ON AN ANALOG OF REGRESSION ANALYSIS

By P. K. BHATTACHARYA!

University of North Carolina

1. Introduction. Suppose (X1, -+, X, Y) follow an unknown multivariate
distribution on which independent observations are made. The nature of de-
pendence of ¥ on (Xy, ---, X3) is fully understood only when we know how
the conditional distribution of ¥ given X; = 2, ---, X = x5, changes with
(%1, -+, x3). This can be attempted in two different ways. One approach is to
make inference about the functional relation between the conditional moments
of Ygiven Xy =2y, -+, Xp = an,and (x1, -+, 21), and a special case of this
(when the behavior of only the conditional expectation of ¥ is studied) is
known in statistical literature as regression analysis. The classical methods of
regression analysis are based on the assumption that E[Y | X, = 2;, -+ , X, =
z3) is a linear function of x; , - -, z; . Mahalanobis [3] and Parthasarathy and
Bhattacharya [4] have proposed some methods of regression analysis which do
not involve any such linearity assumption. The methods proposed by Partha-
sarathy and Bhattacharya can be generalized in a straightforward manner for
estimating and testing hypotheses about higher order conditional moments of Y,
but in order to prove the consistency of these estimates and tests for the first m
conditional moments, one should assume the existence of at least first 3m con-
ditional absolute moments. A second approach to this problem is to make in-
ference about the functional relation between the quantiles of the conditional
distribution of Y given X; = @, --+, X = a3, and (x1, -+, 24). This kind
of an analog of the variance components analysis has been considered by Roy
and Cobb [5], while Sathe [6] has given a test for the conditional median of ¥
given X under a restricted model.

In this paper, estimates have been proposed for conditional quantile functions
of ¥V given X;, -+, Xs, and the simultaneous uniform convergence of any
number of such estimates to the corresponding conditional quantile functions
has been studied. A large sample test for the hypothesis that certain conditional
quantile functions are equal to specified functions, has been suggested and proved
to be consistent. In order to avoid complicated notations, the methods and their
properties will be discussed for the bivariate case in Sections 2, 3 and 4, while
in Section 5, the corresponding methods for the multivariate case will be ex-
plained and their properties will be stated without using too many symbols.

2. Problem, assumptions and notations. (X, Y) has a bivariate distribution.
F is the marginal distribution function of X and @, is the conditional distribu-
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1460 P. K. BHATTACHARYA

tion function of ¥ given X = z. For any 0 < p < 1, ¢,(z) is the solution of
the equation

@®) Gz (b () = p.

In other words, ¢, (x) is the conditional p-quantile of ¥ given X = z.

On the basis of independent observations on (X, V), we want to estimate
the function ¢, for a given p, and for a specified real valued function u defined
on the range of X, we want to test the hypothesis Hy:¢, = u.

In what follows, 0 < p < 1 is always a specified number for which we are
interested in ¢, .

We make the following assumptions about F, {G.} and ¢, :

(i) The range of X is bounded; for simplicity 0 < X < 1.

(i) F is continuous and strictly increasing.

(iila) Foreach z, 0 = x < 1, G, is continuous and strictly increasing.

(iii) ¢, is continuous (hence uniformly continuous).

(iv) For any given e > 0, there exists § > 0 (not depending on z) such that
Ip" — p| < & implies |6, () — ¢, (x)| < e for all z.

It should be noted that when we say that a univariate distribution function
H is strictly increasing, we mean thereby, that H is strictly increasing on an
interval (a, b), where

a = the Lu.b. of the set {x:H (x) = 0} if this set is non-empty

— o otherwise,

and

b = the g.L.b. of the set {x:H (z) = 1} if this set is non-empty
= = otherwise.

Another point to note is that condition (iv) is satisfied if there exists a function
Y on [0, 1] such that G, (y) = Go(y + ¢ (2)).

