CENTRAL LIMIT THEOREMS FOR FAMILIES OF SEQUENCES OF
RANDOM VARIABLES!

By F. Eicker
Unaversity of Fretburg tm Breisgau

1. Introduction and summary. Let F be a (nonempty) set of distribution
functions (d.f.’s) of random variables (r.v.’s) with zero means and positive,
finite variances. Let F(F) be the set of all sequences of independent r.v.’s (inde-
pendent within each sequence) whose d.f.’s belong to F but are not necessarily
the same from term to term of the sequence. No assumptions are made on the
interrelations between the joint probability spaces of the r.v.’s of different
sequences of F(F). Accordingly, dependence or independence between r.v.’s of
different sequences needs not be specified. A generic member of F(F) will be
denoted by e = {e ; £k = 1, 2, ---}, or, when we discuss sequences of members
of F(F),by e(n) = {ew ;6 =1,2,---},n = 1,2, --- . In the following, F(F)
plays the role of a parameter space, the parameter points being ¢, e(1), €(2), - - - .
Since only the d.f.’s of a sequence of (independent) r.v.’s are relevant to the
central limit theorem, instead of F(F'), the set of sequences of d.f.’s corresponding
to the elements of F(F) may also be regarded as the parameter space. It clearly
is a map of F(F). The inverse mapping subdivides F(F) into certain equivalence
classes. From elementary set theory it follows that $(F) as well as its map has
the cardinality of the continuum if F contains more than one element.

Further, let {au; n =1,2,--- ; k= 1,2, ---} be a double sequence of real
constants, and let {k.} be a sequence of positive integers such that a.;, 5 0 and
e =0fork > k,,n=1,2,---. We denote the variance of Zﬁ';l Gukénk DY

Fn,
(1) an = kz: a%zko'ik ) O'ik = var e€x,
=1
and put
kn
(2) g'n = Bn_lk—zl ankenk, n = 1, 2, ety

where B, = +(B,’)!. If all sequences ¢(n) are identical we denote them by e
and write instead of (2)

kn
Ea(e) = B, () ,; Uit n=1,2 -,
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440 F. EICKER

which shows the dependence on the parameter e more clearly; B, (e) is defined
analogously to (1).

This note deals with necessary and sufficient conditions on the set F and on
the double sequence {a.+} in order that the d.f.’s of the ¢, tend to the standard
normal d.f. (denoted by ®(x)) and that the B, 'a.iea: are infinitesimal for every
sequence of sequences e(1),e(2), --- e F(F) (Theorem 1). For the case of
identical sequences e(n) (= ¢), which is of particular interest in applications,
a normal convergence theorem (Theorem 3) holding uniformly for e on F(F)
is obtained under the same necessary and sufficient conditions as in Theorem 1.

Theorem 3 yields, e.g., conditions for the asymptotic normality of the least
squares estimators of the parameters in a linear regression with independent and
not necessarily identically distributed errors whose d.f.’s are unknown but be-
long to a certain class F (Eicker (1963)). From the necessity of the conditions
it follows that these conditions are the best possible ones under the limited
information about the error terms provided by the model assumptions.

Frequently, when limit theorems for families of sequences of random variables
are met in statistics and probability theory, the emphasis is on the uniformity
of the convergence of the sequences with respect to the family parameter which
assumes values in a given a priori set. (For an example, compare Parzen (1954),
p. 38. That paper also cites some of the earlier publications on the subject.)
The present note emphasizes not primarily the uniformity of the convergence,
but the necessity of the conditions (including one on the parameter space F(F))
for the convergence on the parameter space. Accordingly, the set F cannot be
prescribed arbitrarily. The uniformity of the convergence on F(F) is shown with-
out difficulty to be implied by the ordinary convergence on F(F). Another
difference from earlier work may be seen in the particular structure of F(F),
which is comparable to an infinite-dimensional vector space. Although many of
the earlier convergence theorems are (or can be) formulated for abstract para-
meter spaces, in the applications such as estimation theory these spaces are
usually specialized to intervals on the line or in a finite-dimensional vector space,

2. Central limit theorems for families of random sequences. In the following
all limits are taken for n — o, unless stated otherwise. With the notations of
Section 1 we have

