AN UPPER BOUND FOR THE NUMBER OF DISJOINT BLOCKS
IN CERTAIN PBIB DESIGNS
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1. Introduction and summary. Majinder [3] obtained an upper bound for the
number of disjoint blocks in BIB designs. In this paper we give an upper bound
for the number of disjoint blocks in (i) Semi-regular GD designs, (ii) PBIB
designs with two associate classes having triangular association scheme, (iii)
PBIB designs with two associate classes having L, association scheme, and (iv)
PBIB designs with three associate classes having rectangular association scheme.
The main tools used to establish the results of this paper are the theorems proved
by (i) Bose and Connor [1], (ii) Raghavarao [4] and (iii) Vartak [6].

2. An upper bound for the number of disjoint blocks in semi-regular GD
designs. An incomplete block design with » treatments each replicated r times
in b blocks of size k is said to be group divisible (GD) [2], if the treatments
v = mn can be divided into m groups, each with n treatments, so that the treat-
ments belonging to the same group occur together in A; blocks and treatments
belonging to different groups occur together in A, blocks (A; # A;). The param-
eters of such a design are v = mn, b, 7, k, M1, e, 1 = n — 1, np = n(m — 1).
They obviously satisfy the relations bk = vr, (n — 1)\ + n(m — 1)\, =
rk — 1), r 2 N,7 =\

Semi-regular GD designs [1] are characterised by » — \; = Oand rk — v-X; = 0.
Bose and Connor [1] proved the following theorem for semi-regular GD designs.

TuEOREM 2.A. For a semi-regular GD design, k is divisible by m. If k = cm,
then every block must contain ¢ treatments from every group.

We use Theorem 2.A to obtain an upper bound for the number of disjoint
blocks which have no treatment common with a given block of semi-regular
GD designs. The result is given in Theorem 2.1.

THaEOREM 2.1. A given block of the semi-regular GD design cannot have more than

_ v(v —m)(r — 1)*
w—kOb—1r)—@— rh)v — m)

disjoint blocks with it and if some block has that many disjoint blocks, then
k(v = k)b — 1) — (v — k) (v — m))/(v — m)(r — 1)
18 an integer and each non-disjoint block has
k@ = k) — 1) — (v — k) (v — m)]/(v — m)(r — 1)

treatments common with that given block.

b—1
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DISJOINT BLOCKS IN PBIBD 399

Proor. Let the given block have d disjoint blocks. Let it have x; treatments
common with the ¢th of the remaining (b — d — 1) blocks. Considering the
treatments of the given block singly, we obtain

b—d—1

(2.1) ; z; = k(r — 1).

The given block, by virtue of Theorem 2.A contains k/m treatments from each
group which form pairs of first associates. Hence considering the treatments of
the given block pairwise, we get

b—d—1

(2.2) Z ri(x; — 1) = k[(k — m)M + k(m — 1)\ — m(k — 1)]/m.

1=1

Now for semi-regular GD designs, X2 = rk/v. Then from ny:A\y + ng ke = 71
(k—1),weget = r(k —m)/(v — m).
Let & = p =i 'zi/(b — d — 1). It follows from (2.1) and (2.2) that
b—d—1
e Kl —k)b—1) — (v —rk)(v — m)
Z (xz x) - 1)(1) _ m)

i=1

(23)
_ Br—1)*
b—d-1)"
As D528 (zs — £)° = 0, it follows from (2.3) that
(v —m)(r —1)°
w—kb—1r)— @ — k) —m)’
which proves the first part of Theorem 2.1. If, however,
v(v — m)(r —1)°
w—kb—-—1)—@W—rk)v — m)’

(24) d=b—1-—

(2.5) d=b—1-—

then D> =i (z; — %)* = 0, giving that
El(v —k)(b—17) — (v —1k)(v — m)]
vip — m)(r — 1)

is an integer, and the given block has k[(v — k) (b — r) — (v — 7k) (v — m)])/
v(v — m)-(r — 1) treatments common with each of the non-disjoint blocks.

The following are the companion theorems to Theorem 2.1.

THEOREM 2.2. The necessary and sufficient condition that a block of semi-regular
GD design has the same number of treatments common with each of the remaining
blocks is that (i) b = v — m + 1 and (ii) k(r — 1)/(v — m) is an gnteger.

Proor. Let a block have z; treatments common with the ¢th of the remaining
(b — 1) blocks. Then from (2.3), noting that d = 0, we obtain

(2.6) T, =
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All factors of the r.h.s. of (2.7) except (b — v + m — 1) are positive. Hence
the result immediately follows.

