INVARIANTS UNDER MIXING WHICH GENERALIZE DE
FINETTI’S THEOREM: CONTINUOUS TIME PARAMETER!

By Davip A. FREEDMAN
University of California, Berkeley

0. Introduction. In a previous paper [4], the problem of characterizing mix-
tures of certain families of discrete-time stochastic processes was solved. The
analysis will now be extended to continuous time. At least under a suitable
continuity condition, the present discussion gives necessary and sufficient con-
ditions for a process to be a mixture of stationary Markoff chains, or of processes
with stationary, independent increments. Roughly, the law of a process is a
weighted average of laws of stationary Markoff chains if and only if the prob-
ability that the process passes through a given finite sequence of states at given
times depends only on the initial state, the number of transitions between each
pair of states, and the length of time these transitions take (Theorem 2). The
law of a process is a weighted average of laws of processes with stationary,
independent increments if and only if the process has exchangeable increments
(Theorem 3). This theorem was obtained, for real-valued processes, by a dif-
ferent method in Section 4.3 of Biithlmann (1960). The law of a process is a
weighted average of laws of Brownian motions if and only if the process is d-iso-
tropic (Definition 6, Theorem 4). The law P of a process {X is a weighted
average of laws of Poisson processes if and only if, for 7; non-negative integers
and —ow <t <tjp < o, P(X;; 2 Xy;,) =1 and PXy; — Xy, = 145
2 =7 = n) ][5 id;i(t; — t;) ™" is a function of n, t, — t and 4, + -+ + 4,
alone (Theorem 5). Theorem 6 makes precise the idea that the law of a process
is a weighted average of laws of Poisson processes if and only if the process has
exchangeable increments and its sample functions are counting-functions (Defi-
nition 7), and Theorem 7 gives equivalent conditions in terms of holding times.

These results follow easily from Theorems 1 and D.1 of Section 2, which con-
stitute a long and technical discussion of the Kriloff-Bogoliouboff (1937) theory
(see also Oxtoby (1952)) in the appropriate probability space.

Here are two results for discrete-time processes. The first does not follow from
the present study formally, but can be proved by obvious modifications of the
argument. Let P be a probability on (the Borel subsets of) the space of bilateral
sequences of real numbers. Then P can be represented as a weighted average of
probabilities on this space under each of which the coordinates are independent
and Gaussian with mean 0 and common variance if and only if under P any
finite number of coordinates have a spherically symmetric joint distribution.
The second result is proved as Lemma 10. The probability P can be represented
as a weighted average of probabilities under each of which the coordinates are
independent random variables with common exponential distribution if and
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DE FINETTI’S THEOREM: CONTINUOUS TIME 1195

only if the coordinates are non-negative with P-probability 1, and for any nat-
ural number n, any non-negative numbers z,, —n < » < n, the P-probability
that the »th coordinate exceeds z, , —n < » < n depends only onnand D> v, z, .

The results and proofs are stated here for bilateral sequences, and for processes
with time parameter ranging from (— «, « ). With obvious and minor changes,
they hold for one-sided sequences and time parameter set [0, « ). On the other
hand, as Doob (1953) points out on pp. 456-458, the law of a stationary process
on[0,1,---) oron [0, ) can be uniquely extended, so as to preserve station-
arity,to (---, —1,0,1, --+) or to (— o, ). The properties of interest for the
present study, such as stationarity, metric transitivity, transition exchangeabil-
ity, and so on are preserved by this extension. Similar remarks apply to the
stationary increments case.

1. Notation. Some of the notational devices used throughout the paper will
be listed here. The letters j, k, m, n, », refer to integers; ¢ to an integer or an ele-
ment of a discrete space I (in Theorem 2); ¢ to a real number; » to a binary ra-
tional. When written in bold-face, these letters refer to vectors of the same type
of quantity: thus r = (r, --- r,) is a vector of binary rationals. The symbols
Q, Q% W, W™ denote sets, with elements w, *, w, w*. Upper case script letters,
F, 9, G refer to o-fields. If § is a o-field of subsets of @, and 4 C Q, then AF
denotes the o-field of subsets of A of the form AB, B ¢ §. The symbols P and
@ are used for probabilities; bold-face P and Q for collections of probabilities.
The letters X, Y, f, g, h mean functions; E» is used for expectation under the
probability P; L and U with subscripts are functionals. If f and ¢ are real func-
tions on the same space, fg means their pointwise product. If f : B — C while
g: A — B, then fog: A— C by sending a to flg(a)].

In the formal exposition, stochastic process means an indexed collection of
measurable functions from one space endowed with a o-field to a second space
similarly endowed. Only in Section 0, and the first paragraphs of Section 3,
does stochastic process also connote that a specified probability has been placed
on the first o-field.

2. The Kriloff-Bogoliouboff Theory. As in [4], the decomposition of the sam-
ple space into ergodic sets is the fundamental technical device. In the continuous
time situation, however, the classical theory does not apply, for two reasons:
the relevant sample space is not second countable, or even first countable;
and the stochastic processes do not satisfy the requisite measurability conditions.
Decomposing the sample space is actually equivalent to finding (see p. 353 of
Lotve (1960)) a regular conditional probability, on one inseparable o-field,
given another inseparable o-field, simultaneously for a large class of prob-
abilities. The discussion in this section is therefore quite technical. Granted the
results of this section, however, it is hoped that the proofs in Section 3 will be
found simple.

If (8, ) is a Hausdorff space, C(S) denotes the space of bounded r-continu-
ous real functions on 8, in the uniform norm, ||f|| = sup..s |f(z)]. If S is compact,
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C(S) is separable if and only if  is second-countable. The o-field F(S) is the
smallest o-field of subsets of S over which all the functions of C'(S) are measur-
able. This constitutes the Baire o-field, as opposed to the Borel o-field; see Chap-
ter 10 of [5]. If (S, 7) is locally compact and second-countable, this distinction
is vacuous.

Let R* = (— o, «), in the usual topology, and let R be the binary rationals
in R*. The customary representation space for a stochastic process with values
in 8 and time running through R* is @* = J] «s+ S, in the product topology
+* and product o-field §*. It is convenient to introduce the space @ = Iz S,
in the product topology = and Baire o-field ¥ = F(Q). This space approximates
Q" in a sense to be explained later.

There is a group of homeomorphisms 7 = {T" : r ¢ B} on Q, defined by
(T"w)(s) = w(r + 8), weQ; r, s ¢ R. By P is meant the family of all prob-
abilities P on & such that PT" = P, all r ¢ R. There is a corresponding group
T* = {T* : t ¢ R*} on Q¥, which defines the family P* of probabilities P on
g* for which PT™* = P,allt ¢ R*. If fis a functionon @, r ¢ R, define (T"f) (w) =
f(T"w). Notice that this maps C(2) homeomorphically onto C(). There is a
corresponding statement for T and C(Q¥).

There is a natural stochastic process, the coordinate process {£ : ¢ e R¥,
on (2%, ). It is defined by the relation £} (0*) = «*(t). The coordinate process
{¢& 17 & R} on (Q, F) is defined similarly. The product o-field * is the smallest
o-field of subsets of @ containing the o-fields & 'F(S).

Since @ = @ X Q,, Q = I1 tce*—= S, there is a continuous projection map
o from Q% onto @ : a(w”) is ™ restricted to R. If P* is a probability on §*, aP*
is the probability on & defined by (aP*)(B) = P*(o'B).

For future reference, let J, = {r|reR" and n < --- < 1.} and J» =
{t|te R*™, t, < --- < tq. For r & J, let =(r) project Q onto S™ according to
the relation 7(r)(w) = [w(r1), - -+, w(rs)]. The projection =*(t) of @* onto S™

is defined in a similar way for t & Ji.

From now to the end of Theorem 1, unless noted otherwise, suppose that
(8, p) is compact metric. Then (QF, 7*) is compact Hausdorff, but not first
countable. The o-fields * and F(Q*) coincide. Indeed if

A= {fOW*(t)IfGC(Sn),ter,n':- 172"'}

then A is dense in C(2*) by the Stone-Weierstrass theorem (Loomis (1953),
Section 4). The space (2, 7) is compact metrizable; its Baire o-field, Borel o-
field, and product o-field all coincide.

