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0. Summary. In this paper, we relate properties of a distribution function F
(or its density f) to properties of the corresponding hazard rate ¢ defined for
F(z) < 1byq(x) = f(z)/[1 = F(x)]- It is shown, e.g., that the class of dis-
tributions for which ¢ is increasing is closed under convolution, and the class of
distributions for which ¢ is decreasing is closed under convex combinations.
Using the fact that ¢ is increasing if and only if 1 — F is a Pélya frequency func-
tion of order two, inequalities for the moments of F are obtained, and some
consequences of monotone ¢ for renewal processes are given. Finally, the finite-
ness of moments and moment generating function is related to limiting properties

of q.

1. Introduction. The hazard rate is of interest because of its probabilistic
interpretation: If, for example, F is a life distribution, ¢(z) dz is the conditional
probability of death in [z, x 4+ dx] given survival to age x. Because of this in-
terpretation, unless otherwise indicated, F is assumed to be the distribution of a
positive random variable, although for many of the results this is not necessary.

The hazard rate is'important in a number of applications, and is known by a
variety of names. It is used by actuaries under the name of ‘“force of mortality”
to compute mortality tables [22]. In statistics its reciprocal for the normal dis-
tribution is known as “Mill’s ratio”. It plays an important role in determining
the form of extreme value distributions, and in extreme value theory is called
the intensity function [9]. Tukey [23] obtains qualitative results concerning
order statistics from distributions with monotonic hazard rates; he refers to
such distributions as ‘“‘subexponential”. In reliability theory, an increasing
hazard rate often corresponds to wearout; in models for replacement [4], checking
[3], spare parts provisioning [5], etc., the assumption of an increasing hazard
rate results in useful qualitative conclusions concerning the form of the solution.
In the study of telephone traffic, a hazard rate q(x) decreasing in z = 0 is some-
times observed for the duration of a telephone call [15].

Although general results concerning hazard rate are obtained in this paper,
particular attention is paid to distributions with monotone hazard rate. The
definition of a distribution function with an increasing hazard rate is clearly
equivalent to the statement that 1 — F is a Pélya frequency function of order 2
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(PTy). First defined by Schoenberg [19], a PF; function is a non-negative meas-
urable function g(x) defined for all real x 'such that

gA(xl — 1) gl — y2)
(LD g(@a — y1)  g(x2 — y2) 20

whenever 2; < x, and y; < ¥, ; in addition, g(z) # 0 for at least two distinct
values of z. This wide class of functions enjoys many useful properties such as
variation diminishing, closure under convolution, unimodality [19], and certain
moment properties [11]. (There is a substantial literature on variation diminish-
ing transformations; see [19] for references.) When the underlying density is
PF, (more generally a monotone likelihood ratio density) statistical-decision
procedures are particularly simple [12]. It is easy to verify that if the density
f is PF; then the distribution has increasing hazard rate; the converse is not
true, as we shall see in Section 3.

In Section 3 we confine attention to distributions with a monotone hazard
rate. We prove that the increasing hazard rate property is closed under con-
volution, but not necessarily under convex combinations. On the other hand,
the decreasing hazard rate property is not closed under convolution, while it is
preserved under convex combinations. In Section 4, many of the moment prop-
erties of PF, densities obtained by Karlin, Proschan, and Barlow [11] are found
to be possessed by the larger class of distributions with increasing hazard rate.
In Section 5, applications are made to renewal processes yielding positivity
properties for the distribution of the number of renewals, and to semi-Markov
processes yielding an asymptotic bound on the mean occupation time. Finally
in Section 6 results are obtained for general distributions of positive random
variables, not assuming monotonicity of hazard rate.

2. Preliminaries. In this section we present definitions and results needed in
later sections.
If {p4 is a discrete distribution, the hazard rate is defined on integers k satisfy-

ing E:;k pi > 0 by
(2.1) q(k) = P/ 2 pi

Note that in the discrete case q(k) =< 1.

The concept of Pélya frequency functions, where the argument is the differ-
ence of two variables in (1.1), was extended by Gantmacher and Krein [7] and
by Karlin and Rubin [12] to functions of two separate variables. A function
f(z, y) of two real variables ranging over linearly ordered one-dimensional sets
X and Y respectively is said to be totally positive of -order & (TP,) if for all
2 <2< L T, N <Y< o < Ym, (ieX;y;eY)andalll £ m £ F,
the determinant,

(2.2) If(zi, y5)| = 0.