TrHEOREM 2.3. If a block of the semi-regular GD design with parameters v = mn
= tk, b = tr, (t an integer greater than 1), has (¢ — 1) blocks disjoint with it, then
the mecessary and sufficient condition that it has the same number of treatments
common with each of the non-disjoint blocks is that (1) b = v — m + r and (ii)
k/t is an integer.

Proor. Let a block have x; treatments common with the 7th of the remaining
(b —t) = t(r — 1) non-disjoint blocks. Then, we have, from (2.3), noting that
d=1¢-—1,

Sy B D=0t m—n)

(28) tv — m) ’

where £ = k/t. The .result, then, immediately follows from (2.8).

We get the following two corollaries from this theorem.

CoroLLARY 2.3A. For a resolvable semi-regular GD design, b = v — m + r.

This is also proved in [1]. ‘

CoroLLARY 2.3B. The necessary and sufficient condition that a resolvable semi-
regular GD design be affine resolvable is that it has a block which has the same number
of treatments common with each block not belonging to its own replication.

3. An upper bound for the number of disjoint blocks in PBIB designs with
two associate classes having a triangular association scheme. A PBIB design
with two associate classes is said to have a triangular association scheme [2],
if the number of treatments is v = n(n — 1)/2 and the association scheme is an
array of n rows and n columns with the following properties:

(a) the positions in the principal diagonal are blank,

(b) the n(n — 1)/2 positions above the principal diagonal are filicd by the
numbers 1,2, - -+ -, n(n — 1)/2, corresponding to the treatments,

(¢) the array is symmetric about the principal diagonal,

(d) for any treatment 6, the first associates are exactly those treatments which
lie in the same row and the same column as 6.

The primary parameters of this design are v = n(n — 1)/2, b, r, k, A, Ae,
n=2n—4,n = (n — 3)-(n — 2)/2. The following Theorem is proved by
Raghavarao [4].

TueoreM 3.A. If in a PBIB design with two associate classes having a triangular
association scheme vk — v Ay = n(r — A\1)/2, then 2k s divisible by n. Further every
block of this design contains 2k/n treatments from each of the n rows of the as-
sociavion scheme.

We use Theorem 3.A and obtain an upper bound for the number of disjoint
blocks which have no treatments common with a given block of this design. The
result is contained in Theorem 3.1.

THEOREM 3.1. A given block of the PBIB with two associate classes having tri-
angular association scheme and rk — vA; = n(r — \1)/2 cannot have more than
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_ n(v —n)(r — 1)*
nb+1—2r)— (v— rk)(n—2)

disjoint blocks with it and if some block has that many disjoint blocks, then kin(b
+1—-2r) — (v — 7k)-(n — 2))/n(v — n)-(r — 1) is an infeger and each
nondisjoint block has k[n-(b + 1 — 2r) — (v — rk)-(n — 2))/n(w — n)-(r — 1)
treatments common with that given block.

Proor. Let the given block have d disjoint blocks. Let it have z; treatments
common with the sth of the remaining (b — d — 1) non-disjoint blocks. Then,
considering the treatments of the given block singly, we have,

b—1

b—d—1

(3.1) > x=k(r—1).
=1
Considering treatments of the given block pairwise and using Theorem 3.A, we
have
b—d—1

(32) Z=; zi(z — 1) = n-(2k/n)(2k/n — 1) (A — 1)

+ [k(k — 1) — n-(2k/n)-(2k/n — 1)]-(\y — 1).

Let v = vy-v2, where v; = n/2,v, =n — 1 = 20, — 1. From 7k — v-A\; = n(r
— M)/2, we get iy = r(k — v1)/2 v1(v; — 1). Also, we see that n; = 4(v»; — 1),
ne = (v1 — 1) (ve — 2) and Ay = r(kv; + v; — 2k)/v;- (11 — 1) (v2 — 2). Putting
n = 2 v, and substituting the values of A; and A, in (3.2), we obtain
b—d—1
(33) 2 wilwi— 1) = Kln(b + 1 —2r) — (v — rk) (o — 1)]/0:(v — 201)
. =1

— k(r —1).
Let £ = k(r — 1)/(b — d — 1). Then from (3.1) and (3.3), we have
b—d—1 e Enb+1—2r) — (v — rk)(n — 2)]
(34) ; (e 2= n(v — n)
. _ K(r —1)* >0
b—d—1="

It follows from (3.4) that
n(v —n)(r —1)*
nb+1—2r)— (v—rk)(n—2)°
If, however,d = b — 1 — n(v — n)-(r — 1)/[n(d + 1 — 2r) — (v — rk)

(n — 2)), then, D =i (z: — &)° = 0, giving
36) zi=kinb+1—2r) — (v—rk) (n —2))/n(® —n) (r = 1).
Theorem 3.1, then, follows immediately from (3.5) and (3.6).