The methods suggested in this paper can be outlined as follows. Suppose we
have nk independent observations on (X, ¥). With the help of the X observa-
tions alone we divide this entire sample into k fractile groups, the 1st fractile
group consisting of the samples with n smallest X observations, the 2nd fractile
group consisting of the samples with the n smallest X observations among the
rest, and so on. The extreme X observations in these fractile groups will divide
the range of X into & disjoint random intervals. For large values of k, the lengths
of all these random intervals will simultaneously become very small with high
probability because of assumptions (i) and (ii). By assumption (iia), (iii) and
(iv), the conditional quantile function on each of these small intervals will lie
within a band contained in a small rectangle with high probability. On the other
hand if the number of observations in each of these intervals is also large, the
p-quantile of the Y observations in each fractile group plotted against any
point in the corresponding fractile interval of X will be contained in the corre-
sponding small rectangle with high probability. This will allow us to estimate
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the conditional quantile function by a step-function. The hypothesis that the
conditional quantile function is equal to a specified function will be accepted only
if the data in each fractile group are found to be in agreement with the hypothe-
sis. Thus if there is any deviation from the null hypothesis, it will be detected
with high probability in at least one of these fractile groups.

(X1, Y1), -+, (Xur, Ym) are independent observations on (X, Y). Let
X(l) < e < X(nk) be the ordered values of Xl y ", anc . Y(i) = Yj if X(i) =
X;. Forr=1,--- kandfors =1,---, n,

XeTonte = Xrs, Yocimisn = Yos.
For any given integer %, define a set of random intervals as follows:
Ly = [0, Xa0, Ity = Xan, Xpul, r=2,---,k—1, and
Iy = (Xiam , 1].

Next let Y,q) < -+ < Y, be the ordered values of ¥,1, -+, Y,,, and de-
note by [a] the largest integer <a. Now define a random step-function f,; on
[0, 1] as follows: fux (@) = Yooy f z eI, 7 =1, -+« | k.

In course of the analysis carried out in the next two sections, we shall make
use of an upper bound for the tail probabilities of sums of independent and
bounded random variables due to Hoeffding [2]. We shall also make use of an
upper bound for the error of approximation by the Central Limit Theorem and
an upper bound of error involved in the usual approximation of the distribution
function of “frequence x>’ for a simple hypothesis regarding a multinomial
distribution, both due to Esseen [1]. For the sake of completeness, these are
stated below. ,

TuEorEM (Hoeffding). If X, -, X, are independent random variables,
0=X.=LEX;=p S =X+ -+ Xo,andf0 <t <1 — pu, then

2) P[S, — ES, = nf] £ ¢

TueoreM (Esseen). If X, .-, X, are a sequence of independent random
variables with the same distribution function F, the mean value zero, the variance
o # 0 and the finite absolute moments By, -+ , B (v is an integer = 3), then for
o] < {1 +8)( — 2)logn}'”,

B) |Fal@) —®@)| = C1(6, B)n (1 + [2[)e ™" + C, (5, B)n "7,

where F, is the distribution function of (Xi + -+ + Xa)/n'’e, &) =
2w @r) e gt €1 (5, B) and Cy (5, B) are finite constants, depending only on
0 < 9§ < 1, and the moments B, - , B .

TarorEM (Esseen). If n independent observations are taken on a multinomial
distribution with (m 4 1) classes and with class probabilities ¢, ** , Qmi1,
D g =1, and if my, -, Nm are the respective observed frequencies,
>t n, = n, then
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‘m—+1 x2
P i — ngs)’/ngs £ 2:| = __1___[ —w/2, m/2—1
l:; (ni — ngs)*/ng: £ x R ¢ dw

0(q1, ) Gmir)
+ pml (1) 4

(4)

where 0(q, -+, gmi1) S @ finite constant, depending only on qi, *** , Qmi1 -

3. Convergence of f... In this section we shall study the convergence in
probability and almost sure convergence of f.r t0 ¢, , uniformly. It is obvious
that both n and % should tend to infinity for such convergences to take place,
but the crucial point in our analysis is to find out how n and & should depend
on each other as they tend to infinity.

We shall first prove a probability inequality for the event that the random
variables {X,.}, r = 1,---, k — 1, lie in some neighborhoods of F*(r/k),
r =1,.-+, k — 1 respectively. The following lemma is a modification of a
similar probability inequality given by Parthasarathy and Bhattacharya [4].

Lemma 1. Let 0 < o < 1,k = 1, 2, --- ad inf., be a sequence converging to
zero. Under assumption (i),

6) PF'0/k—a) S X S F (/b +a),r=1,---, k=1
> 1 — 2ke™ "%,
2

where F*(a) for a < 0 is defined to be 0 and F*(a) for a = 1 is defined to be 1.