TaeorEM 1. In order that
(A1) the d.f.’s of the ¢n converge uniformly in x to ®(x), and
(B1) the random variables B, ‘Gnien: are infinitesimal in the sense that for every
6>0

maxi —1, ... , knP( I B;la,,kenk l > 5) — 0,
both hold for every sequence of sequences {e(n)} with e(n) £ F(F), the following
three conditions are jointly necessary and sufficient:

kn
(I) maxy — 1, ... ,knaf,k/kz:, @, —0
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2
(11) supawf 2 dG(x) — 0 as ¢— «,
lz]|>e¢

(111) infg.r f 22 dG(z) > 0.

Instead of proving the theorem directly we prove a slightly stronger theorem.
For the case of identical sequences e(n)(= ¢ = {e}) we define the statements

(A2) the d.f.’s of the ¢n(€) converge uniformly in x to @ (z),
(B2) maxy -1, ..., 5 P(|Ba'(€)ame | > 8) >0 for every &> 0,

both for every sequence e € F(F).

Then the following chain of implications holds

Turorem 2. [(I) & (II) & (III)]= [(Al) & (B1)]=[(A2) & (B2)]=
[(I) & (II) & (III)].

The proof will be glven in the next section.

The following main theorem states necessary and sufﬁclent conditions that
the statements (A2) and (B2) hold uniformly in € on & (F).2

TuroreM 3. In order that

(A3) sup |P({a(e) < z) — &(z)| — 0
S
and

(B3) SUpegw maxi —1, ..., P(| B, M (€)amer | > 8) —0 for everyd > 0

hold, the Conditions (1), (II), and (III) of Theorem 1 are jointly mecessary and
sufficient.

The proof follows from Theorem 1 and the equivalence of (Al) with (A3),
and of (B1) with (B3).

REeMARK. Since we are dealing with sums of random variables whose variances
are finite, and since the variances of the sums (2) are normed to one, the in-
finitesimality conditions (B1), (B2), and (B3) in terms of probablhty state-
ments can be seen to imply the corresponding stronger expressions (B1)', (B2)',
and (B3)' in terms of variances (compare, e.g., Lo¢ve (1960), pp. 295 and 316):

(Bl)’ maXg =1, -+« iy l Bn_lanktfnk l - 0, Ok = (vare,.k)*.
(B2)' maXg —1, -+ ,ky l B,,_l(e)a,.m l - 0, o = (Val‘ek)%.
(B3)' SUPeeg () MAXE = 1, -+ kn | B, (€)am(vare)t | = 0.

3. Proof of Theorem 2.

1) From a well known theorem on the convergence of sequences of monotonic
functions it follows that, if a sequence of d.f.’s converges to a continuous d.f.,
then pointwise convergence is equivalent to uniform convergence (Fréchet

2 The observation that the statement (A2) and (B2) hold uniformly in e is due to one of
the referees.
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(1950), p. 321). We therefore need only consider pointwise convergence to
&(x) in the (A)-statements. It is easy to see, moreover, that in (A3) it does not
matter whether sup. or sup, is taken first.

2) The remaining proof is based upon the general Central Limit Criterion
(see, e.g., Gnedenko and Kolmogorov (1954), p. 103): In order that the d.f.’s
of the sums

(3) So =6+ b2t -+ Euka
of the independent random variables £, £as, * < - , £nz, With
(4) Etw =0 forallnandk
and
En
(5) Dovaréy = 1
k=1

converge to the standard normal d.f. ®(x) and that the random variables £
be infinitesimal, it is necessary and sufficient that Lindeberg’s condition
kn

(6) 2. fmﬂ 2 dF(2) — 0 forn — «

k=1

be satisfied for every & > 0; F,; is the d.f. of &u.

Putting £u = B3 @nient , Where B, and {, are defined by (1) and (2), (3)-(5)
are seen to be satisfied. With the notation gu = | awB.'| the convergence
criterion (6) becomes

kn,
(7) 2 Qikf 2’ dGu(z) — 0 as n— o,
k=1 |21>8/qnk

k740

where G, is the d.f. of ey .
For later use we introduce the further notations

kn
an=2aik, n=12,---.
k=1
gle) = supmf 2* dG(z), c>0
lz|l z¢

m = infour f & dG(z).