The following are the companion Theorems to Theorem 3.1.

(3.5) d=<b—-1-—
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THEOREM 3.2. The necessary and sufficient condition that a block of a PBIB
design with two associate classes having a triangular association scheme and vk —
v-M = n(r — N)/2 has the same number of treatments common with each of the
remaining blocks is that () b = v — n + 1 and (i) k(r — 1)/(v — n) isan
integer.

Proor. Let a block have z; treatments common with the ith of the remaining
(b — 1) blocks. Then from (3.4), noting that d = 0 we get

b—1
(3.7) ;(:ci —)'=K0b—r)(—k)(b+n—1—0)/v(v —n) (b—1).

Then, the Theorem 3.2 follows immediately from (3.7).

TaEOREM 3.3. If a block of a PBIB design with two associate classes having a
triangular association scheme with parameters v = n(n — 1)/2 = th, b = tr,
(¢t an integer greater than 1), and rk — v-A, = n(r — \)/2 has (¢ — 1) blocks
disjoint with 4t, then the mecessary and sufficient condition that it has the same
number of treatments common with each of the remaining mom-disjoint blocks is
that (i) b = v + r — n and (ii) k/t is an integer.

Proor. Let a block have z; treatments common with the 7th of the remaining
b — ¢t = t(r — 1) non-disjoint blocks. Then we have from (3.1) and (3.3),

(3.8) g (i — ) =Klnb+1—2r) — (v — k) (v, — 1D]/vi(v — 201)

—E(r— 1)/t

Now v = thk = v1-v; = v;-(2-v; — 1), hence ¢ = v,(2-v; — 1)/k. Therefore, from
(3.8), we get

(3.9) b;z: (¢i — &) =K@ —1k) (b+n—v—r)/v(v —n).

Then, Theorem 3.3 follows from (3.9). We get the following corollaries from this
Theorem.

CoroLLARY 3.3A. For a resolvable PBIB design with two associale classes having
a triangular association scheme and rk — v-A\; = n(r — M)/2,b = v —n + 1.

CoroLLARY 3.3B. The necessary and sufficient condition that a resolvable PBIB
design with two associate classes having a triangular association scheme and rk —
v-M = n(r — N)/2 be affine resolvable is that it has a block which has the same
number of treatments common with each block not belonging to its own replication.

4. An upper bound for the number of disjoint blocks in PBIB designs with
two associate classes having L, association scheme. A PBIB design with two
associate classes is said to have a L, association scheme [2] if the number of
treatments is ¥ = s°, where s is a positive integer and the treatments can be
arranged in an s X s square such that treatments in the same row or the same
column are first associates; while others are second associates. The primary
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parameters of this design are v = %, b, r, k,my = 2(s — 1), me = (s — 1), N
and A;.

The following theorem has been proved by Raghavarao [4].

THEOREM 4.A. If in a PBIB design with two associale classes having a L, associa-
tion scheme tk — v\ = s(r — N\), then k is divisible by s. Further every
block of this design contains k/s treatments from each of the s rows (or columns) of
the association scheme.

We use Theorem 4.A to obtain an upper bound for the number of disjoint
blocks which have no treatments common with a given block of this design for
which vk — v-A = s-(r — A1). The result is given in Theorem 4.1.

THEOREM 4.1. A given block of the PBIB design with two associate classes having
a L, association scheme and rk — v-\, = s(r — A1) cannot have more than

_ o(r —1)% (s —1)%
b—7r)v—k)— (s—1)2(v— rk)

disjoint blocks with it and if some block has that many, then k-[(b — r) (v — k)
—(s — D% (v — rk))/v-(r — 1) (s — 1) is an integer and each non-disjoint
block has k[(b — r)-(v — k) — (s — 1)*-(v — 7k))/v-(r — 1) (s — 1)* treat-
ments common with that given block.

Proor. Let the given block have d disjoint blocks with it. Let it have z;
treatments common with the 7th of the remaining (b — d — 1) non-disjoint
blocks. Then considering the treatments of the given block singly, we have

b—1

b—d—1

(4.1) :[,1 x; = k(r — 1).