It is convenient to begin the analysis with Q. Lemmas 1-6 provide a decom-
position of @ under the group 7', completely analogous to the Kriloff-Bogoliou-
boff decomposition. To rephrase this, let 9, = {A |4 ¢F and T* "A = A},
m=0,1,---and g = {A|A eFand T"A = A, allr ¢ R} sothat,asm T «
9n | 9. Then Lemmas 1-6 construct one regular conditional probability on &
given d, simultaneously for all P ¢ P.

Let Q = {w |l n D f(T%) = Lo(w, f) exists simultaneously for
all f £ C(Q)}. According to Section 2 of [11], % ¢ F and P(Q) = 1, all P ¢ P.
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Moreover, Lo(-, f) is clearly QF-measurable, and Lo(T'», f) = Lo(w, Tf) =
LO(“’, f)

LemMA 1. Ifw € Qo ,f € C(Q) and r & R, then T"w & Qo , and in fact Lo(T"w, f) =
Lo(w, T'f).

Proor. Since T'f ¢ C(Q),

n—1 n—1

1imyeo n_lg F(T'T"w) = lim,.. n_lg (T (T'w) = Lo(w, T'f),

ag required.
For w e Qy,feC(Q),m = 0,1, --- define

2m—1

(1) Ln(, ) = 2772 Lo(w, T* 7).
It is easy to verify that
n—1
(2) La(w, f) = liMpe 07 2 f(T7"0).
=0

DEeFINITION 1. A probability P on & will be called (m)-ergodic provided PT*™"
= P and 4 €9, implies P(4) = 0 or 1. An equivalent condition is that for
a.a. o [P), for all f £ C(Q), Lun(w, f) = fgfdP. The probability P ¢ P will be
called (T)-ergodic provided 4 ¢ g implies P(A) = 0 or 1.

Since for w € Qo , Lm(w, -) is a non-negative linear functional on C(2) such
that Lm(w, 1) = 1, by the Riesz representation theorem (Loomis (1953),
Section 16) it determines a probability Pn.,. on §. By a recurrent argument
(which from now on will be called ‘“The usual extension argument”), if f is
any bounded, F-measurable function, w &,

2m—1

(3) fﬂ fdPp,=2" 12:,0 fﬂ T#"f dPy, .

Indeed, let F. be the set of non-negative F-measurable functions, €'y = F. n
C(9), and k a natural number. Define Fy to be the set of all g ¢ Fy such that
(3) holds with f = max [g, k]. Then (Loomis (1953), 12H) F; is monotone,
and contains C, . Since F, is the smallest monotone family containing C,
in fact Fr = F, . Allowing k¥ T «, by monotone convergence (3) holds for
f e F,, and by linearity for any bounded F-measurable function.

Define & = {w | w € Q and Py, is (0)-ergodic}. By [11], & ¢ § and P(%) =
1, P ¢ P. Moreover,

LEMMA 2. If w e, 7 e R, then T"w € Q1 and Pn,, is (m)-ergodic.

ReMARK. For some o, the probabilities P, are not invariant under ™"
n=m-+ 1.

Proor. The necessary and sufficient condition for w to be in @, given in
(24) of [11], is

n—1 k—1 2
limyse liMposw 7" D [k‘l > f(T7w) — Lo(w, f)] =0,
=0 7=0
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for all f £ C(Q). But f(T"'T"w) = (T)(T"w) and Lo(T w, f) = Lo(w, T7f),
proving that 770, = & .

Next, if A € 9, , apply (3) with f the indicator of A, to see that P, .(A) =
Py, ,(4). But 9, C 9y, so that w ¢ & implies Py,,(A) = 0 or 1, completing
the proof.

Let @ = {0 | w e, and limy.e Ln(w, ) = L(w, f) exists simultaneously
for all f ¢ C(2)}. Then

Levma 3. The set Qy € &, and P(Q) = 1, all P ¢ P.

Proor. Let D be a countable dense subset of C(2). Let @ = {0w]|w e,
and limy,e Ln(w, f) exists}. Then @ = .0 @, so that & ¢ § (and w — L(w, f)
is QF-measurable). It remains to prove that P(Q;) = 1 for any fixed P ¢ P.
But it is well-known (p. 465, Doob (1953)) that L.(-,f) = Eu(f| 9n) as. [P).
Here E»(- | 9..) is the usual conditional expectation (see Section 1.7 of [3] or
24.2 of [8]) computed for the probability P. Since the 9,, | 9, by a martingale
theorem ([3], Theorem 4.2 on p. 328),

(4) limpso Ln(+, f) = L(+,f) = Ex(f|9) as. [P].

This completes the proof. The lemma, and in particular Equation (4), will be
used constantly in Section 3.

Lemva 4. Ifr e R, w e, f e C(Q), then T'w € Qs , and in fact L(T w, f) =
L(w, T"f) = L(o, ).

Proor. If r = 27%, b is a non-negative integer, a is an integer, and m = b,
L.(T'w, f) = Ln(w, T'f) = Ln(w, f). Let m T o to give the result.

Since P(Q2) = 1 for P ¢ P, it follows from e.g., the dominated convergence
theorem that for such P and f e C(Q),

(5) [rap = [ Lu(sp ap
Q Qg
and by a second application of this theorem to the right side of (5)
= dP.
(6) frap = [ L@

But for w e @, L(w, -) is a non-negative linear functional on C(Q) with
L(w, 1) = 1. Thus L(w, -) determines a probability P, on &, such that: (i)
for f ¢ C(Q), ffde = L(w, f); (il) P, ¢ P; (iii) if f is bounded and F-measur-
able, w — f fdP, is %:9-measurable, and if P ¢ P,

(7) fgfdP = fﬂ?fgfdpwdp.

Indeed, (i) follows from the Riesz theorem, (ii) from Lemma 4, and (iii) from
(6) and Lemma 4 by the usual extension argument. Equation (7) is of con-
siderable importance in Section 3. It follows trivially from (iii) that (w, 4) —
P.,(A) is a regular conditional probability, in the usual sense (see p. 353 of [8]),
on &, given g, simultaneously for all P ¢ P. Thus ¢ is sufficient for P (in the
sense of Lehmann (1959), p. 18).
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The next lemma is perhaps of independent interest; it will not be used in
Section 3. Let @ = {w|w £ 2 and P, is (T)-ergodic in the sense of Definition
1}. Then by Lemma 4, 77Q; = Q3, 7 ¢ R and

LumMA 5. The set Q3 ¢ §, and P(Q%) = 1, all P ¢ P.

Proor. As usual, a probability P ¢ P is (T)-ergodic if and only if for a.a.

w[P], for all f ¢ C(Q)
Lo, f) = f f dP.
Q
Following (2.4) of [11], it is therefore enough to show that for any one f ¢ C(Q),

the set @y = {w|w & D, and for a.a. v £ R, [P.], L(v, f) = L(w, f)} is in &
and has P-measure 1, P ¢ P. This is equivalent to

(8) [ Een - L PR @) = 0.

But by successive applications of dominated convergence, together with Lemma
3, and Equation (2), the left side of (8) is given by

limee | (L0, ) = Lo, HIPa (do)

= lim e limyaw fﬂ [zrl g F(T? ™) — L(w, f)]2 P, (dv)

(9)
N-—-1 — 2
= iMoo iMysew iMysw Ly, {w, [N—l > (T ™) — Lw, f):l }
=0
= liMuyoo liMyse liMpse limyew (M, N, m, n, w)
where

n—1

h(M,N,m,n,w) = n“lg [N’l 2}1 TP — L(w, f):r.

The last iterated limit exists everywhere on €, , and vanishes on a Borel subset
of @, . Hence Q; ¢ §. To show that P(Q;) = 1 for a P ¢ P, it is enough, since
h = 0, to prove that the P-integral of the last iterated limit is 0. But denoting
fn X dP by E»X, the pointwise ergodic theorem and Lemma 4 imply

Bullimae O, N, )] = B {[ N7 5 4077%0) = Do) [}

7=0

so that
N—1 o M 2
limpow Epllimysw A(M, N, m,n, w)] = Ep {[N"l > (1% ") — L(w, f)] }
7=0

and by (2) and dominated convergence,

limN»oo limm—»w EP[limn—»ao h(M, N, m, n, w)] = EP{ [LM(w7 f) - L(w7 f)]2}
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so that by Lemma 3 and dominated convergence,
1My e IMyoe liMpee Epllimy.e h(M, N, m, w)] = 0

which proves (8) via three more applications of dominated convergence.