Proor. The left side of (5) is

k—1

=1- 2 PIX, < F ' (r/k — )] — Zl PlX, > F'(r/k + av))

k—1

=1-2, 2 (im>(r/k = a)' (1= r/k + )™

r=1 sxzrn
k-1

- Z Z (lsm)(l —r/k— ak)s(r/k + ak)k"_s

r=1 szkn—rn

11—y 3 (’“")Wk—ak)‘(l—r/k+ak>’°"-*

r=1 s2kn[(r/k—ag)+ar] \S
k—1

k . n—s
-2 X ( ”)(1 — 1/l — @)’ (r/k + a)*
r=1 sZkn[(1—r/k—ay)+ay] S

>1—2(k—1)e™% > 1 — 2k %, by (2).

We now find a probability inequality for the event that the length of each of
the intervals Iy, - -+, I is less than a specified positive number. Let L (I)
denote the length of an interval I on the real line.

Lemma 2. Under assumptions (1) and (i), for any & > 0,

P[L(Ikr) < 5, r = 1, cery, k] > 1 — 2ke—2knuz
for sufficiently large k.
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Proor. We first note that under assumptions (i) and (ii), for any given
6 > 0, there exists an integer k&, such that for & > k,
6) max[F'(1/k + a), F((r + 1)/k + &) — F*0/k — a),
r=1,-, k=2 1—=FY0k—1)/k—a)] <.
We shall show that (6) along with
@) F'0/k—a) S Xen S F 0/ +ax),r =1,k — 1,

implies L (I1) < 8,7 =1, -+, k.
Forr=2,.--k—1,

L(ly) = Xon — Xoam
SFr/k+a) — F7 (@ — 1)/k — a), by (7)
<4, by (6).
Also, LIy < X1

S F'(A/k + a), by (7)
<39, by (6),

and Lw) =1—=F'((k—1)/k — a), by (7)
<8, by (6).

An application of Lemma 1 now completes the proof.
Lemma 3. Under assumptions (iia), (iii) and (iv), for sufficiently large k and
for any gwen n > 0,

P[SUpeer,, ¢pre () — Ifrer,, dppe@) < myr =1, -+ k] > 1 — 2ke 2%

if € > 01s such that |p’ — p| < e implies |¢p (&) — ¢ ()| < 9/8 for all z. (By
assumption (iv) such an ¢ > 0 exists for any given 5 > 0.)

Proor. Choose § > 0 such that 1[0, 1], z2¢[0, 1], |21 — 23] < & together
imply |¢p (1) — ¢, (22)| < /3. By assumption (iii) such a 6§ > 0 exists for any
given 7 > 0. Now,

P[Supeer;, $pte@) — Infoer,, dpc(@) < myr =1,-+-, Kkl
2 P[Supser, ¢pre (@) — Infocr,, dp—e(@) < n, L(Ii) < 8,7 =1, -, k.
But
P[Supser,, dp+e (@) — Infecr, ¢pe (@) < m,
r=1, k|L(Ii) <8r=1,---,k
= PSups, spers, {bp4e (@1) — bpe (@)} < 7,
r=1,-,k|L(In) <8r=1,---,k
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= P[Sup:,,ssers, |¢p (1) — ¢ (x2)| < /3, Supzer, |¢p+e () — ¢» (.’ZZ)[ < /3,
Sup.er, |¢p—e (@) — ¢ (.'lt)l < /3,
r=1,--- k| L) <§r=1---,k =1,

by the choice of § and e. An application of Lemma 2 now completes the proof.
LemMa 4. Under assumptions (iia), (iii) and (iv), for arbitrary ¢ > 0 and for
large n,

PlInfe.r, ¢p—e(®) < Yitnp)) < SUDzers, $pe (@),
r=1 k| X =1,y Xuw = am] 2 1 — 2ke™™,

for any given 1, - -+ , Tnx @0 [0, 1].