If f(z,y) is TPy for k = 1,2, - - - , then we say f(z, y) is TP, . Typically X is
an interval of the real line or a set of integers; similarly for Y. In the latter case
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the term “sequence’ rather than ‘“function’ is used. In the special case in which
the TP, function f(x, y) may be written as g(x — y) with X and Y each con-
sisting of the entire real line, g is said to be a Pélya frequency function of order
k (PF:).

A function f(z, y) is sign reverse regular of order k (SRRy) if f(x, —y) is TP in
z ¢ X, y ¢ Y. This means that the determinantal inequalities (2.2) hold, provided
that the factor (—1) "™ /% is inserted before the determinant. These definitions
appear in [10] and [11].

In the continuous case, the ‘“normalized’”’ moments

s Ko 2° f(x) dx

_ __ 1 f"
T T(s+1) T(s+1h

are of considerable importance. In the discrete case, we often consider the
binomial moments

By=1 and Bi=2<?>pk; 'i=1,2,"',
k=0
of distributions placing mass py at ¥ = 0,1, 2, ---, with > p = 1.
Central to the theory that follows are the exponential distribution F(z) =
1 —¢* 2 =0, u> 0and the geometric distribution p, = p(1 — p)*, k =

0,1,2,--- ;0 = p £ 1; both are characterized by having constant hazard rate.
The exponential distribution is PF, with normalized moments
(2.3) e = 4, s> —1.
The geometric distribution is a PF, sequence, with binomial moments
(2.4) B: = [(1 — p)/pl"

In the continuous case we use repeatedly the easily verified relation
(2.5) 1 — F(t) = exp I:— [; g(x) dx:l.

3. Monotone hazard rate. As indicated in the introduction, distributions with
monotone hazard rate are of considerable practical interest. Such distributions
constitute a very large class. If ¢(z) = f(z)/[l — F(x)] is increasing in z,
— o < z < o, then we say that F (or f) has an increasing hazard rate (IHR).
(Throughout this paper we use “increasing” to signify ‘“non-decreasing”, and
“decreasing” to signify ‘“non-increasing”.) It is not possible that ¢(z) is de-
creasing for all z, since g(x) decreasing at 2 = ¢ implies that the density f(z) is
also decreasing at t. However, if the support of F is bounded from below, say
by a, then g(x) may be decreasing in x = a. If the support of F were a finite
interval, say [a, b], then (using (2.5)), '

lim,.5 [1 — exp <— f:M q(z) dz>:|

= lim,s [F(z + A) — F(z))/[1 — F(2)] = 1,
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and hence lim sup..; ¢(x) = o so that ¢ is not decreasing. Hence we say that

a distribution F has a decreasing hazard rate (DHR) if its support is of the form

[a, ©), and ¢(z) is decreasing in = a. For convenience, we shall take ¢ = 0.
If the distribution F has a density, it can be verified by differentiating

log [1 — F(z)]

that ¢(x) is increasing if and only if the support of F is an interval, and if on
that interval, log [l — F(2)] is concave. Similarly, F is DHR if and only if the
support of F is [0, ©) and log [l — F(x)] is convex in z = 0. For a mathe-
matical convenience and added generality, we use this concavity (convexity)
property as the definition of IHR (DHR) whether or not a density exists. (See
Schoenberg [19].)

Well-known examples are the gamma distributions with density () =
A exp (—=M)/T(a), \, a, t = 0, and the Weibull distribution with density
f(t) = Aat®exp (=A%), A, @, t = 0, which have increasing hazard rate (IHR)
for « > 1 and decreasing hazard rate (DHR) for @ < 1. For a = 1, both coincide
with the exponential distribution, which is characterized by a constant hazard
rate. The THR distributions cited above and most commonly used distributions
have the additional property that their densities are PF, .

In the discrete case, an example is provided by the negative binomial (Pascal)

distribution

IIA
IIA

e = (kr>p’(p— D rz00=p=1L,k=01---,
which is IHR for » > 1 and DHR for » < 1. With » = 1, this distribution coin-
cides with the geometric distribution, characterized by a constant hazard rate.

