, it would
appear that Procedure A would be preferred to Procedure B for predictions
involving the same set of z.’s of like sign. This appears in contradiction to the
“practical” recommendation to use Procedure B always, since it may reduce the
computing time, i.e., since Procedure B tests for adding additional predictors it
provides positive information or terminates at any step beginning with the first.

5.2 Evaluation of the mean square error functions. Let v5 and v5 represent
respectively the (mean square error) /¢” functions for Procedure A and Procedure
B. Now, some information may be obtained from limiting values. For A = 0
(corresponding to always rejecting all the hypotheses and hence always using
all k predictor variables), v% and v5 reduce to (1/n + 2 s ). On the other
hand in the limit as A — o« (corresponding to always accepting all the hypotheses
and thus always using only the first » predictors), v4 and ~% reduce to
(1/n + 235 ad) + (X (Bi/o)z:)™.

As mentioned above, v4 for the two parts of Example 1 is equal to 1/n +
ZLl z7 + 2.698 and to 1/n + 22_1 z7 + 2.012, respectively, and v, for the
same two sets of parameters, is equal to 1/n + Dt + 2.029 and to 1/n +
Diaiat + 1.950, respectively. Thus, for the first set of values we have
1 < v4/v% < 1.33 and for the second set 1 < vi/v% < 1.03, with the ratio
being much more likely to be close to the lower end point rather than the upper,
since the larger D i, 2 becomes, the closer the ratio will be to 1. Similarly, if
we compare v and 3 with the (mean square error)/o” of yi (that is, the usual
estimator using all k z;’s for predictions), which for both examples quoted here
would be 1/n + Y iy} + 2, we see that both v5 and v3 differ negligibly from
this quantity, for Y i #7 even moderately large. It is not known, at this time,
whether v% will in all cases be larger than v%, but if these two calculated examples
are representative of usual values, it would seem that any difference between the
two is likely to be negligible, for D7 z; moderately large.
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6. Need for consideration of the role of the analysis of incompletely specified
models in the foundations of statistical inference. Birnbaum [5] states on page
274 of the recent paper “On the Foundations of Statistical Inference”: ‘“The
adequacy of any such model (mathematical-statistical model) is typically sup-
ported, more or less adequately, by a complex informal synthesis of previous
experimental evidence of various kinds and theoretical considerations concerning
both subject-matter and experimental techniques.” This statement is followed
by: “We deliberately delimit and ‘dealize the present discussion by considering
only models whose adequacy is postulated and is not in question.” Without
going into the relative merits or demerits of the proposed philosophy of statistical
inference contained in Professor Birnbaum’s paper, it is suggested that any
proposed general theory of statistical inference, useful in the applications of
statistics, would need to include provision for statistical inferences based on the
analysis of incompletely specified models. Here we are referring to statistical
inferences based on the analysis of incompletely specified models in general, not
just those based on such analysis applied to regression.

APPENDIX
TABLE I

Bias Coefficients for Procedure A. (e = .05 for both tests, N = 3.84. All entries
must be multiplied by —1.)

Coefficient of zx
Br/o = 3 1 3 2 $ 3
.342 .583 .657 .570 .392 .215

Coefficient of x_1

B/ e
o

* 3 1 3 2 5 3
3 .315 .537 .605 .525 .361 .198
1 .484 .546 473 .325 .179
3 445 .386 .265 .146
2 .276 .190 .104
5 115 .063
3 .032
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TABLE II

Bias Coefficients for Procedure A. (e = .10 for both tests, A = 2.71. All entries
must be multiplied by —1.)

Coefficient of zx

Br/o = 3 1 3 2 5 3
.262 .426 . 446 .345 211 .101
Coefficient of -y
o/
B/ Bl
3 1 H 2 3 3
3 .225 .366 .383 .296 .181 .087
1 .315 .329 .254 .155 .075
3 .249 .193 .118 .057
2 124 .076 .036
2 .041 .020
3 .009
TABLE III

Bias Coefficients for Procedure A. (a = .32 for both tests, A =

must be multiplied by —1.)

1. All entries

Coefficient of

Br/o = b3 1 3 2 3 3

.090 .132 119 .077 .038 .015
Coefficient of -y
Bk-l/ (4

B/ ; n 3 5 ; 3
3 .056 .083 .074 .048 .024 .009
1 .063 .057 .037 .018 .007
3 .036 .023 .012 .004
2 .012 .006 .002
s .003 .001
3 .000
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TABLE 1V

Bias Coefficients for Procedure B. (o = .06 for both tests, N = 3.84. All entries

must be multiplied by —1.)

477

Coefficient of z_1

Br-1/a = 3 1 3 2 3 3
.342 .583 .657 .570 .392 .215
Coefficient of xx
B/ Br/o
ke 3 1 3 2 5 3
3 .488
1 473 .929
3 .449 .865 1.228
2 .419 .785 1.065 1.262
5 389 706 906 991 1.013
3 .366 .645 .783 .783 .706 .631
TABLE V

Bias Coefficients for Procedure B. (a = .10 for both tests, N = 2.71. All entries

must be multiplied by —.1)

Coefficient of zx_1

Br-1/o = 3 1 3 2 ] 3
.262 .426 .446 .345 211 .101
Coefficient of 3
B/ B/
-1/0
- 3 1 3 2 3 3
3 .467
1 .438 .850
3 .395 747 1.035
2 .348 .632 .825 .940
% .309 .538 .652 .667 .657
3 .283 .476 .538 .489 .409 .353
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TABLE VI

Bias Coefficients for Procedure B. (a« = .32 for both tests, A\ = 1. All eniries
must be multiplied by —1.)

Coefficient of xx-1
Br-1/o = 3 1 3 2 § 3

.090 132 119 .077 .038 .015

Coeflicient of xx

B/
Br-1/0 -
% 1 3 2 3 3
1 .346
1 .286 .546
3 214 .395 .536
2 .154 .269 .336 .380
g 117 .190 .211 .206 .203
3 .099 .152 .150 121 .094 .083
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