3) To prove the first implication (sufficiency part in Theorem 1) let {e(n)} be
a sequence of sequences of 5(F) and let F fulfill (II) and (III). By (I) we have
max; ¢or < m 'max; anid. — 0. An upper bound for the left hand side in (7) is

obtained by

a, B, max; fl . 2’ dGu(z) £ m'g(8/maxy gu)
z o/ Ank

which tends to zero as n — .
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4) The second implication is clear.

5) The last implication is proved in steps 5) to 9). In order to obtain (I) from
(A2) and (B2), let all the ¢ be identically distributed with d.f. G ¢ F. With
[2* dG(x) = o°, (7) is seen to be bounded from below by

(8) Uy o " f 2 dG(z)
12| >d0/pn

where p, = max; —1, -+ 4, | @mas’ |. Since (8) tends to zero for every >0
we must have u,—0asn— «.

6) Suppose supg:r f 2’ dG(z) = . Then F has necessarily infinitely many
elements. Because of (I), k, — «.Let {n;,7=1,2,---} be a sequence of
integers such that the numbers k,; = k(j) form a strlctly monotonic increasing
subsequence of {k,}. Let v be a constant with 1 > v > 2 and let >0 be smaller
than 2. Now select a sequence {o; , k = 1,2, - - - } of variances associated with
d.f.’s Gy ¢ F by choosing all o3, for kz{k(j)} equal to a constant and by determin-
ing the remaining ¢, inductively as follows but not smaller than that constant.

Choose o1y . Then, for o1, o2, -+ -, oxiy—1, J = 2, already determined, choose
oy So large that

1/, 2 2 2 2 2
(9) 5{ I; (anjk/anjk(j))o'k",_ O'k(j)} < Yok -

The left hand side equals %q;f.k( 5« Therefore 62q;fk( » < Yor . Estimating the
left hand side of (7) for n = n; from below by the k(j)th term we obtain

2
q%»,-k(j)f @’ dGuy(2) > gajup okn(1 — 7°) > 27 > 0,
lz|>v0k(5) 2

where the second inequality follows from (9). This, however, contradicts to the
statement in (7). Thus supg - fo2 dG(x) < « is necessary.

7) In order to prove the necessity of (II) consider the functions ge(c) =
fiz1zc ©* dG(z) for ¢>0 and G ¢ F. Then g(c¢) = superge(c). Suppose (II)
is false. Then there exists a ¢ > 0 such that lim, ., «g(c) = 2C (< o« because
of 6)), and there exists for every c at least one d.f. G ¢ F with g(¢) — C < gq(c)
< [4*dG(xz) = o’. Let F C F be the (infinite) subset of F whose d.f.’s have
second moments greater than C. We shall now consider sequences out of F(F).
For all G¢ F wehave C < [z dG(x) < M where M < o exists by 6). Hence

(10) ai/M a, £ o < a21/C an, k=1, k,, n=12 .-

Because of 5), the latter terms with fixed k£ form a sequence which tends to zero
as n — . Thus, if we select a positive constant 7 < C™', we can uniquely de-

termine a sequence of integers {v, ;n = 1,2, ---},0 £ v, £ k,,where », is the
largest integer, such that
(11) (1/a.) kZ am < 1C (<1)

=1

(for v, = 0 we take the empty sum). Since (11) would tend to zero if the »,’s
were bounded it follows necessarily that », — o« ; furthermore, », < k. holds



444 F. EICKER

because of Y a2; = a, and 7C < 1. Let now {n,} be an infinite sequence of
integers such that

kn, = k(p) < vn,, =v(p+1), p=12 .-
Put
(12) o = +(May/min; a5, )}, kelv(p), -+, k(p)}, p=1,2,--",
where the minimum is taken for all 7 e{»(p), - - -, k(p)} except those j for which

an,; = 0 (because of (11), (12) is always defined). In order to obtain an infinite
sequence {cx,k = 1,2, ---} let all ¢’s not determined by (12) be arbitrary
positive numbers. Choose now a sequence {Gy}, Gx € F, so that

(13) f 2* dGi(z) > C, k=12 ---
|z|>ek

With identical c;’s we associate the same d.f.’s Gy, and correspondingly choose a
sequence {e} € F(F). We now obtain a contradiction with (7) since according
to (10)-(13) foreachm,and 1 > 6 > 0

k(p) k(p)

qi,kf deGk(x) = ( Z qipk)/ x dG,,(,,)(x) >
|“’|>5/‘1npk ) 1Z|>ep (p)

k=1 k=v(p
In k70
C v(p) 2 C
H{l I; At/ Oy > i (1 — 9C) = const > 0.