An important subclass of distributions with THR are those with densities that
are PF, . This fact follows by writing ¢7*(z) = f3° f(z + A) dA/f(z) and noting
that the integrand is decreasing in z when f is PF;.

Several useful and essentially known results (see [19]) follow directly from
this definition. If F is ITHR (DHR) and F(0—) = 0, then 7' log [l — F(z)],
and hence [l — F(z)]'%, is decreasing (increasing) in z. Boundson 1 — F (z) in
terms of percentiles can be obtained using this observation.

If Gly) =1 — e fory = 0 and F is a distribution with F(0—) = 0, then
F is THR (DHR) if and only if there exists a non-negative convex (concave)
increasing function k& such that F(z) = G(h(z)). If F is IHR and & is a non-
negative convex increasing function, not identically constant, then F(h(z)) is
IHR.

From (2.5), it follows that F is IHR (DHR) if and only if for all 2 = 0

F(t+2) — F(O)/I1 — F(9)]

is increasing in ¢ (decreasing in ¢ = 0 and F(0—) = 0).
The following basic theorem follows directly from the definitions and a funda-
mental result of Schoenberg ([19] p. 337) ; we omit the proof.
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TurorEM 3.1. F s IHR #f and only if 1 — F ¢s PF,. F s DHR ¢ and only
if the support of F is [0, © ), and 1 — F(x + y) 48 TPy forz 4+ y = 0.
A dual to the hazard rate is the ratio

(3.1) f(x)/F (x).

If X is a time variable and time is reversed then f(—z)/F(—z) becomes the
hazard rate. Thus a random variable X has increasing hazard rate if and only
if —X has decreasing (3.1) ratio. Replacing X by — X we obtain from Theorem
3.1 that (3.1) is decreasing in z if and only if F is PF,.

In the discrete case, it can be shown directly that {p;}7 is IHR if and only
if D opa pi/ Dok Di 1s decreasmg in & for integer A = 1. Thus {p;};-o is IHR if
and only if { ) i pi} im0 is a PF; sequence. According to Schoenberg [20], this is
equivalent to the following. There exist two integers @, 8,0 < a« < 8 £  such
that p; > 0if and only if « < j < B, and the polygonal line of vertices z = k,
y = log > 7w pi, @ < k < B, is concave. Thus discrete analogs of the condition
that log [I — F(z)] is concave and of Theorem 3.1 are valid.

The following examples show that 1 — F(x) may be PF, and the densmy
f(z) not PF,, also F(x) may be PF, while f(z) is not PF,. Let

3 0=t} $, 0sts}
1) = OB
4 1<t=1, hoi<t<l

It is easily verified that f(£)/[1 — F(t)] and F*(¢) /f*(¢) are increasing in ¢, but
that F(t)/f(t) and f*(¢) /[1 — F*(t)] are not increasing in ¢ (at ¢ = 1) so that
f and f* are not PF, .

The following example shows that densmles with THR need not be unimodal

as are PF, densities. Let

1+ a — 4az, 0=sz=1%
flz) = —1=Za=1.

lIA

1—3a+4ax, 3i<z<1
For -1 £a =<0,fis PF,. For -1 £ a £ 2 — 3! fis IHR, and for —1 <

a = %, F(t)/f(t) is increasing. Of course, f is unimodal only for —1 < a < 0.

As another multimodal example, consider a distribution determined by (2.5)
where ¢ is an increasing step function. If ¢ has a jump of magnitude A at
then the density f has a jump of magnitude greater than A at z,. Hence such
an THR distribution may have an infinite number of modes; in this case, it
may also possess the additional property that lim sup,...f(z) > O.

The following examples show that the density f(z) can fail to be TP, in sums
of the argument and yet 1 — F(z) or F(z) may still possess the TP, property.

Let

1, t <0,
1—F(@) =
2/l + (t+ 1Y, t=0,
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and

F*(t) =
t=0.

It is easily verified that log [I — F(¢)] and log F*(t) are convex for ¢ = 0 and
t < 0 respectively, but that log f(z) and log f*(z) are not convex in the same
range.

A key result is that the THR property is preserved under convolution. The
first proof of this theorem is due to Walter Weissblum; an alternate, somewhat
more concise, proof is given here.