The next problem is to connect the spaces @ and Q* (cf. the beginning of this
section.) To do this it seems necessary to introduce a continuity condition.
Lemmas 6-8 give the discussion. For Definition 2, suppose only that (S, r) is
metric.

DEFINITION 2. A probability P on & has a fixed point of discontinuity at r ¢ B
if and only if there is a sequence s, — 7, s, ¢ R, such that Plw | lim.e w(s,) =
w(r)] < 1. Write Py = {P | P ¢ P, and P has no fixed point of discontinuity}.
Equally P* on & has a fixed point of discontinuity at ¢ ¢ R* if and only if there
is a sequence s, —{, s, ¢ R¥, such that P*[o* | limu.e o' (s.) = 0 ()] < 1.
Write Py = {P*| P* ¢ P*, and P* has no fixed point of discontinuity.}

If P ¢ P, or P* ¢ P, either no point is a fixed point of discontinuity, or all
are. Further, if P* ¢ P{, then aP* & Py.

Suppose again that (S, p) is compact metric. Define, for r ¢ R, w ¢ @, n =
1,2, -

(10) f(n, ©) = sup {plo(r), w(s)]|s e B, |1 — s| <n7}.

Then f(n, -) is bounded, F-measurable and

LemMA 6. The probability P on & has a fized point of discontinuity at r if and
only if Plo | lim,.. f(n, 0) = 0] < 1.

Proor. The “only if” part is clear. The other implication is a very special
case of some considerations in Chapter I1.2 of [3], but it is easier to prove directly
than by reference. As n increases, f(n, w) decreases. Suppose that M ¢ §, P(M)
=5>0, and for w ¢ M, f(n, w) = 8 > 0, all n. Then there exist numbers
si(n) e R, 1 = j = jn, such that r — vt < s(n) < - < sj(n) < v+ n
and P{w | maxi<;j<;, plow(sj(n)), w(r)} = 8'/2} = 8/2. Define the sequence
{si} as (s1, 82, "+, Sj1s Si1Hy Sir+2, 7 ) = (81(1)7 s2(1), -+, 81’1(1)7 81(2),
(2), - - +). By Egoroff’s theorem P{w | lim,,.w(ss)= w(r)} < 1, completing the
proof.

There is no analogue for Lemma 6 within the o-field 5*.

If A and B are sets, A A B= (A — B) U (B — A) is their symmetric
difference. If P* is a probability on §* then

DrriNTioN 3. The set 4 ¢ §* is P*-almost invariant if and only if
P*(A A T¥A) = 0, all t £ R*. The probability P* ¢ P* is ergodic if and only
if P*(A4)is 0 or 1 for each P*-almost invariant 4 ¢ F*,

If S has more than one element, then 4 ¢ §* and T™4 = A for all ¢ ¢ R*
implies 4 is empty or @*, making this definition necessary. A simple example of a
non-ergodic probability may be obtained by letting S consist of two points, 0
and 1. Define ¢* as the function on R* which is identically 0, and let 7" be iden-
tically 1. Write ¢ = ot n = om™. If 1, denotes the indicator function of the
set A, then the probability P* defined on (@, &) by P*(4) = 31.(:") +
11,(1") is in Py but is not ergodic. Indeed, {0 | o* £ @ and w*(0) = 0} isin
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g*, is P*-almost invariant, and has P*-probability %. In the terminology of
Theorem 1, P assigns mass % each to { and »; and Pf (4) = 1,(¢*), Pi(4) =
1.(n*), 4 e 5™

LemMa 7. If P & Py, there is a unique P* on §* such that P* ¢ Py and P =
aP*. Moreover, if P is ergodic, so is P*.

Proor. Let d; operate on vectors of length n = < by deleting the 7th coordinate.
Thus, di(a, b, ¢) = (a,¢). If n = 4 and n = 2, then d; projects S” onto S" .
If feC(8™"), then dif € C(8™), where (dif)(x) = f(dx). For each n, each
teJy, let L*(-, t) be a non-negative linear functional on C(S™) which is 1
at the function 1, and which satisfies the consistency condition: if n = 2,7 < n,
teJx and f e C(S™), then L*(d.f, t) = L*(f, dit). The collection {L*(-, t) |
t ¢ U,J%) will be called a law. Since the algebra A is dense in C(Q*), by the
Riesz theorem there is a unique probability P* on & such that for each n, each
tedJy, each feC(8™),

() L1 = [ fox*(®) aP”

This is a version of the Kolmogoroff consistency theorem ([8], p. 93).

Starting with a P ¢ Py, define for each n.and each r ¢ J, a functional L( -, r)
on C(8™) by L(f,t) = [of o w(x) dP. Now define L*(-, t) on C(8") fort ¢ J5
thus. If f € C(S™), then L(f, -) is uniformly continuous on J, . Indeed, for all
8 > 0,8, > O there is a § > 0 such that r ¢ R and |r| < § implies P{w | plw(7),
w(0)] > &} < &, . By stationarity, if r and s are points of J, with |r; — s;| < 8,
1 £ i < nthen Plo | maxXigiga plo(ri), o(s)] > 6 = Dty Plo | plo(rs — s1),
w(0)] > &} < nd. Write (8, f) = max {|f(x) —f(y)|:xe 8" ye S
p(zi, yi) =6, 1 ¢ = n}, for § > 0. Then |[L(f, 1) — L(f, s)| < nd|[lf]| +
(81, f), establishing the uniform continuity. Consequently, L(f, - ) has a unique
continuous extension L*(f, -) to Ji. That is, L*(f, t) = limytres, L*(f, 1).
Clearly, L*(-, t) is a non-negative linear functional on C'(8") which is 1 at the
function 1, and {L*(-, t) |t ¢ U,J}3} is consistent. Let P* be the unique prob-
ability on & in relation (L) to L*. It is clear that «P* = P. For each n, each
red,, each r ¢ R and f ¢ C(S™) the equation L(f, r + r) = L(f, r) holds;
this implies that for each n, each t € J5, each t ¢ R* and f £ C'(8™), the equation
L(f,t + t) = L(f, t) holds, and P* ¢ P.

The next step is to prove that P* ¢ P§, i.e., that 0 is not a fixed point of dis-
continuity. Now p is bounded continuous on S X 8, so that P* & P* implies

fg ol (1 B, o ()] dP* = fﬂ ol (h), 0*(0)] dP*
= limeonrer [ olo(r), w(0)] dP
Q

from the construction of P*. This equality, and P ¢ Py, together imply
(11) limzo P*{w* | ple™(t + h), 0" ()] Z 6> 0} =0
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uniformly in ¢. Now suppose s, — 0, and by way of contradiction, that for some
8 > 0, P*{o* | lim SUPpse ple’(sn), ©*(0)] = 8} > 0. For each n, find r, ¢ R
such that P*{o* | plw*(r,), @*(ss)] = 8/2} < n™%, and [s, — 74| < 1/n. This
is always possible by (11). By the Borel-Cantelli Lemmas, a.s. [P¥], plo™(ra),
w*(ss)] < 8/2 eventually, so that because P = aP¥

0 < P*o" | lim supn.w plo™(ra), &*(0)] Z 8/2)
= Plo | lim sups.« plo(rs), «(0)] = 6/2},

the promised contradiction.

The uniqueness is clear.

If A e §* thereis a set 4y £ o 'F, with P*(4 A Ao) = 0. If Pis (T)-ergodic
and 4 ¢ 5" is P*almost invariant, then P*(4) = P*(4,) = P(ad,) since
P = aP*, and to prove that P* is ergodic it suffices to prove P(ad,) = 0 or 1.
Butifr ¢ R,

P(ado A T'ady) = P*(4o A T*4,) = 0.

Let A, = U,.zT"ado. Then P(A; A ado) = 0, and A4; ¢ 9, ie., A; €T and
T"A; = Ay, r € R, so that P(4;) = 0 or 1, which completes the proof.