Considering the treatments of the given block pairwise and using Theorem 4.A,
we have
b—d—1

(4.2) Zj zi(z; — 1) = k[2(k — s)\ + (sk + s — 2k)Ay — s(k — 1)]/s.
Now rk — v\ = s (r — \y) gives Ay = r(k — s)/s(s — 1). Also ny-Ay + N2 As
=7 (k— 1) gives\, = r (sk + s — 2k)/s(s — 1)°. Hence (4.2) becomes

(43) _ K2r(k — 8)*(s — 1) + r)sk + s — 2k)* + v(s — 1)*(r — k)]
B v-(s — 1)

— k(r — 1).
From (4.1) and (4.3), we get

b—d—1
> @—2)'=k[b—r)0—k) — (s =1)(v — 1k)]/v- (s — 1)°
(44) =t

—K(r—1)%b—-d—-1)=0.
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From (4.4), we have
(45) d=b—1—0v-(s=1Dr—=1*b—=r)0—k) — (s — 1)* (v — rk)].

If, however,d = b — 1 —v-(s — 1)> (r — D)¥/[(b — 1) (v — k) — (s — 1)*
(v —rk)], then, z; = k[(b—7) (v—k) — (s —1)* (v — rk)])/v-(s — 1)
(r — 1). Hence the theorem is proved.

The following are the companion theorems to Theorem 4.1.

THEOREM 4.2. The necessary and sufficient condition that a block of a PBIB
design with two associate classes having a L. association scheme and vk — v-)\
= §(r — A1) has the same number of treatments common with each of the remaining
blocks is that (i) b =v — 2s + 2 and (ii) k(r — 1)/(s — 1)* is an integer.

Proor. Let a block have x; treatments common with the 7th of the remaining
(b — 1) blocks. Then from (4.4), noting that d = 0, we get

b—1

(4.6) ; (@i—E)=kb—r)0—k) (b—v+25—2)/v-(s — 1) (b —1).

The result follows from (4.6).

TaeoreM 4.3. If a block of a PBIB design with two associate classes having a
L, association scheme with parameters v = s* = tk, b = tr, (t an integer greater
than 1), and vk — v-M\ = 8 (r — A1), hae (¢ — 1) blocks disjoint with it, then the
necessary and sufficient condition that it has a block which has the same number of
treatments common with each of the remaining non-disjoint blocks is that (i) b =
v+ r — 2s 4+ 1 and (ii) k/t is an integer.

Proor. Let a block have z; treatments common with the 7th of the remaining
(b —t) =t (r — 1) non-disjoint blocks. Then from (4.4), noting thatd = ¢t — 1,
we have

b—t

4.7) S (xi—&) =kt —1)(b—v—71+2s— 1)/t(s — 1)~

=1

The required result follows from (4.7). We get the following corollaries from
this theorem.

CoroLLARY 4.3.A. For a resolvable PBIB design with two associate classes having
a L, association scheme andrk — v-\y = s(r — M), b= v+ r — 2s + 1.

CoroLLARY 4.3.B. The necessary and sufficient condition that a resolvable
PBIB design with two associate classes having a L, association scheme and rk
— oM = 8(r — M) be affine resolvable is that it has a block which has the same
number of treatments common with each block not belonging to its own replication.

6. An upper bound for the number of disjoint blocks in PBIB designs with
three associate classes having a rectangular association scheme. A PBIB
design with three associate classes is said to have a rectangular association
scheme [5], if the number of treatments ¥ = v;-v. can be arranged in the form of
a rectangle of v; rows and v, columns, so that the first associates of any treatment
are the other (v, — 1) treatments of the same row, the second associates are the
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other (v, — 1) treatments of the same column; while the remaining (v, — 1)-
(v2 — 1) treatments are the third associates. The primary parameters of this
design are v = vy-v2, b, 7, bk, = w2 — 1, my = vy — 1, Mg = ny-ma, A\, A2 and
s . Vartak [5] has proved that the characteristic roots of NN’ of this design are
O =71k, =1 —M+ (01— 1) M= M), =71 —N+ (92— 1) (\1 — Ng),
03=7‘—)\1"‘)\2+)\3.

In this paper, we consider this design with 6, = 0 and 8. = 0. The following
theorems were proved by Vartak [6].

TreoreM 5.A. If in a PBIB design with three associate classes having a rec-
tangular association scheme 6, = 0, then k is divisible by v, and every block of this
design contains k/v; treatments from every column of the association scheme.

TaEOREM 5.B. If in a PBIB design with three associate classes having a rec-
tangular association scheme 6, = 0, then k is divisible by v, and every block of this
design contains k/v, treatments from every row of the association scheme.