TrEOREM 3.2. If F and G are IHR, then their convolution H, given by H () =

2o F(t — z) dG(x) s also THR.
Proor. Assume F has density f, G has density g. For t; < &, uy < uy, form

D

1= Hl = wlegma = |[ 1 = G = 9loCs — w) ds

ff 1 — F(t: — su)| lg(sk — ;)| dsz dsy

81<82

by ([17] p. 48, prob. 68). (This represeﬁtation has also been used by Karlin,
Schoenberg, etc.) Integrating the inner integral by parts, we obtain

D= ff 1= F(h— &) flti— s)|lg(s — w) g9(s1 — uz)
<z |1 — Flta — 1) flta— s)||]l — G(sa — w1) 1 — G(s; — uy)
The sign of the first determinant is the same as that of

Jlh—s) 1-—Flr—s) flh—s) 1—=Ft—s)
I—F(tg—-Sz) I—F(tg—sl) I—F(tl—-Sz) I—F(tl— 81),
assuming the denominators are non-zero. But f(t; — ) /[1 — F(t, — )] =

f(ts — 82)/[1 — F(ti — s2)] by hypothesis, while

[1— F(t, — s)l/[1 — F(ts — s)] = [1 — F(t, — 8)1/[1 — F(ty — s1)]

dSz d81 .

by Theorem 3.1. Thus the sign is non-negative. A similar argument holds for
the second determinant, so that D = 0. But by Theorem 3.1, this implies H is
IHR. If F and/or G do not have densities, the theorem may be proved in a
similar fashion using limiting arguments. ||

Theorem 3.2 holds also in the discrete case, and the proof is similar. Because
no use was made of the assumption that X and Y are positive random variables,
we obtain the following:

CoroLLARY 3.3. If f(8) /F(t) and g(t)/G(t) are decreasing in t, then h(t) /H(t)
s decreasing in t.

Proor. Replace X by —X and Y by —Y in Theorem 3.2 and use the remark
at the end of Theorem 3.1.|
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It is of interest to note that the DHR property is not preserved under convolu-
tion. A counter-example is obtained if f and g are gamma densities with 3 =
a < 1. However, it is true that a mixture of DHR distributions is also DHR.
The following theorem may be obtained as a consequence of the result in [1]
which states that the sum of logarithmically convex functions is itself logarith-
mically convex. We present a somewhat different proof.

TueoreM 3.4.° If F(t, ¢) is a DHR distribution in t for each ¢ in ®, then
G@t) = f s F(t, ) du(p) is DHR where u is a probability measure in &.

Proor. First suppose that F(t, ¢) has a differentiable density f(¢, ¢). Since
the density of any DHR distribution must be a decreasing function, we have
by Schwarz’s inequality that

[ = P60 auo) [ =14, ) duo)
2 {[ (1= PO OI-7 (00 o))
Since f(t, ¢)/[1 — F(i, ¢)] is decreasing in ¢, we must have

1 —F@o)lf (t,¢) = =11 o)

Hence [[1 — F(t, ¢)1du(®) [ — f'(t, ¢) du(®) = {[/(L, ¢) du(¢)}’, that is,
1 — Gy = —lg®)I, so that G is DHR.

If F does not have a differentiable density, the same result may be obtained
by limiting arguments.||

Mixtures of IHR distributions are not necessarily IHR. For example, a mix-
ture of two distinet exponentials is not ITHR since it is not exponential, and by
the aboye theorem it is DHR.

The variation diminishing properties of totally positive functions are well

known [19]. Because of the relative weakness of the IHR property, we obtain a
correspondingly weak variation diminishing property. We define the number of
changes of trend of a function g by T(g9) = lima.o Vig(x + A) — g¢(z)}, when
the limit exists, where V refers to number of changes of sign [16].
" TaeoreMm 3.5. Let F be a continuous THR distribution, g a real absolutely
continuous function on (—o, o) with V(g) = 1, T(g) < 1. Suppose that
h(z) = |Z2og(x — y) dF (y) exists. Then V(h) < V(g). Furthermore, if V(h) =
1, h changes sign in the same order as g.

Proor. If V(g) = Oor T(g) = 0, the result is obvious.