Remark. Given any P ¢ P which is not carried by a single point of Q, there
are precisely ¢ elements P* ¢ P* (but not & Py) such that oP* = P. This is
true even when, e.g., under P the process (¢, r € R) is a two-state Markoff
chain with standard transition matrix ([2], Section II.2); ¢ of the probabilities
constructed before will not be Markoff.

LemMA 8. Let @ = {0| w eQ and P, € Po}. Then Q¢ S, and P(Q) = 1,
P e Po .

Proor. Define f(n, w) by (10), with e.g., r = 0, and let A = {0 | lim,« f(n,
w) = 0}. Then & = {w | P,(4) = 1} ¢ F, and since from (7), if P &€ Py, then
1 =P(A) = [o, Po(A) dP, so that P(Q) = 1, as required.

Analogues for Lemma 7 may be obtained for weaker continuity assumptions
than Definition 3. However, I have not been able to extend Lemma 8. Thus,
if P, = {P|P &P and limuoer foplo(r), ©(0)]dP = 0}, and & = {w|w e
and P, € Py}, then Q5 ¢ . I conjecture but cannot prove that P(Q) = 1, for
allP e Py .

Combining these results:

TaroREM 1. There is a subsel Q4 € F, and corresponding to each w & Q4 a prob-
ability P on §* such that:

(i) 7" = Q and Py, = P&, for allr ¢ R;

(ii) P(2) = 1, P € Py

(iii) P} & Py, and Py is ergodic;

(iv) of f is bounded and F*-measurable, then w — fm f dP% is Qud-measurable;
and if P* & Py, then [o fdP* = [q, [+ f dP% daP*.

Proor. The set Qs was constructed in Lemma 8. Corresponding to each w & Q4 ,
P, ¢ Py, and so has a unique extension P} on ", such that P} ¢ Py, and P, =
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aP%, by Lemma 7. Part (i) then follows by Lemma 4, part (ii) by Lemma 8,
(iii) by Lemmas 5 and 7. Part (iv) follows from an extension argument. In-
deed, part (iv) holds for f = g-a*(r), where r ¢ J, and g ¢ C(S™). This follows
easily from equation (7). Now let r — t ¢ J. By the construction of P} from
P, in Lemma 7, [ g o #*(r) dP} — [ g o x*(t) dP}, and by dominated conver-
gence part (iv) holds for f ¢ A and so for f ¢ C(Q*) by uniform passage to the
limit, and the usual extension argument completes the proof. Notice that Q, C €,
while P} acts on subsets of Q.

*REMARK. As a consequence of this theorem, the o-field a9 is sufficient for
Py.

The result of Theorem 1 may be clarified by an example. Let (S, p) be the
interval [—1, 1] in the usual metric, and ¢* be a continuous function of period
1 from the real line R* to S; a suitable ¢* maps ¢ into sin 2at. The map M™ of
[0, 1] into Q* defined by M*(0)(t) = ¢* (6 + t), 6 £ [0, 1], ¢ € R* is continuous,
so measurable. The image P* of Lebesgue measure by M™ is ergodic and has no
fixed points of discontinuity. Let M map [0, 1] into @ by the relation M (8) =
aM*(9). Then M is continuous and has a compact, so measurable, range Qu .
The image P of Lebesgue measure by M is clearly «P* and is concentrated on
Qu . For w € Qu , f € C(Q), it is easy to check that Ly(w, f) = f(w). Therefore
Py.., is 0-ergodic but invariant under T° " for no m = 1;

L(w, f) = f fo M(6) do,

thus P, = P and P is (T)-ergodic. Clearly, P is m-ergodic for no m.

This theorem gives a decomposition more than adequate for the purposes of
Section 3, when the underlying process is (strictly) stationary. Some further
analysis is needed for processes which have only stationary increments. The
discussion is entirely parallel to that of the stationary case. Lemmas are num-
bered correspondingly, with the prefix D. Most of the proofs are omitted as ob-
vious modifications of earlier arguments.

The relevant sample space is obtained as follows. Let (G, r) be a topological
group which is T , so Hausdorff (see Chapter VI of [9]). Suppose that (G, 7) is
locally compact and second countable. In Section 3, the additive real line or the
additive integers will be taken for G, but a concrete discussion is harder than an
abstract one. If G is compact, put Ge = @G; if not, put Ge for the one-point com-
pactification of G. Thus Ge is compact metrizable, but may have no algebraic
structure. This leads to certain complications.

The group operations are written as addition and subtraction, and the iden-
tity is written O; it is not assumed that G is commutative. The product spaces
Q and Q* (see the beginning of Section 2) with (G, =) for (8, =) will be written
W and W*. The product space  with Ge for S will be written W, . Two o-fields
are needed on W*; the product o-field 5 already defined, and the difference
o-field &5 c &, which is the smallest o-field of subsets of W™ containing the
ofields (& — £)75(@), s, teR"
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Notice that W < W, in an obvious way, and then W ¢ F(W,) and § =
W% (W,) coincides with the product o-field of W, the Baire o-field of W, and
the Borel o-field of W. The difference o-field §; C & is defined similarly to %y .
Let K be the class of functions f on W for which there exist a natural number n,
a vector r € J,41 , a function g € C(Ge"), such that

fw) = glw(ra) — w(rs), -+, w(rap) — w(ra)] = <g, r>(w).

Notice that f & K is bounded and continuous; the smallest o-field over which
all funetions in K are measurable is precisely F; ; and K is separable in the uni-
form norm ||f|| = supwew |f(w)], because each C(Ge") is.

Let Q be the set of all probabilities P on § such that for all D €54, r ¢ R,
PT'D = PD. Define Q* for W* in a similar way.

Suppose f ¢ K, so that f = <g, r>. The process <g, r + j>;j = 0, 1, ---is
strictly stationary under P ¢ Q. Hence by the pointwise ergodic theorem ([3],
Theorem 2.1, p. 465),

N—-1

iMoo N_IZ:O g, T + >(w) = Us(w, f)
J

exists on a set of P-measure 1 for all P ¢ Q. Now define Wy, = {w|w e W and
Us(w, f) exists simultaneously for all f ¢ K}. Then the reasoning of [11], together
with the separability of K, implies.

Lemma D.0. The set Wo e Fa, and P(Wo) = 1, all P £ Q.

Notice that T"K = K, for r ¢ R, since

<T"g, r>(w) = <g, r + r>(w) = <g, ©>(T'w).

Hence

Lemma D.1. If fe K, r e R, then T"Wo, = Wo and Uo(T'w, f) = Uo(w, T7f).
Also Ug(w, T'f) = Uo(w, f).

ForweW,,feK,m=0,1, - write

(D.1) Un(w, 1) = 27 5 Uw, 7.
Then
(D.2) Un(w, f) = liMye N’lg F(T? "w).

Derintrion D.1. Let G, = {A | A eFgand T A = A}; G = {4 | A e F,and
T'A = A, all r ¢ R}. A probability P on & is called (m) d-ergodic provided
PT*™ = Pon S;, and A £G,, implies P(4) = 0 or 1. The probability P is
called d-ergodic provided P ¢ Q and A ¢ G implies P(A) = O or 1.

Notice that G, is strictly smaller than the sub-o-field of § consisting of the
sets invariant under 7% ". Hence there exist d-ergodic but not ergodic prob-
abilities. As before, m 1 « implies G | G. For most w, the functional U (w,-)
on K, defined by (D.2), induces a unique (under a convention stated below)
probability Q. on F. The technique, being somewhat different from the one
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used to construct P, will be explained in detail. For a fixed re Jpy,
Un(w, <-, 1>) is a non-negative linear functional on C(Ge™), and determines a
probability Pn(w, 1, -) on F(Ge"™). If A ¢ F(Ge"),

Ao = {w | weW, [U)('I’g) - ’w<7'1), Tt ’w(rﬂ+1) - @U('I'n)] 8A},

then 4o ¢ Fq, and w — P, (w, 1, A) is W Fs-measurable. If P ¢ Q, then as usual
P(Ao) = [w, Pu(w, 1, A) dP. Hence, if Wy = {w|w & Wy, and for all m, all n,
allr e Jop1, Pu(w, r,G") = 1}, then Wy eFy, TWy = Wg, and P(Wy) = 1
forall 7 e R and all P € Q.