Proor. Suppose 1, -+, T, are points in an interval [a, b] < [0, 1]. Let
Yy, -+, Y, be mutually independent random variables, Y; having distribution
function G, , 2 =1, -+, n. Also let Yq) < -+- < Y be the ordered values
of Y1, -, Y. Then

PlY (tpm)) = Infregas) dpe ()]
= P[&t least [np] of ¥, y T Y,are = Inf:e[a,b] Dp—e (.'13)}

=PlUy+ -+ Un = [np] — ; G, (Infaefa,p) Pp—e (x))],
where Ui, - -, U, are mutually independent random variables with
P[U; = 1 — Go; (Infserap) dp—e ()] = Ga; (Infaciany bp—e (x))
and

P[Uz = _Gz.; (Inf:s[a,b] Po—e (x) )]
=1 — G, (Infzepa,n Gp—e(@)), 1=1,-,mn.

Now,
Ga, (Infzeia,p) Pp—e (x))
= G, (p—e (i), since z.&[a, b],
= p— eby (1).
Hence

[np] — Z=; G; (Infzera,b) Pp—e ())

>np—1—n( — e =ne—1>ne/2! for large n.
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Thus,
P[Ul + e + Un = [np] - ZIG:::; (Infze{a.b] ¢zz-—e(x))]

S PIUL + - + U, = ne/21 < 6™, by (2).

Similarly, PIY tapn) = StPacton $p+(@)] < ¢

The desired probability inequality is now obtained.

We are now in a position to prove the following theorem about uniform con-
vergence of fuz t0 ¢y .

TueoreMm 1. If F, {G.} and ¢, satisfy conditions (1)—(iv), then for n = k7,
v > 0, dur = SUpPo<osi |far (@) — dp(2)| converges to zero in probability as k — «
and for n = k, dn converges to zero with probability one as k — .

Proor. Let n > 0 be given.

P[Supogzgl |fnk () — ¢» (x)l < 7]
= PlInfe.r,, ¢p—e @) < Yittnp)y < SUPzery, Ppre (), Supzer,, Pote (@)

— Infyer,, ppe (@) < m, 7 =1, -+, k], for arbitrary ¢ > 0,
= PlInfeer, ¢p—e(®) < Yrnod < SPzery, dpie (),
r=1, -, k| SuPsery, Ppte (@) — Infrery, ppe(@) < m, 7 =1,---, k]
X PlSupser,, $pte @) — Infoery, dpe(@) < myr =1, -, k]

> (1 — 2ke ™) (1 — 2ke*"%),

by Lemmas 3 and 4 if ¢ > 0 is so chosen as to satisfy the condition of Lemma 3.
Both the factors in the last term tend to one as k — o« if n = k", ¥ > 0 and
ar = k", which proves the first part of the theorem. Again,

,; 1 — (1 — 2ke ™) (1 — 2ke 2™"%)]

converges if n = k and a; = k. The second part of the theorem now follows
from Borel-Cantelli lemma.

If wehave 0 < p1 < -+ < pm < 1, and if we define f$? @) = Yi(np)) for
zely,r=1,---,k ¢=1,---, m, then Theorem 1 can be immediately ex-
tended for the simultaneous uniform convergence of f5%, < -+ , 5% 10 ¢py, -+ ,
¢, TESpPECtively.

4. Large sample tests for specified conditional quantile functions. Let u be a
specified real-valued function on [0, 1] and consider the problem of testing the
hypothesis Ho:¢, = p against the alternative H;:¢, # u.

We define random variables {U}, r = 1, -+, k; s = 1, --- , n, as follows:

U,-s =1 if Yrs é ﬂ(er)

= 0 otherwise.
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These are mutually independent random variables and under H, , each of them
takes values 1 and 0 with probabilities p and 1 — p respectively. Let U, =
Z:%n=l Urs/n, r= 1, ctty k, and

Tk = SUP,...s |Ur — pl/{p (1 — p)/n}’.

If we can find the limiting distribution of 7., (suitably standardized) under
H, , then we can test H, at any given level of significance 0 < a < 1, as follows:
Reject H, if and only if 7.1 > 7a (), where limy.o Plrar < 7m(e) | Hol =
1—a

Again, suppose 0 < p; < +++ < pn < 1 are given numbers and y; - -+ , um are
specified real-valued functions on [0, 1], satisfying the condition that w; (z) <
<+« < um(x) for all z¢[0, 1]. Consider the problem of testing the hypothesis

S (bpy = M1, -+ 5 bp, = Hm) 8gainst the alternative H{™ that ¢,, # u. for
at least one ¢, ¢ =1, --- , m.