Suppose V(g) = 1, g(y) = O0fory < b, g(y) < 0fory > b, and g(y) is de-
creasing for y < a and increasing for y > a where —© < b < a < . Suppose
h(z;) £ 0. Consider any z; > ;. We may integrate by parts ([18] p. 102) to
obtain:

M) = g(=) = [ 11— Flz — )] doy),

3 Professor Karlin has pointed out that Theorem 3.4 can be extended to the TP; case.
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noting that [g(«)| < « by assumption while lim, . g(—u) [I — F(u) = 0
since %, g(x — y) dF(y) exists by hypothesis. Hence
_ N 1-— F(.’l?z - y) _ _
h(z;) = g( ©) + [m i——F'(aT:—y) [1 F(z, y)] d[_g(y)]
_[F1—=F(z —y)
a 1 — F(.’l}]_ b y)

. 1 —F(xz—a)
=)+ [ = =%n

(1 — F(z: — y)ldg(y)

— F(z — y)ldl—g(y)]

I\

- }—jﬁ(‘jj*:‘;—; [1 = F(o — )] dg(y)

since by Theorem 3.1, 1 — F is PF,, so that [1 — F(z + A)]/[l — F(z)] is
decreasing in z for A > 0. Thus

ha) 5 g(=) = 1= 2E 2D "1~ o — )] do(y)

— F(z, — a)

1 a
= g(co) +m[h($l) - g(°°)]

h(z) £ 0.

_ _1—F(x, — a) 1— F(zs — a)
—g(oo)[l l—F(xl—a)]—I_l—F(xl—a)

Thus V(h) = 1. Moreover, if V(h) = 1, then h changes sign from + to —,
i.e., in the same order as g.

The remaining cases with ¥(g) = 1 can be reduced to the above case either
by replacing g by —g, y by —y, or both.||

Note that the assumption of continuous F and g was used to justify integra-
tion by parts. Actually the result follows whenever integration by parts is valid,
ie., for g absolutely continuous even if F has the single discontinuity at the
right hand of the interval of support, possible for IHR distributions.

4. Moment inequalities. Many of the moment inequalities obtained in [11]
are true for the larger class of distributions studied in this paper. It will be con-
venient to define

@1) yO(t) = (=0)"7/T(s), t<0
‘ =0, t>0,
2 w0 = [[O@AI - dz, s> 0
= f(2), s =0,

where f is a density on the positive axis and A, = [§ [2°f(z)/T(s + 1)] da.
We remark that if f is IHR, then 1 — F(z) tends to zero exponentially fast
[19] and hence f has finite moments of all orders.
Using the identity v"*9(¢) = 2P @)y (t — z) dz it is easily verified
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that f.(f) is a density. Note that fi(x + y) SRRy in 2 + y = 0 implies that f is
IHR. Also fa(x + y) SRRsin 2 + y = 0 implies f; is IHR, or equivalently, the
“mean residual life” [¢ [1 — F(x)]dz/[l — F(t)] corresponding to the density
f is decreasing. This class of distributions is of natural interest in reliability
theory.

With the notation u'” = [ 27f,(z) dz, \” = w{?/T(r + 1), it also follows
from the definition of f, that

(4.3) A = Ago/As
Using (4.3) we obtain TIZ w8 = Xj/A, so that for integral ¢ and n,

i+
(4.4) W=QW%
J=

Proceeding in the manner of Theorem 1 of [11], p 1025, we obtain

TaeoreM 4.1. If fo(x 4+ y) is SRRy inx + y = 0, then

(1) frtslx + y) s SRRy 9n z + y = O for all positive integers n, and

(ii) frts(z) isSRReinr = O and x = 0.
(1) 1mp11es that if f is IHR then f, is IHR n =1,2,---. A converse can be
given in the case k = 2.

TueoreM 4.2. f is IHR if and only if f;(x) isSRReini =0,1,2, - and
z = 0.

Proor. Suppose that f is IHR. The support of f. coincides with that of f,
and it is sufficient to show

fi(t) fit + A)
firi(t)  fari(t + A)

for t and t + A (A > 0) in the support of f. By (i) of Theorem 4.1, f, is IHR,
n=1,2 -3 i~e~; fn(t)/fn+l(t) = fn(t + A)/fn+1(t + A). This means that
fa(t)/fa(t + A) is increasing in n, and yields (4.5). Of course it is trivial that
f is IHR if fi(z) is SRR; in ¢ and z. '

Note that by integrating on A from 0 to infinity in (4.5) we obtain that ¢,(¢) is
increasing in 4 = 0, 1, - - - for all &.