Now fix w ¢ Wy . There is a unique probability Q... on § in W such that

(4) Qmulw’ |w'(0) = 0] = 1

(ii) [wfdQmw = Un(w, f) for all f e K.
Moreover, it follows from (ii) that

(1) QumwTl™ " = Qmawon Fq.

To see this, consider the class H of all f ¢ C(W,) of the form f(w) = glw(r,),
1<i=n;w0);w(s),l1 =7=n],wherered,,r, <O0and sed,,s; >0,
and g € C(G¢"""") vanishes off a compact subset of G*"*. Let (Df)(w) =
glw(r;) —w(0),1 27 = n;0;w(s;) —w(0),1 =i =nj,weW;=0,weW,
— W. Since e.g., w(s;) — w(0) = [w(s;) — w(si)] + -+ + [w(s) — w(0)],
therefore Df when restricted to W is in K. If fe K N H, Df = f. Define the
functional V,,(w, -) on H as

Vn(w, f) = Un(w, Df).

Then V,(w, -) is non-negative, linear, and assigns the value 1 to the function 1.
Moreover, by the Stone-Weierstrass theorem the algebra H is dense in C(W.,),
so by the Riesz theorem, V,(w, ) determines a probability on §(W.,), which
when restricted to § = WF(Wy) is Qm, . The fact Pn(w, r, G*) = 1 ensures
Qm»(W) = 1. Assertions (i), (ii), (iii) are easy to verify, and this finishes the
demonstration. This is a variant of the discussion of p. 97 of [3].

Define W, = {w|weWq and Qo is (0) d-ergodic}. By the technique of
[11], W, %4, and P(W;) = 1,all P € Q.

LemMa D.2. Forr e R, T"W, = Wy, and w € Wy implies Qm..» 15 (m) d-ergodic.

Define W, = {w|w ¢ Wy, and limu.e Un(w, f) = U(w, f) exists simultane-
ously for all f ¢ K}.

LemMA D.3. The set W e Sy, and P(W,) = 1, all P € Q.

Proor. Since Un(-,f) is a version of Ep(f|Gn) for any P £ Q, and G | G,
convergence follows from the previous martingale argument.

Lemma D4. If reR, fe K, we Wy, then "Wy = Wa, and U(T'w, f) =
U(w, T'f) = U(w, f).

Following the argument for U, (w, f), it is possible to find an invariant &g set,
Wa © W,, such that P(Wy) = 1 for P ¢ Q, and such that for w ¢ Wy, there is
a unique probability Q. on ¥ satisfying:

(i) Qulw' |w'(0) = 0] = 1;
(i) JwfdQu= Uw,f),allfeK;

(iii) Qu e Q.
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Moreover, if fisbounded and F;-measurable, w — fw fd Q. is WyuFs-measurable,
and if P ¢ Q.

(D7) fw fdP = [W“ fw 1 dQu dP.

Let Wy = {w|we Wy and @, is d-ergodic}. Then T"W; = W;, r ¢ R and

Levma D.5. The set W3 e Fq, and P(W3) = 1,all P £ Q.

Definition 2 applies with @ and Q* replaced by W and W*.

Derinrrion D.2. Write Qo = {P | P £ Q, and P has no fixed point of dis-
continuity}. Write Q¢ = {P | P £ Q* and P has no fixed point of discontinuity}.

If P £ Q or P* £ QY either no point is a fixed point of discontinuity or all are.
If P* ¢ Qg then aP* & Qy (where a projects W™ onto W). Recall that Ge is
compact metrizable; let p be a metric on Ge inducing its topology. Fix r ¢ R,
and define

g(n, w) = sup {plw(r) — w(s),0llwe W,seR, |r —s| < 1/n}.

Since w e W, t ¢ B imply w(t) € G, w(r) — w(s) is defined. Thus g(n, -) is
bounded, ;-measurable, and

Lemma D.6. The probability P on § in W has a fixed point of discontinuity at
r if and only if P{w |w e W, limye g(n, w) = 0} = 1.

DerinrrioNn D.3. The probability P* e Q* will be called d-ergodic provided
A e5* and P*(4 A T*A4) = 0 for all ¢ ¢ R* imply P*(4) = 0 or 1.

Lemma D.7. If P € Qo, Plw | w(0) = 0] = 1, there is a unique P* & Qy such
that aP* = P. Moreover, if P is d-ergodic, so is P*.

Proor. The functions r — U(P, <f, 1>) = fw <, >dP on J,q, for fixed
feC(Ge"), are uniformly continuous, and so may be extended to functions
t — U(<f, t>) on Jr 41 . These determine P* just as Un(w, -) determined Qo ,
using e.g. Theorem 1.6 on p. 604 of [3]. Notice that aP* = P entails

P*lw™* | w*(0) = 0] = 1.
Lemma D.8. Define Wy = {w|weW; and Q, e Qo}. Then WieSa, and
P(W,) = 1,adll P Q.

These lemmas together imply

TaEOREM D.1. There ts a set Wi Sy, and corresponding to each we Wy a
probability Qi on F* such that:

(i) TWy= Wy, and Qir, = Qb , for all r ¢ R;

(ii) P(Wy) = 1,all P eQy;

(iii) Q% & Q¢ is d-ergodic, and Qi{w™ | w*(0) = 0} = 1;

(iv) if fis bounded and Fi-measurable, then w— [y« f dQs is W smeasurable,
and P* & QF implies

fwt fdpP* = fm fw. f dQ¥ daP™.

3. Applications. The results of Section 2 will now be used to characterize
mixtures of the laws of the following families of stochastic processes:
(i) stationary Markoff chains, with standard transition matrix ([2], II1.2)
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and no instantaneous states, ([2], p. 149)—a stationary Markoff chain has no
fixed points of discontinuity if and only if it has a standard transition matrix
and no instantaneous states; see Theorem 3 on p. 141 and Theorem 2 on p. 154
of [2];

(ii) processes with stationary, independent increments and no fixed points
of discontinuity;

(iii) the subfamily of (ii) consisting of Brownian motions;

(iv) the subfamily of (ii) consisting of Poisson processes.

To explain e.g. (i) more precisely, let I be a countable set with the discrete
topology. Let (I, p) be (a metric space homeomorphic to) the one point com-
pactification of I. Let L = {L(-, t);te U,J%} be a law in the sense of Lemma
7, with I’ for S. Suppose that (%, @, P) is a probability space and for each
t ¢ R*, X, is a measurable function from (%, @) to (I', $(I')). Then L is called
the law of the (stochastic) process {X; : t e R*} (under P, if any ambiguity is
possible) if for each n, each t & J , each fe C(I'"),

(S) L(f,t) = fx fIX, -, X, dP.

It is well known that many properties of a process are determined by its law—
for example: the property of being stationary; the property of having a fixed
point of discontinuity at 0; or the property of being a stationary Markoff chain
with state space a subset of I, standard transition matrix, and no instantaneous
states.

The problem faced in part (i) of Section 3 is how to decide whether there
exists a probability space (A, ®, u) with three properties:

(a) to each A e A there corresponds a law L, and any process in relation (S)
to Ly is a stationary Markoff chain with state space a subset of I and

(b) standard transition matrix with no instantaneous states;

(¢) for each n, each te Jy, each feC(I'™), the function A — La(f, t) is
®-measurable and

L(f, t) = fA In(f, t)u (dN).

Three conditions are obviously necessary for the existence of such a (A, ®, u).
Any process in relation (S) to L, i.e., of which L is the law, must (i) be I-valued
a.s. at time 0; and (ii) have no fixed point of discontinuity. Moreover (iii) L
must be transition-exchangeable. This concept is most easily defined using the
Kronecker symbol, 6(a, b) = 1 when a = b; = 0 when a # b. Let ¢ ¢ 2 if and
only if for some n (called the length of ¢) o = [6(1), 6(2)], where 6(1) J
and ¢,(2) eI,1 £ v £ n. Write ¢ ~ 7 when both are in Z if and only if both
have the same length (say n), 61(2) = n(2);andif n = 2foreacht > 0,7 ¢ 1,
kel,

D= 6lt, 0u(1) — 0,a(1)18lov-1(2), 510[0(2), K]

= 3l r(1) = s lra(2), Br(2),
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Thus ¢ ~ 7 if and only if both have the same length, begin with same state of
I, and exhibit the same transitions although possibly in different order. Then
L is transition-exchangeable if and only if for any ¢ € =, v ¢ Z, ¢ ~ 7 implies

(%) L{s[s(2), -1, 6(1)} = L{3[=(2), -], =(1)}.