Define UP =1 if ¥V, £ m(Xy)
= (0 otherwise,
Uf‘? =1 if Mi—1 (Xrg) < Yrs é Mi (er)
= (0 otherwise, 7 =2, .-+, m,
US™ =1 if Yoo > um(Xe)

= 0 otherwise,
and UY = D2, UL r=1,---  ki=1 -, m+ 1L Letg =p, ¢ =
Pi — Pica, L =2, -, M; gmy1 = 1 — pm, and consider the statistic

m+-1
P = Sup,e1,...k Z:l [(UY — ng:)*/ngd.

If we can find the limiting distribution of 7{% (suitably standardized) under

H{™, then we can test HS™ with the help of 5% in the same way as we hope

to test H, with the help of 7, .
The following theorem gives us the limiting distributions of 7., and 7{% under

H, and H§™ respectively.
For any real 6 and for any integer &, define

M(@0) = {20+ logk — Lloglogk)}? if 6+ logk — iloglogk > 0
= 0 otherwise,

and
A™(0) = 2{0 + logk + (m/2 — 1) log log k}
if 64 logk 4+ (m/2 — 1)loglogk > 0

= (0 otherwise.
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THEOREM 2.
(@) If n Z k", v > 0, then
limgeo Plrar < M (8) | Ho] = exp [—7 7).
M) Ifn = (klog k)™, then
limyse Plr$7 < A (6) | HE™) = exp [— (T (m/2)) "]

Proor.
(a) Under H,, {U,} are independently and identically distributed with
mean p, variance p(1 — p), and with finite moments of all orders which are

functions of p only. Let » be so large that

8) M@0) <{A+8)(—2)yloghkl', 0<5<1, and

) y(r —2) > 2

Making use of (8) and (3) and denoting C' = max {C:(5, 8), C:(5, 8)} in (3),
we get

T =pl _ o
d [{p(l—p)/n}*é“(")”ﬂ], B(0) — B(—N(6)) + @i,

where
lewr] < CI{1 4+ e (0))n Y exp [— (e (6))%/2] + v 27
< Ol (log k) ™4+ 4 21
since n = k", C’ being a finite constant, depending on p and &. Now,
k -
log Plrae < M(6) | Hol = 2 log P [——{p(l =y = MO [ Ho

k
= Z=; log [®(\(6)) — &(—M(0)) + ex]

= klog [8(M.(8)) — ®(—M(0))] + Zs,

where |Zi| < D ki flog[l + e./[®(\(6)) — ®(—N:(8))]]|. Since e, — 0 and
®(\(0)) — ®(—M(0)) — 1 as k — o, for sufficiently large &,

lewr /1@ (M (6)) — @ (=M (6))] < 3.
Now log (1 + z) = = + v, [s] < 1 for |z| < 3. Hence,
|Zk| < C”'k[e_o (log k)2k—(1+7/2) + k—“/(v—2)/2]’

where C” is a finite constant depending on p and 6. It now follows from (9) that
Zy — 0 as k — «. To complete the proof we have only to verify that

limysee & log [ (Ve (6)) — @ (=M (0))] = —7 2"
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(b) It can be shown in the same way as in proving (a) that

)‘(m)(g)
log [T(M) < (m)(e) IH(m) =k log[ —-w/2wm/2-1 dw:l + Z(m)

= 2m2T (m/2) f
where limy.., Z§™ can be shown to be zero if n = (k log k)'**/™, by an applica-
tion of (4). The rest of the proof follows from the fact that

)‘('”)(0)

X o I S
limg»e k log [2m/21‘( /2)/ w dw:l = Tim/2) e .

For any 0 < o < 1, let
k(@) = [log (K*/7) — loglogk — 2loglog (1 — &)}
and
5% (@) = 2{log (k/T (m/2)) + (m/2 — 1loglogk — loglog (1 — a)7}.