The following theorem extends Theorem 1 of [11] and the proof is similar.

TureoreM 4.3. If fi(x + y) s SRR;c mzx + y = 0 then M\yor: 7s SRR, in
r+t= —1.

In particular if f is IHR, then N4, is SRRz in 7 4+ s = 0. Further extensions
are possible in terms of integer moments. Define

Qitj = Nitjo1, t+75>0
= f(0)7 ) + ] = 0.
Again following the method of proof of Theorem 1 of [11], p. 1025, it is not hard

to show that
THEOREM 4.4. If filx + y) s SRRy in 2 + y = 0, then a;4; ts SRRy in

t4+j=01,-

(4.5)
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In particular, if f has decreasing mean residual life, then a;+; is SRR, in
i+j=01,2--.

If f is IHR, another moment inequality can be obtained from (16) of [11]
and the fact that each f; is PF; . Specifically,

Pire/Ad" = T = NPT = D/,

£>s5>0,0r XN S A, a=b = ¢ = 1, ¢ an integer. This inequality is to
b—c a—b

be compared with Lyapounov’s inequality, u, me = = uz ,a b =c¢ = 0.

b. Applications to renewal processes. Let X;, X;, -+ be a renewal process,
that is, a sequence of independent, non-negative, and identically distributed
random variables which are not zero with probability one. Write F for the dis-
tribution of X1, Sy = X1 + X2 + -+ 4+ X, and F” for the distribution of S .

Let N(¢) be the maximum index & for which Si = ¢, subject to the convention

N(t) = 0if X; > ¢t The first moment M (t) = E[N(t)] satisfies
(5.1) M@t) = F(t) + fot Mt — z) dF ().

If F has density f, the derivative of M (¢) will be denoted by m(t) and satisfies
m(t) = f(t) + ff. m(t — x)f(x) dx (see, e.g., [21]). To obtain bounds on m(?),
define the “shortage” random variable, §; = ¢ — Sy , and denote its distribu-
tion by G; . Then

m(®) = [[17@/1 = F@))) dGu(z)
and hence infoc.<: g(z) < Mm(f) < supoces<:q(z). If ¢(¢) is increasing,
g =MW s [ (@) do.

Equality holds in the exponential case.
If F is IHR, the distribution of N(¢) has important positivity properties.
TureoreM 5.1. If F is THR, then
(a) PIN(t) = nlisTP;int = 0O andn = 0;
if, in addition, F(0) = 0, then
(b) PIN(t) = n)is PF, in integer n.
Proor. By Theorems 3.1 and 3.2

1—F"t) 1— F""(@1)

1—F(t—2) 1—F*"(t—2)
1—F"(t) 1—F"(t—u)
- f dF(u) 0
1—F(t—2) 1—F(t—x—u)
which proves (a) since P[N(¢f) < n] = 1 — F"(t). Convolving terms in the
bottom row of the second determinant with F we obtain (b).||

CoroLLARY 5.2. If F is PFy and F(0) = 0, then
(a) PIN(t) =2 n]iwsSRReint = Oandn = 0.
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(b) P[N(t) = n] is PF;in n.

Proor. (a) Under the hypotheses of Theorem 5.1, 1 — F"(¢) is TP, for
—w <t < o andn = 0. Hence if F is PF; and X has distribution F, —X is
IHRand P[-X; — X, — --- — X, 2 t]is TP;in —» =t < «© andn = 0.
Hence F"(t) is SRRy in — = ¢ < « and n = 0 and proof proceeds as in
Theorem 5.1. ||

ReMArks. (a) of Theorem 5.1 and (a) of Corollary 5.2 are still true even if
the X; are not identically distributed. (b) of Theorem 5.1 may be used to weaken
the assumptions made in [10] for solving an inventory problem.

It is well known (see, e.g., [21]) that

M(t) — t/m = (A — A)/AL + o(1).

Hence if F is IHR (DHR), t/u; overestimates (underestimates) M (¢) for large .