To paraphrase, L is transition-exchangeable means that a process having L for
law is in states ¢,(2) at times ¢,(1) respectively with the same probability that
it is in states 7,(2) at times 7,(1) respectively whenever ¢ ~ 7. This implies,
among other things, that the process is stationary. If u ¢ I", then v — 8(u, v) is
a continuous function on I'", since I has the discrete topology. Hence both sides
of (%) are defined.

The necessity of condition (iii) is almost trivial, since () holds with L re-
placed by Ly, for each A ¢ A. Then (x) follows by integrating out A with respect
to u and applying (¢).

Conversely, if L satisfies these three conditions then a (A, &, x) with properties
(a), (b), (c) exists. This is non-trivial, and is a consequence of Theorem 2.

It is possible that a (A, ®, u) with properties (a) and (¢) exists if and only
if L has properties (i) and (iii). I have not been able to settle this.

To avoid clumsy formulations, Theorem 2 is stated in terms of probability
measures in function space. Construct (2%, *) and (2, §) as in Section 2, with
(I', p) for (8, p). Recall that Pq is the class of invariant probabilities on F*
which have no fixed points of discontinuity (Definition 2), and the coordinate
process {£f : t ¢ R*} on (@, &%) is defined by £ (0*) = »*(*). By the Kolmo-
goroff consistency theorem (see Lemma 7 for the discussion) there is a unique
P* on §* such that L is the law of {£f : t ¢ R*} under P*. If L has properties
(1), (ii), (iii) clearly P* ¢ Py . Write M for the set of all w £ @y C Q (see Lemma
8) such that under P} (see Theorem 1) the process {¢f :t e R*} is Markoff
with state space contained in I. According to Theorem 2, aP*(M) = 1. (Recall
that a projects @ onto ©.) This demonstrates the existence of a (A, ®, u) with
properties (a), (b), (¢). Indeed, for A take M, for ® take M, for u take aP*
restricted to M, and for \ & A take Ly to be the law of the process {£; : ¢t ¢ R¥)
under Py . The relation «P*(M) = 1 implies u(A) = 1. Condition (a) follows
from the definition of M; so does (b), using the remark made earlier that a
stationary Markoff chain has no fixed points of discontinuity if and only if it
has a standard transition matrix and no instantaneous states. Condition (¢)
follows from Theorem 1 (iv), bearing in mind that aP*(M) = 1.

Similar discussions for Theorems 3-7 are omitted.

TuroreM 2. The set M & F. Moreover, if P* ¢ Py , then aP*(M) = 1 if and
only if P*{* | ©*(0) e I} = 1 and the law of the process {£; : t € R*} under P* is
transition exchangeable.

ProoF. Since w ¢ Q4 implies Pl ¢ Py , w ¢ M if and only if w ¢ Q4

Puo | €9 &' (0) e} = 1,
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and for all m, all r &€ Jqq , all i e I™*,
Puo |&'(r;) = 4,1 £ j < n+ 1PJo | &' (1) = 44

12
(12) = Pw[""l | w,(TJ') =14,l 27 = n]Pw[w, | wl(rn) = tn, w,(rn+l) = Un41),
where o ¢ Q. This follows because for w ¢ Q4 the probabilities P, and P} have
no fixed points of discontinuity, so that (12) implies a similar relation with
P, replaced by P} | o replaced by o* ¢ @*, andrby t ¢ J *+1.Thus M ¢ 9.

The “only if”’ assertion is clear from part (iv) of Theorem 1. In the other
direction, suppose P* satisfies the condition. Since

1= aP*o | o €9, &' (0) eI} =fﬂ Puio’ | €9, &' (0) & }aP*(dw),
4

there is an «P*-null set N ¢ & such that w £ & — N implies
P | €9 0 (0)el} = 1.
Let @(m) = ], I, in the product topology, where
Bm={j2™:j=0,=%1,---}.

Let 6., be the homeomorphism of Q(m) onto itself defined by (8.u)(r) =
u(r + 27™), u eQ(m), r € Rm . Let wm, be the projection of Py, into Q(m),
for w £ Qs — N. (The P,,, were defined in the paragraph before Equation (3)).
There is an «P*-null set N, ¢ F, such that w e Q% — N — N, implies 7, is
summarized (Definition 3 of [4]) by the statistics {1} (paragraph after Defini-
tion 2 of [4]). This follows using the argument for Theorem 1 of [4], appealing
to Equation (2) of the present paper, instead of Equation (2) of [4]. But w & Q
implies P, is (m)-ergodic, so w ¢ @4 — N implies mn,, is ergodic under 6, .
Hence w e — N — N, implies that under =, the coordinate process on
Q(m) is Markoff, by Theorem 2 of [4]. Consequently, if w e Q% — N — UrssNn,
and m is so large that all the r; in (12) are of the form n,;27™, the n; integers,
then (12) will hold with P, replaced by Pnm,. . But (I has the discrete topology)
the indicators of the sets in (12) are continuous functions of . Allow m T o,
and apply Lemma 3, to complete the proof of (12), and with it Theorem 2.

Theorem 3 deals with the spaces W* and W of Section 2. Let (X, @, P) be a
probability space. For each t ¢ R*, let X, be measurable from (X, @) to (G,
F(@)). Definitions 4 and 5 will be applied primarily when X; = £/ and
(x, @) = (W* &%), but it is convenient to state them more generally.

DrrintTioN 4. The process {X; : t ¢ R*} has independent increments under
P, if and only if for all n, t ¢ J» , the random variables

{Xh ’Xiz - X‘l y Tt th - th_l}

are independent under P.
The concept of independent increments for {£ : » ¢ R} under P on (W, §) is
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defined similarly. The next step is to define exchangeable increments. Let o ¢ 2 if
and only if for some n (called the length of ¢), ¢ = [(dy1, 032) 1 1 = v £ m],
where ,; > 0 and 0,5 ¢ F(@) for 1 < » = n. For each o ¢ Z, let C(s) be the
set of all s ¢ R*" (where n is the length of ¢) having the property that the open
intervals (s, , s, + 0,1) : 1 £ » < n are disjoint. For s ¢ (o), define 4(s, s) =
{|ze%, Xoppo,,(x) — X,(2) €032, 1 = v = nf.

DeriNiTION 5. The process { X, : ¢ ¢ R*} has exchangeable increments under
the probability P on (%, @) if and only if ¢ ¢ 2, t ¢ C(0), s € C(c) imply

PlA (o, 8)] = P[A (s, 1)].

If (x, @) = (W* ) and X, = & , then P ¢ Q* automatically.

Let w ¢ L if and only if w ¢ W; (Lemma D.8) and under Qj (Theorem D.1)
the process {£ : ¢ ¢ R*} has independent increments. Then

TuroreM 3. The set L € Sa. Moreover, if P* & Qg then aP*(L) = 1 if and
only if {£F : t € R*} has exchangeable increments under P*.

Proor. A point w of W, is in L if and only if, for all n, all k, and all »

n

[ T2 = wiG — D271} Qu(dw)

w j=1

(13) n
- 11 [ #twliz™) - wil - D2 leua),
where {f,} is dense in C'(Ge). Hence L £ F .

The necessity of the condition being clear from (iv) of Theorem D.1, suppose
P* satisfies the condition. Introduce the processes Y, j(w) = w[;27"]
—w[(j — 1)27"],7 = 0, x£1, £2, - -+ . For w outside an oP*-null set N, € Fa,
under Q.. the process {Y..;:j7 = 0, &1, - - } is exchangeable; that is, any n
distinct variables of the process induce the same measure in G".

To prove this, let {g,} be dense in C(Ge"). Let #(1 -+ n) = (% -+ ¢,) be a
permutation, and for g e C(Ge™) define (wg)(zy - xa)g(ziy - - s,). Write

gV[Ym.l(w) v Ymn(w)] = G.(w), TQV[Ym,l('w) cos Ypa(w)] = 1rG,,(’w).