The test for Hy:¢, = u can now be explained graphically as follows: (a) Plot
the graph of the function u on the (X, Y¥) plane along with the sample points
(X1, Y1), -+, Xa, Yur). (b) Of the n samples in the rth fractile group, find
the proportion of ¥ observations below the graph of x (this is U,). (¢) Compute
|U, — plin/p(A — p)}} for r = 1, ---, k. The largest of these quantities is
the test statistic 7., . (d) Reject Hy if 7.5 > 7.1 (o). The test for

§ ooy =y "0 5 Cppy = fim)

can also be explained similarly. Here we plot all the functions u; , * - - , um along
with the sample points and for each fractile group we find the proportion of Y
observations in each of the m + 1 regions into which the (X, ¥) plane is divided

by the graphs of ui, -+, pm . This gives us U fori=1,---,m -+ 1 and
r=1, -,k Foreach r, we compute the frequency x* from observed frequencies
s, -+, U G+ and expected frequencies np, , n(ps — p1), -+ , N (Pm — Pm-1),

n(l — pn) respectively to measure the discrepancy between the hypothesis
and the data in the rth fra,ctlle group. The largest of these quantities is test
statistic 7$7 and we reject HS™ if 752 > 7% (o). The following theorem asserts
that these tests are asymptotically of level « and that they are consistent.

TuroreM 3. Under assumptions (1)—(@1v),

(@) If n = k", v > 0, then the test with critical region tu > Tar (), 0 < a < 1,
s a large sample size o test for the null hypothesis Hoy, and is consistent against
the altematwe H;.

) If n = (klog k)™ then the test with critical region 5% > 5% (@),
0< a<1,isalarge sample size a lest for the null hypothesis HS™, and is con-
sistent agaz'nst the alternative H{™.

Proor. The first parts of (a) and (b) are immediate consequences of Theorem
2. We shall prove here the second part of (b), and the proof for the second part
of (a) will follow on exactly similar lines.

Since we are assuming ¢,, , ¢ = 1, --- , m to be continuous, we need consider
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only the case when ui, -+, un are continuous. Suppose H§™ does not hold.
Then ¢,;, # u; for at least one integer 7 between 1 and m. Let j be the smallest
integer for which ¢,;, # u;. Since ¢,; and u; are both continuous, there exists
some & > 0 and an interval (c:, ¢2) C [0, 1], such that either u;(x) > ¢,,(x) + &
forall z & (c1, c2) or p;(x) < ¢p; (@) — 6 for all z & (c1, ¢2). Suppose the first
is true. (The other case can be treated similarly.) By assumption (iv), for
given & > 0, there exists an ¢ > 0 such that p; < p < p; + 2¢ implies ¢, (x) —
¢p; () < 6 for all 2. Choose p = p; -+ e Then ¢,;1.(x) < ¢y, (x) + 6. Hence,
GZ(¢pj () + 08) > Gz(¢?j+5(x)) =p; + e

For convenience of notation, let po = 0, and ¢,, () = w(x) = — = for all z.
Now for any z ¢ (¢, ¢2),

PIUS) = 1] X, = 2] = Pluja@) < Yo < () | X = 2]
= Plpy;_, (@) < Yy = p;(@) | Xre = 2], since j is
the smallest integer for which ¢,; # u,
> Plg,,_, (@) < Vo < ¢y, (&) + 5| Xoo = 1]
= Gor; @) + 8) — Galr;_, @)
>pit+e— pj—1’= g + e

Now let ¢{ < ¢i < ¢5 < ¢; be points in (¢, (¢; + ¢2)/2) and choose ko suffi-
ciently large such that for & = ko, Flc,) > 1/k,1 — F(c;) > 1/k, F(cs) — F(c1) >
1/k, F(c1) — F(ci) > ax and F(c;) — F(cs) > ax, where {a;} is a sequence
as in Lemma 1. Then for k = ko, F '(r/k) S c1 < cs < F ' ((r + 1)/k)
implies F (cs) — F(c1) < 1/k, which is a contradiction. Hence for each k = k;,
there exists at least one integer r(k) such that ¢; < F " (r(k)/k) < cs. Also
for k = ko, F'(r(k)/k — ax) < ¢1 implies F(c1) — F(ci) < a ; which is a
contradiction, and F' (r (k)/k + ax) = c; implies F(cs) — F(cs) < a which
is a contradiction. Hence for each k = ko, there exists a smallest integer r; (k)
such that

o < F () /k — a) < F ' r()/k+ ar) < (a2 + ¢)/2.