The semi-Markov process ([21] p. 260) is a generalization of the renewal
process. These processes have countable state spaces, and the sequence of states
forms a stationary Markov chain with transition matrix (p;;). The waiting
times between transitions are independent, and the wait in state ¢ given that the
next state is j has distribution F;; . The density g.; of the first passage time from
state ¢ to state j satisfies

(52) 0it) = P + g [ $0 = 0)gus(0) do
k3 0

where f is the density of the unconditional waiting time in state . We have the
following generalization of Theorem 2.5 of [2].
Tureorem 5.3. If f s THR

)
Mr li;

(s)
Hs i;

20

where 1 < r < s and I$} is the rth moment of g;(t).

Proor. We need only show

YO x () A % gis(t)

v x (1) ¥ * gii(t)

where v is defined in (4.1). From (5.1) it is clearly sufficient to show
@ |y xf(t) ¥ x5t — 6)

'4 v xf(t) @ x5t —6)

which is true by assumption. ||
The limiting error made in estimating the mean occupation time before ¢ in
state ¢ starting in state ¢ by uit/l; is [2]

t
lim,.,« ‘/; [Pii(z) — wy/lilde = (ualis — Lipa) /20

= )

g1;(0)do = 0

where P;;(x) is the probability that the process is in state ¢ after 2 time units
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if it starts in state 7 at ¢ = 0. If f is IHR this error term is positive by Theorem
5.3.

6. General results using the hazard rate. In this section we relate properties
of the distribution function to properties of the hazard rate at infinity, and prove
a limit theorem for F.(x).

TaEOREM 6.1. Let F(0) = 0, and let @ = 1. If lim,,. t°¢(t) = L(a) exists

(finite or infinite), then for all b = 0,
61) lim, [I — F(8))/[1 — F(t + bt")] = @, a<l,
' = (14 b)*®, a =1

Proor. We prove the theorem only for L < o ; modifications required for
L = « should be clear. Choose ¢ > 0. Then there exists T < o such that
z > T implies (L — €)z* < q(x) < (L + €)2". Since

_[:Hta g(z) dz = log[1 — F(t)] — log[1 — F(t + bt")],

it follows that for ¢ > T,
t-+-bte L + G

ftﬂ”L_ dr <log [l — F(t)] — log [1 — F(¢ + bt")] <f

The result follows by performing the indicated integration and lettmg t— oo

ReEmark. Let Xi, X,, --- be a sequence of independent.random variables
with distribution function F. Then ¢ = max (X;, X, ---, X;) are said to
satisfy the law of large numbers if there exist real numbers {A4.} such that
P{l&; — A;| < ¢ — 1 as 7 — o forevery ¢ > 0. It is shown in [8] that this
condition is equivalent to lim,.., [1 — F(t + €)]/[l — F(t)] = 0. Witha = 0,
we obtain from (6.1) that is is equivalent to lim;., g(f) = . Similarly, in [8]
the condition that £; be relatively stable is defined and shown to be equivalent to
lime,, [1 — F(kt)]/[1 — F(¢)] = Oforallk > 1 (a = 1in (6.1)).

In view of (6.1) and known results, the following theorem should not be
unexpected.

THEOREM 6.2. Let r > 0, and let F(0) = 0. Then u, < o if

r < lim info .. tg(2),

and p, = © if r > lim Supe. tg(2).

To prove this result, obtain bounds for log[l — F(x)] as in the proof of (6.1)
and use the representation u, = [§rz" [l — F(x)]dz.

We conclude from Theorem 6.2 that if F is IHR, u. < o for all » > 0, but
that there exist DI-fR distributions for which u, = « for all » > 0, namely
those for which lim,., tg(t) = 0.

TareoreM 6.3. If s < lim inf,.. q(t), then o(s) = [§ e dF(z) < o. If
s > lim supr. q(t), then ¢(s) =
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The proof of this criterion for finiteness of the moment generating function
‘is similar to the proof of Theorem 6.2.

It is clear from the proofs of the above theorems that bounds on the hazard
rate immediately yield various other bounds. In particular, if 0 < a < ¢(f) <
B = « for all ¢, then

(6.2) exp (—Bt) =1 — F(t) < exp (—at)
(6.3) aexp (—60) S J(1) S Bexp (—a),
(6.4) B =N, s> —1.