Then it is enough to prove that, for a fixed n, » and =, a.s. [«P*],
19 [ @) = [ 76,0 Qnulde).
w w

For then on discarding a countable union of oP*—null sets of 4, (14) would
hold for all » and all =, and hence for all f ¢ C(Ge") and all «. It would then
hold for all n by a similar ritual, and that gives exchangeability.

But the LX(W, &, aP*) norm of the difference of the two sides of (14) (which
are real functions of w) is, in virtue of (D.7), dominated convergence, and the
continuity of G, and =G, ,



DE FINETTI’S THEOREM: CONTINUOUS TIME 1211

e | [ N5 (@ = ) (17 [ aP*(au)

=0
N—1 N—1

= limysw N 2D, D { fw G (T " wG (T " w' ) aP*(dw")

j=0 k=0

(15) + [ 46T 0)a G (T VP (d')
w

— [ (T G (T " YaP* (')
w

— / WG,(T”"'”w')G,(T“"”w’)aP*(dw’)}.
w

For |j — k| = n, each summand vanishes, in view of the exchangeability of
{Yp;:j=0,=, -} under P*. The relative frequency of terms with |j — k| <
n goes to 0, and each lies in [—2 |lg,|| , + 2 |lg,]|], proving that both sides of (15)
are 0, so that (14) holds, a.s. [«P™].

But for w e Wy, Quw is (m) d-ergodic, which implies that under it

{Ym-f:j: 07:|;I7 }

is metrically transitive. For w ¢ Wy — U=y N,, it follows that under @, ., the
process {Y,,; :j = 0, &1 ---} consists of independent, identically distributed
random variables. To see this clearly, notice that if A; eF(G),1 = j = n + 1,
andv=n+1

Quadw |w' e W, Y j(w') ed;, 1 £j<n+ 1
= Quofw | W e W, Yy (w)ed;, 1 25 =n,YVn,edny)

in virtue of exchangeability. But as » — «, the right side goes in first Cesaro
mean to

Quufw | e W, Y (w')ed;, 1 2j=n}
Qm.w{wl | w' e w, Ym,,,+1(w’) & An}

in virtue of metric transitivity (see p. 435 of [8]). (This argument evidently
recapitulates the proof of De Finetti’s theorem given in [4]). Hence (13) holds
provided m = k, and @, is replaced by Qn.., . Allow m T <« and apply Lemma
D.3 to complete the proof.

The substantial assertion in Theorem 3 is: if (i) P* ¢ Q¢ and (ii) {& : t ¢ R}
has exchangeable increments under P* then P* is a weighted average of prob-
abilities under each of which {£ : ¢ ¢ R*} has stationary, independent incre-
ments and no fixed points of discontinuity. Now (i) may be weakened when G
is abelian and has a connected character group. For then P ¢ Q and {£, : r ¢ R}
having exchangeable increments under P imply that P ¢ Qo (the argument is
the same as on the real line). Hence, if P* satisfies (ii), it follows that aP* & Qo .
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Suppose also that P* is continuous in distribution, which means that for any n,
if t(v) e J» converges to t & J5 as v — , and if f £ C(Ge"),

[ gentmnap* — [ fox*t) ap*.

Then P*is determlned by aP*. For 31mphc1ty, suppose P*{w™ | w*(0) = 0} = 1,
and define Q" on 5* by Q*(4) = [, Q}(4) daP*. It follows that «Q* = *,
so P* = Q" Qs .

Even when @ is the additive real line, (i) may not be dropped entirely. For
if ¢ is any non-measurable function with ¢(¢ + s) = ¢(t) + ¢(s), there is a
unique probability on F*, assigning outer measure 1 to {¢}; points of W* are
not in ¥, and have inner measure 0 for any measure on §*. Of course, this
probability satisfies (ii) (under it the coordinate process has stationary, in-
dependent inerements) but not (i).

Derinirion 6. The real random variables {Z; - -+ Z,} on (W*, * P*) will
be called isotropic (under P*) if their joint distribution (under P*) has spherical
symmetry (in n-dimensions). The bilateral sequence { --- Z_y, Zy, Zy, -+ }

will be called isotropic under P* if, for every n, {Z_,, -+, Z,} is isotropic
under P*. The process {Z,: — o < t < =} w1ll be called d- 1sotroplc under
P* if, for every h > 0, the bilateral sequence Z, wh — Zu—nn 18 isotropie
under P*,

Lemma 9. Let X and Y be random variables on (W™, &) which are 1sotropic
under P* and independent. Then, under P*, they are normal with mean 0.

Proor. This is an immediate consequence of known results, but it is easy
to give a direct proof. It is clear that X and Y have a common characteristic
function z — ¢(2°) under P*, where ¢ is a real continuous function on [0, «),
go(O) 1, |¢| = 1. Their JOlIlt characteristic function under P* is (2, 22) —
vt + 22), where ¢ is real and continuous on [0, «), and ¥(0) = 1. Hence
o(21)e(23) = ¥(21 + 23), and the only continuous solution is o(u) = €. Since
¢ is real and bounded, A = 0, completing the proof.

For Theorem 4, replace G in W* and W by the additive group of real numbers.
Let B = {w|we L, and under Qj the process [(f : t ¢ R*] is a Brownian mo-
tion}. Then

TarorEM 4. The set B £ $q . Moreover, if P* ¢ Qg , the necessary and sufficient
condition that aP*(B) = 1 is: under P* the process {¢f : t € R*} is d-isotropic.

Proor. Let {f;} be a dense sequence in the space Co(R") of continuous func-
tions on R"™ vanishing off compact sets, and let {p,} be a sequence of rotations
of R™ dense in the set of all rotations of R". If f & Co(R"), define (p,f)(x) =
f(px) for x e R, so p,f e Co(R™).

Then by Lemma 9, w ¢ B if and only if w ¢ L and for all k, », s, and n = 2,

[ 127 = wl( = D2¥,1 5§ < n)Quldw’)
(16)
= [ nfitliz™ = ol = D21 5§ 5 n)Quldu).
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Thus B ¢ %, . Necessity is again clear by Theorem D.1 (iv). For sufficiency,
the argument used in Theorem 3 shows that if P* satisfies the given condi-
tion, there is a aP*-null set N ¢ %4, such that w ¢ W, — N implies (16) will be
satisfied with @, replaced by Qum,.» , provided m = k. Allowingm T o completes
the proof.

For Theorems 5, 6, and 7 it is convenient to work in the spaces W™ and W of
Section 2, with the additive group of integers for G. Let S = {w|we L, and
under Qb , [£F : t ¢ R*] is a Poisson process}. Then

TureoreM 5. The set S € F4, and if P* ¢ Qg , the necessary and sufficient condi-
tion that aP*(S) = 1 is: for each n = 2, each t & Jy , each vector [i; : 2 < j < n)
of non-negative integers, under P*, w*(t;) = w*(t;1) a.s., and

PHw*(t;) — w*(tin) = 4;,2 25 = n}HZ ity — tia) ™
e

= f(tn - t17n7 Z;zf)r
j=

where f(-, -, +) s some function of triplets of positive reals, positive integers, non-
negative integers.

Proor. If w e L, under Q, the {Y,,;:7 = 0, &1 --- } process is a sequence
of independent, identically distributed random variables; and w ¢ S if and only
if they are Poisson. Now ([4], Theorem 4) gives a necessary and sufficient con-
dition for this: under @, , the random variable Y,,; is a.s. non-negative, and

n

Qw[Ym,i = 1,1 é] = n]H (’L;)!

i=

(17) .
= QulYmi=Fki,1=]= n]II1 (ks)!
=

whenever 7; and k; are non-negative integers with Y j_j4; = 2. k;. Since
there are only a finite number of n-tuples of non-negative integers with a fixed
sum, (17) implies S & F4. As before, necessity is clear; conversely if P* satisfies
the condition, then (17) holds with Q. replaced by «P*. To see this, replace =
in the condition of the theorem by n + 1, ¢; by (j — 1)2 ™ and 4; by ¢;4, 1 <
j = n+ 1, so that t,01 — & = n2™" depends only on n and m, and

n+1 . X
II (4 — tj) 79t = 2%
=2

depends only on m and Y ¢;. By previous arguments there is an oP*-null
N &%, such that if we W, — N, (17) holds with @, replaced by Q... , for
sufficiently large m. Since the indicator function of the set inside braces in (17)
is continuous (@G having the discrete topology) an application of Lemma D.3
completes the proof.