Similarly, for each value of k& greater than some integer, there exists a largest
integer 72 (k) > r1 (k) such that

(a+¢)/2 < Flrak)/k —a) < F (ra(k)/k+ ar) <ecz.
Hence for such large values of &,
F (k) /k — ax) < Xeyggin < F(ri(k)/k + ar)
and F7re(6)/k — @) < Xrgayn < F(ra(k) /b + i)

imply that Iy, € (1, ¢2) for r = ri (k) + 1, - -+, ro(k), and this set of integers
is non-empty. Thus for sufficiently large values of £,
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P[Ikr c (01 ) 62)7 r= 7’1(1{)) + 17 ) 7'2(19)]
= PIF 7 (rs(k)/k — ar) < Xriayn < F - (rs(k)/k + ar), i = 1, 2]
=1 - 2ke—2”k“%, by Lemma, 1.

For each % greater than some sufficiently large integer, now choose and fix
an integer r (k) such that » (k) + 1 = r(k) < ro(k). Then

PIr > 7@ ()] = Ple® > v (2), Tuvay © (o1, ¢2)]
Plrw > 50 (@) | Inray © (c1, &)] X [1 — 2ke —2nka§]
2 P[(Uitho — n4;)"/ng; > 7% (@) | Tesw © (1, c2)]

X [1 — 2ke™*"*H]
PIUS) 0 > ng; + {ngir$® (@)} | Iuray € (a1, €2)]

X [1 — 2ke ")
> [1 — exp (—2nfe — (g% (@)/n}])] X [1 — 2ke™*"*,

by (2). To complete the proof we have only to note that if n = (% log k)* ™™,
then with the choice of a; = &%, both factors in the final expression tend to 1.

\%

v

5. Generalization to the case when X is vector-valued. Suppose (X, ¥Y) =
X1, -, Xs, Y) follows an unknown multivariate distribution. Let F be the
distribution function of X = (X3, .-, X3) and for any z = (z1, :++, 1),
let G. be the conditional distribution of ¥ given X = 2. For given 0 < p < 1,
let ¢, (x) be the p-quantile of G, .

The assumptions we make about F, {G,} and ¢, are the same as (i)—(iv) given
in Section 2, with some modifications. We shall only state the modified version
of assumption (i), the modifications on the other assumptions being obvious.

Modified assumption (ii). The marginal distribution of X; and the conditional
distribution of X; given X; =1, -+, Xem =2,00=22; =1, 5=1,---,
i—1),7=2,---, h, are all continuous and strictly increasing.

In Sections 2, 3 and 4, for a sample of size nk from a bivariate (X, Y), we
defined a random division of [0, 1] into k sub-intervals with the help of the frac-
tiles of X observations. Studying the convergence of the sample fractiles to the
corresponding population fractiles, we were able to give a probability inequality
for the event that the length of each of these random intervals is less than a
specified quantity. Due to the uniform continuity and some other regular nature
of ¢, , the rest was accomplished by investigating the behavior of the p-quantile
of the Y-observations corresponding to the X-observations belonging to each
one of these random intervals, separately.

When X is vector-valued, there is only a partial ordering among the X’s.
We therefore modify our procedure as follows. Let (Xu, -+, Xu, Y1), -+,
(Xw, -+, Xav, Yy) be N independent observations on (X1, -+, X», ¥)
where N = nk". Let N; = nk"™ j =1, ---, h. First, let us arrange the X;-
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coordinates of all observations in increasing order of magnitude and let Xy
be the ¢th order statistic obtained from Xy, - -+, Xiv . Let us divide the inter-
val [0, 1] into random sub-intervals asfollows. I; = [0, Xiwy)], I, = (Xl(,l_l N
Xl(an)], rn = 2, ey, k — 1 and I = (Xl(lc—l Ny ].] For each r, = ]. ]C
consider all samples (X1, ---, Xni, Y;) for which Xi; ¢ I,, and call them the
samples belonging to the rlth fractlle group. Now for each j = 1, ,h—1
and foreachn =1,---,k;---;r; =1, -+, k, arrange the Xj_,.l-coordinates
of all samples belonging to the (1, - - -, r;)th fractile group, in increasing order
of magnitude, and with the N, th, 2N, th, .-+, (k — 1)N;uth order statis-
tics obtained from the X;.;-coordinates of these samples, divide the interval