We use Theorems 5.A and 5.B to obtain an upper bound for the number of
disjoint blocks which have no treatments common with a given block of this
design in which 6, = 0 and 6. = 0. The resu’t is given in Theorem 5.1.

THEOREM 5.1. A given block of a PBIB design with three associate classes having
a rectangular association scheme and 6, = 0 = 0, cannot have more than

b—1—k(r— 1%p/lr(v — k)> — k-p- (v — k)]

disjoint blocks and if some block has that many disjoint blocks, then [r-(v — k)?
— kp(v — rk)]/v-p-(r — 1) s an integer and each non-disjoint block has [r- (v
—k)? — kp (v — rk))/v-p- (r — 1) treatments common with that given block, where
p=(n—1)(r—1).

Proor. Let a block have d disjoint blocks and have z; treatments common
with the sth of the remaining (b — d — 1) non-disjoint blocks. Then considering
the treatments of the given block singly, we have

b—d—1

(5.1) > xi=k(r—1).
j=m]l
Considering the treatments of the given block pairwise, and using Theorems
5.A and 5.B, we have
b—d—1

(5.2) 2 zi(z:i—1)

1=

= ’C[Uz(k —_ U]) ()\1 et )\3) + Ul(k bt 1)2) ()\2 _— )\3) + v(k —_— 1) ()\3 _ 1)]/1).

Next we have

(5.3) bh=r—N+ (1 —1)A—N)=0
(5.4) bo=7r—N+ (12 —1) (M —N) =0
(55) r(k bt 1) = Al(v2 bt 1) + )\2(01 il 1) + )\3~p, where

p=(n—1)(—1).
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Solving Equations (5.3), (5.4) and (5.5) for A\;, \; and A3, we obtain \; = r-v,

(k —v1)-(v1 — 1)/v-p, N\a = rv1-(k — v2)-(v2 — 1)/v-p,and X3 = r(v + kv

— k-v; — k-v2)/v-p. Substituting the values of A;, \; and X3 in (5.2), we obtain
b—d—1

(5.6) Z zi(zi— 1) = kfr(v — k)* — k-p(v — k) — vp(r — 1)]/v-p.

1=

From (5.1) and (5.6), we have
b—d—1

(5.7) ;1 (z: — )" = klr(v — k)" — kp(v — rk)]/v-p

— B —-1%0®—d-1).
From (5.7), it follows that
(5.8) d=<b—1—k(r—1)%vp/lr(v — k)* — k-pv — rk)].
If, however,
d=b—1—Fk(r—1)*vp/lr(v — k)* — k-p-(v — rk)],

then, z; = [r(v — k)* — kp- (v — rk)]/ (r — 1) -v-p. Hence the result.

The following are the companion theorems to Theorem 5.1.

THEOREM 5.2. The necessary and sufficient condition that a block of a PBIB
design with three associale classes having a rectangular association. scheme and
6, = 0 = 6, has the same number of treatments common with each of the remaining
blocks is that (1) b = p + 1, and (ii) k(r — 1)/p is an integer.

Proor. Let a block have z; treatments common with the 7th of remaining
(b — 1) blocks. Then from (5.7), noting that d = 0 we get

(59) T (2= =K@ = k) (b= 1) (b—p = Do-p-(b — 1),

which establishes the required result.

TueoreM 5.3. If a block of a PBIB design with three associate classes having a
rectangular association scheme and 6, = 0 = 6, and paramelers v = v,-v2 = tk,
b = tr, (t an integer greater than 1), has (t — 1) blocks disjoint with it, then the
necessary and sufficient condition that it has the same number of treatments common
with each of the non-disjoint blocks is that (i) b = p + r and (ii) k/t is an integer.

ProoF. Let a block have z; treatments common with each of the remaining
b —t =t (r — 1) non-disjoint blocks. Then from (5.7), noting that d = ¢ — 1,
we obtain

(5.10) S @— 8 =k —k) b —r—p)/pt

which proves the required result. We get the following corollaries from this
theorem.



DISJOINT BLOCKS IN PBIBD 407

CoroLLARY 5.3A. For a resolvable PBIB design with three associate classes
having a rectangular association scheme and 6, = 0 = 6., b =r + p.

COROLLARY 5.3B. The necessary and sufficient condition that a resolvable PBIB
design with three associate classes having a rectangular association scheme and
6, = 0 = 6, be affine resolvable is that it has a block which has the same number of
treatments common with each block not belonging to its own replication.
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