The problem of characterizing mixtures of Poisson processes goes back at
least to Lundberg (1940). Some variations on Theorem 5 might therefore be of

interest.
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DerFINITION 7. A point w* ¢ W* is a counting function if and only if there is a
bilateral sequence { --- o_1, oo, o1, -} of positive extended real numbers,
with Qo0 = D im—10; = o such that

n

w () — w*(0) = min{n|n = Z ;=1

for t = 0; and w*(0) — w*(¢) = min{n|n = 0, > it sy (—o) = 8 for
t < 0. A point we W is a counting function if it is the restriction to R of a count-
ing function w* ¢ W*. Call W, the set of counting functions in W.

Notice that w & W, determines ¢; = o;(w) uniquely. Moreover, it is not hard
to see that W, & %4 and o;(-) is Fs-measurable. However, the set of counting
functions in W* is not in §*. For t ¢ R*, put Y, (w) = 0,w g Wo; = lim, | ¢,rcrw(r),
w e W, . Then (¢, w) — Y,(w) — Yo(w) is (—», ©) X Fs-measurable.

TreoreM 6. Let P* & Q¥ and be contmuous in  distribution; suppose that
oaP*(W,) = 1 and the process {5t teR* } has exchangeable increments under
P*. Then P* & Qf and aP*(S) =

ReMARK. The converse is omltted as trivial.

Proor. From the proof of Theorem 3, there exists an oP*-null set N & 4 such
that for w e W; — N (Lemma D.5) the process {& : r & R} has stationary, in-
dependent increments under Q,. From Equation (D.7), there is a further
oP*null set M & F4 such that w e Wy — N — M implies Qw(W ) = 1. But then
by continuity considerations, under @, the process {Y::t e R *1 has stationary,
independent increments and all its sample functions are counting functions.
For such w ([3], pp. 398-404), Q. € Qo and under @, the process {Y;:teR *
is P01sson Further, Q. € Qo 1mphes that the probablhty measure induced on
(W*, %) by {V§ is premsely Q% , so that w ¢ S and oP* (S) = 1. Since P* is
contmuous in distribution, it is uniquely determlned by oP*. If Q* is defined on
5 by Q*(4) = [s Q,,,(A)aP*(dw) then aQ* , so that P* = Q* ¢ Q7 ,
completing the proof.

Let (%, @, P) be a probability space, and (- o_1, oo, o1 * -+) a bilateral
sequence of real @-measurable functions, such that (1) 0 < oy < 0 (ii)

R o= Do = . Deﬁne Y«(z) = min {n|n = 0, Srooi(z) = 8
fort e[0, o],z e %; =min{n|n =0, D ity [—oi(x)] S forte (— o,
0), z ¢ %. Then (¢, z) — Yi(x) is CJ(— w0, ) X G-measurable.

TuroreM 7. The following four conditions are equivalent:

(1)foranynandt>0—n=z<n Plz|zeX, oi(z) Z t:;, —mn =1 =

n} = f(n, S . ti), where f(-, -) is some function of pairs of non-negative n-
tegers, positive real numbers;

(ii) there is a probability m on (0, «) for which

Plz|zeX,0i(z) 2 ti, —n S = n} = f exp <—)\ Z tz-> m(d\);
0

i=—n

(i) {Y.:te R } has exchangeable increments under P;
(iv) for each n = 2 and t e J ¥, and ; non-negative integers, 2 = j = n
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Plz|z e, Yy(x) = Yy (x) =4;,2 £j = n}
= I:Il (tj —_ tj_l)ij(’ij!)_l:l L exp {‘—')\(tn —_ tl) —I- (IOg )\) 221,]} M(d)\).
J= i=

The m in (i) and (iv) is the same, and is unique.

Proor. The equivalence of (i) and (ii) follows easily from Lemma 10, and
the equivalence of (iii) and (iv) follows almost as easily from Theorem 6.
Indeed, under (iii) the process {Y, : r ¢ R} has exchangeable increments and
hence no fixed points of discontinuity. Since Y.(z) is continuous from the right
for each z ¢ X, by a routine argument {Y, : ¢ ¢ R*} has no fixed points of dis-
continuity and Theorem 6 applies to its law. Clearly, (iii) and (iv) imply (i)
and (ii) (with the same m) because the holding times of a Poisson process are
independent, identically distributed exponential random variables. Conversely,
(i) and (ii) imply that given its invariant o-field, the process {::: o1, oo,
o1 -+ +} is distributed conditionally as a bilateral sequence of independent ran-
dom variables with common exponential distribution (Lemma 10). Hence,
given that o-field, the process { Y} has conditionally a Poisson law. This implies
(iii) and (iv). The uniqueness of m is an elementary fact of Laplace transform
theory, and this completes the proof.

Lemma 10 is stated and proved in the notation of [11], with the following
identifications: Q is the space of bilateral sequences of non-negative extended
real numbers, in the product topology; T is the shift. In addition, call 9 the o-
field of all Borel subsets of @ invariant under 7. Let {£ :¢ =0, +1, -1,
£(p) = p(2) be the coordinate process on Q. A probability u on @ will be called
planar if uf{q|qeQ, 0 < &(g) < «} = 1 and for all n, all positive reals z,,
Yy, —N v = n, :L=—n Ty = Z:;—n Yv 1mplles

walqeQ &(Q) 22, —n<v = n
=pulglqe &(Q) =y, —n = v = nj.

A planar u is evidently invariant under 7', for under it the coordinate process
is even exchangeable. Write II for the set of all p ¢ @ such that u, is planar.

Lemma 10.

(i) The set I ¢ 9, and if u is planar, p(II) = 1.

(ii) If v is planar and ergodic, under v the coordinate process is a bilateral se-
quence of independent random variables with common exponential distribution.

(iii) 4f u is planar, the u-conditional distribution of the {&} given 9 is that of a
bilateral sequence of independent random variables with common exponential dis-
tribution.

Proor.

(i) Let A, be the set of pairs x and y of vectors of positive rationals of length
(2n + 1) with D pe n &, = D p—n¥». Let B,(x,y) denote the set of p £ Qr
for which (18) holds with u, for 4. Then
o= {plﬂp[Q|0 <&(g) < »] =1} N {B.(x,y) | (x,5) eda,n =12, e}

(18)
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because if (18) holds for a given x and all (%, y) € 4., it holds for all real posi-
tive z, and y, satisfying >, z, = 2, 9, , both sides of (18) being continuous
from the left. Since for any Borel B C Q, p — uy(B) is r9-measurable, it fol-
lows that II ¢ 4.

For any fixed bounded Borel measurable f on @, {p|p € Qr, M(f, p) =
[ f duy} is invariant and has invariant probability 1. Indeed, if § is an invariant
probability, p — M(f, p) and p — [ fdu, are both versions of Es(f|9). Let
Qo be the set of all p ¢ @ for which

(19) M) = [ fdup, all D

where D is the (countable) set of all indicator functions of subsets of @ of the
type {¢ | &(¢) = z,, —n = » < n} wheren = 1, 2, --- and the z, are positive

rationals. Then_Qo e ¢ and has invariant probability 1. By familiar reasoning,

if u is planar then u{p|p € Q, wmlg |0 < &(g) < =]} = 1. Using the even
more familiar argument of Theorem 1 of [4], but appealing this time to (19),
for each n and (x,y) € A, , u[Ba(%, y)] = 1. It follows that u(II) = 1, proving

(i).

(ii) Under » the {£;} are exchangeable, so by the argument of Theorem 3 in-
dependent and identically distributed. Let G(z) = »{q | &(q) = z}. Since
G(0) = 1, (18) implies G(z)G(y) = G(z + y); since G is monotone decreas-
ing to 0, and G(0—) = 1, G(z) = ¢~ for some positive finite A, which proves
(ii).

(iii) Since (p, 4) — up(A4) is a regular conditional probability given ¢ under
any invariant g, (iii) follows from (i) and (ii).
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