[0, 1] into random sub-intervals in the same way as Iy, -+, I were defined,
and call these intervals I,,...;n, ***, Irjecopj. Foreach m =1, -+, k; ---
riq1 = 1, -+, k, consider all samples (Xh, -++, Xui, Y;) which belong to

the (r1, -+, r;)th fractile group and for which X 41,6 € Iryevorjr;,, , a8 belonging
to the (r, -+, r;, rj41)th fractile group. Finally, when for each =1, - - -,
ky--+,m=1,---, k, we have exactly n observations belonging to the (r,
-, m)th fractile group, let us arrange the Y-coordinates of all samples be-
longing to the (1, -+ -, 7:)th fractile group, in increasing order of magnitude,
and suppose the order statistics obtained from the Y-coordinates of these sam-
ples are, Y, ...uy < ++* < Yy ooy - Also, for any specified real valued
function u defined on the 4 times Cartesian product of [0, 1] with itself, let

Ui(rly :Th) =1 if (Xli; ) Xhi, Yi) 81"1 X I7'17'2 X e X I"l"2"'7'h7
and if YV 2 pXu, oy Xna)
0 otherwise,

andlet U(ry, -, m) = Do Us(ry, -+, m)/n.
Now we define a random function

@iy oo wm) = Yooyt f 21 8 Loy, X2 € Loy, 0 5 T0 € Lpyryevony s

7'1=1,“',]6;“‘,7'};:1,“‘,]6,

and a statistic

Ulry, -+ ,m) — |
- —_ Su ] b b
Tk rl—l Lo 1fl)cky {p(l - p)/n}*

It can be easily verified that statements regarding the confergence of f.x to
¢», the limiting distribution of 7.. (properly standardized) under the null
hypothesis Hy : (¢, = u) and the consistency of the test “reject H, if and only
if 7ur > Tar(@), where 7i(a), 0 < a < 1,is such that limy.e Pl7a < 7a(e) | Hol
=1 — o«”, made as in Theorems 1, 2 and 3 with k replaced by K = %", are
valid.

For the case of several conditional quantile functions, the results of Sections
3 and 4 can be extended for the multivariate case in the same way.
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6. Concluding remarks.

I. The methods discussed in this paper are designed for the situation when
no definite prior information is available about the conditional quantile func-
tions. The conditional quantile function is studied piecewise over each of a large
number of small intervals, and as a result the inference about each such piece
is based on the Y observations of only a small fraction of the total sample. If
it were known for certain that the conditional quantile function belongs to a
parametric family, we could use the total sample to make inference about these
parameters and would do much better. However if this knowledge were not cer-
tain but only of an approximate nature, then the methods discussed in this
paper would be asymptotically much better than the methods based on such
approximate knowledge.

II. Suppose we have N independent observations available on (X, Y) where
N is large. How should N be factorized into k& and n (the number of fractile
groups and the number of samples in each fractile group)? From the theorems
about asymptotic properties of the proposed estimates and tests we only know
that n = N/k should be at least as large as k” for some v > 0, or k, or (k log
k)™ as the problem may be. The following scrutiny of the proofs of the theo-
rems in this paper might help to make the choice of £ and » more specific:

(a) A large value of k& is needed to make the fractile intervals of X small so
that the variation of the conditional quantile function over each of these inter-
vals is small (Lemmas 2, 3 and Theorem 3 (b)). Large k is also needed to ap-
proximate % log [® (\z (8)) — & (—\:(0))] by —e %/ (x)* (Theorem 2), but this is
not so important, because we could just as well compare 7., with the appropriate
percentage point of the distribution function [®(z) — ®(—=z)]*, for z > 0.

(b) A large n is needed primarily for the purpose of stabilizing the p-quantile
of the Y observations in each fractile group. The rate of this stabilization
depends on the (¢, §) relation in condition (iv). In the simple case when there ex-
ists a function ¥ on [0, 1] such that G, (y) = Go(y + ¢ (z)), where G, has a con-
tinuous density function g, with respect to Lebesgue measure, this (e, ) rela-
tion for small values of e will depend largely on go(¢,(0)). The smaller this
quantity is, the slower is the rate of convergence and the larger should be the
value of n (Lemma 4 and Theorem 3 (b)). This also agrees with the heuristic
reasoning that the asymptotic variance of a normalized sample quantile is
inversely proportional to the square of the probability density at the correspond-
ing population quantile.

Thus the proper choice of &k and » is a matter of striking a balance between
the two objectives mentioned above. For this, any prior knowledge about the
variation of the conditional quantile function and the conditional densities at
the population conditional quantiles will be useful. A preliminary study of the
data may also be of some help.
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