8) In order to prove the necessity of (III), we suppose the set F does not have
this property. It then contains sequences of d.f.’s whose variances tend to zero.
We shall show that there exists a sequence of this kind for which the left hand
side of (7) remains above a positive constant for a sequence of n-values {n, ; p =
1,2, - -+ } which tends to infinity. This, however, is contradictory.

We first give the proof for a special set F which we denote by S and which
does not have property (III). It shall contain only step functions with two steps
of £ at +o¢ and —¢ with values of ¢ > 0. The jth term in (7) for a sequence
{Sk(z)} of df.’s Sp(x)eS with variances o; then gives the contribution

Gn; / & dSi(x) = qu; 8
|2]1>8/qn;

if
(14) Ghios > &,
because then the integration interval contains the points 4=¢;. Putting §* = 7,
(14) becomes

kn
(15) (1—n)ajan; — 12 okane > 0.

k=1

ki

Consider. now for every k the sequences

(16) a = {aikAzz;n =1, 2) e }



CENTRAL LIMIT FOR FAMILIES OF SEQUENCES 445

where A% = maxy 1, ... x00k,n = 1,2, --- . We first consider the case that
there exists a sequence «, which contains a subsequence with a positive limit
value, and;” > ¢ > 0 forn = ny,n,, --- . For these n,, the left hand side of

(15) for j = « is greater than
(17) {(L=n)oic — n2, o AL,
k=1

This can be made positive by choosing 7 small enough and {:} such that Y r; o7 <
o, With (17) positive, (14) is true for j = «, and thus 7 is a lower bound for

(7) for n = my, me, --- . This, however, is a contradiction.
If there does not exist a x as defined above then the sequences ay for every
k= 1,2, --- have the limit zero. Hence, in many different ways, non-decreas-

ing sequences of integers m(n) — ,m(n) < k,, can be found such that

m(n)

(18) PalAT <u
k=1

where u < 1 is a positive constant (here and later on small values of n are pos-
sibly excluded). Now determine mductwely a pair of sequences {m(n)} and
{n,} such that for p = 1,2,

(19) m(n, +1) = ka, = k(p).
(The sequences {n,}, {k(p)} are of course not those which occur in 7).) Let K(n)
for n = 1,2, --- be one of the k-values for which a2, = A%. Because p < 1,

certainly m(n) < K(n). For j = K(n), the left hand side of (15) is greater
than

kn
2 2 2 2
An{(l - 1) OR(n) — M MAXk=1,-+-,m(n) Ok — 1 Z Uk} ’

k=m(n)+1
k#K (n)
where (18) has been used. This is positive for every n, p= 1,2, ---, if we

choose {o}} as follows:
(1)ok@, = const > 0, all p,

. k 2
(ii) Zk(:'},)m,,Hwk < const, all p,
k=K (np)

(iii) 7 sufficiently small.

These conditions are consistent because of (19), and thus the contradiction is
established.

9) We now turn back to an arbitrary set F not having property (III). There
are sequences of d.f.’s G in F such that for their second moments the relation
lim infisw0or = 0 holds. Associate with every Gy a step function S as defined in
8), which has the same variance o5 . We have for every k, every § > 0 and every
positive number ¢ the inequality

f 2 dGu(z) = X f 2 dSu(z)
Izl 28/q 2 Jiz124'/4
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with 8’ = 2%. It now follows from 8) that we can find a sequence of errors with
d.f.’s Gx and a sequence {n,} such that for p = 1,2, --.

LION \ 1 \ \
Z qnpkf z dG(z) =2 ‘Z qn,,lcf 2°dSi(z) > & > 0,
=1 121>8/an 23 |21>245/qp 4

utilizing (14). This completes the proof of Theorem 2.
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