Of course analogous statements are true in the discrete case.
TueoreEM 6.4. If lim,., w? = p < exists, then the limit in distribution

of Fi(x) = fofz(t) dt is

F¥(z) = 1 — 7 p#0, 220,
=1, p=0 220,
=0, r < 0.

Proor. Using (4.4), we conclude that lim; u” = nlu", the nth moment of
F*. F* is the only distribution with moments n!u”, and this uniqueness implies
that F; — F* in distribution ([14] p. 185).

Writing fi(¢) = [1 — F(¢)]/m, it is seen that Theorem 3.2 is true whether or
not F has a density. In spite of this there is a discrete analog to Theorem 6.4.
The analogous transformation of {p,;}j yields the probability distribution
{(p"} whre pi® = > m;p/(Bo + Bi) and in general,

(1) — E p(‘l l)/Dw—l

The normalizing factor

i+l /. i .
e (2] /[5)]
k=0 k=0

(BS? is the kth binomial moment of {p;”}) can be obtained after first establishing
by induction that

e <[00 /[ )

If {p;} is PF, then D; is non-increasing in ¢ and lim,.,, D; exists, for since {B}
and <;c) are PF, sequences in k, the convolution Y o (;c B, is PF,.

Using the recurs1on PG — p®/p, = PP, we obtain by induction _
TaEOREM 6.4, If lim, ., D; = 1/B < « exists, then lim;., pi° = B(1 — B)’.
The following lemma ena.bles us to easily relate lim, .., ¢(t) and lim.., ui®.
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Lemma 6.5. (i) ¢i(t) = q(t)"%z:f and only if q1 is non-decreasing at t; moreover
qi(t) = 0 if and only if ¢:(t) =, q(?). (ii) If lime,o gi(t) = a exists for some 1,
then lim, ., g:(t) = a uniformly tn 1.

Proor. (i) follows by differentiating ¢;(¢). To prove (ii), note that

lim;» ¢:(t) = a
implies lim;_., ¢(f) = a by ’Hospital’s rule. If we prove
(6.5) SUPs > ¢ Q(S) = 'Supsgz g:(s) = infsgt gi(s) = infsgt g(s) for all 7,

then the uniformity follows. Suppose that ¢:(r) < inf:qg(s) — e for some
r >t and ¢ > 0. Then by (i), ¢(u) = inf,5:q(s) — e for all 4 = r so that
lim,ne g1(s) < limyse g(s), a contradiction. The proof for the supremum is
similar. || ‘

THEOREM 6.6. If lim; pi” = p < «© and limee q(t) = a both exist, then
(i) a = p, (i) r > psmplies \e = o(r*), (iii) p > 1(<1) smplies lim; N, =
o (0).

Proor. The uniformity of lim;,. ¢:(¢) = a justifies interchange of limits in
limie gi(t) = limie limy e gi(2) = limy e limi e gi(f) = p™, the last equality
following from Theorem 6.4. To prove (ii), note that the radius of convergence of
> 2o M2 is liMise Aisy/Ai = p " s0 that limg.e M = 0 when 7 > u. To
prove (iii), suppose u > 1, choose ¢ > 0 and #, such that ¢(tf) < p™ + ¢ < 1
for £ > ty. The result then follows by truncation of the density at ¢ . A similar
proof can be given for p < 1, but the result follows from (ii). ||

Proofs of the following discrete analogs are omitted.

Lemma 6.5, (i) qi(k) = q(k) of and only if q(k) < qi(k + 1). (ii) If

limy.e ¢:(k) = a
exists for some 1, then limy, q:(k) = a uniformly in 2.

THEOREM 6.6, If limi,e D; = B~ and limi.., ¢(k) = a both exist, then a = B.

We conclude this section with a remark concerning the hazard rates of con-
volutions. In the following ¢, refers to the failure rate corresponding to density
f, and similarly for g, and gx , where h(¢) = [¢f(t — z)g(z) dz.

REMARK. If 4(¢) = supoc.<: ¢r(2) and v(f) = SupPo<s<e ¢o(2), then
(6.6) gn(¢) = min (u(?), »(?)),

(6.7) limge ga(f) = min [limee g7(¢), limee go(2)],
providing the limits exist.
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