LOWER BOUNDS FOR MINIMUM COVARIANCE MATRICES IN TIME
SERIES REGRESSION PROBLEMS!

By N. DoNALD YLVISAKER
University of Washington

1. Introduction. Linear regression problems in time series analysis have at~
tracted considerable attention in the literature over the past decade and a half.
Much of this work has been directed towards obtaining conditions under which
least squares estimates have asymptotic efficiency 1 amongst the class of linear
estimates, as for example, in [2], [3] and [5]. Asymptotic efficiency here refers
to the limiting behavior of the covariance matrix of least squares estimates rela-
tive to the covariance matrix of minimum variance unbiased estimates as the
observation set grows large, thus for the continuous parameter case, an observa-
tion set [0, A] as A — «. Over finite intervals, precise information about the
relationship between these matrices is impossible to obtain unless one imposes a
correlation structure of a very few special forms. Such questions beg answers as
one does not usually know the best estimates or the minimum covariance matrix.
Theorems of Parzen [8] give formal answers to these questions in terms of Gram
matrices in appropriate reproducing kernel spaces. These theorems provide a
uniform framework for such problems but do not usually give explicit solutions
as they represent a restatement in terms of norms of functions. Since the frame-
work is available, it is natural to inquire how the theory of these spaces may be
used and we shall be concerned here with essentially one possibility of extending
the norm structure for known examples to related classes of kernels. This will
produce upper bounds on norms, which in turn will give lower bounds on
minimum covariance matrices and lower bounds on efficiency. The classes of
kernels for which these bounds are obtained are stationary and completely
monotone or convex only. The latter case generalizes a result of Héjek [4] for
the case of an unknown mean with a convex correlation function.

Section 2 is devoted to the basic inequality. Care is taken to state the result
in some generality as we have not attempted to exhaust its potential here. In
Section 3 we apply this to the above mentioned regression problems. Among the
computed examples we show that the efficiency of the least squares estimate of
the mean for an interval [0, A] is at least § if the correlation function is convex
and is at least ~Z if the correlation function is completely monotone, provided,
in each case, the correlation function vanishes at infinity.

2. An inequality. Given a positive definite matrix R which is in the convex
cone generated by the positive definite matrices K , , and given a family of linearly
independent vectors z,, it is possible to bound above, in the sense of positive
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definiteness, the Gram matrix (z;R ™ 'z;) in terms of the Gram matrices (z/K3'z;).
In this section, we derive such an inequality for positive definite kernels which
reduces to this statement for matrices. We view the inequality as one about
Gram matrices in appropriate reproducing kernel spaces and use it later to
produce bounds for minimum covariance matrices in certain regression problems,
making use of the connection developed in this context by Parzen [8].

For T an abstract set, let X (T") be the class of real, finite valued, positive
semi-definite kernels on 7' X T. Corresponding to K ¢ ®(T), there is a real
Hilbert space of functions on T, denoted by H(K) which is specified by the two
conditions

(1) K(-,t)eH(K) forallte T,

(2) if fe HK), (f, K(-,t)) = f(t) forallteT.

The theory of these spaces is treated quite completely in [1]. In the class % (T)
there is a partial ordering specified by R < K if and only if K — R & %(T'), and
we shall have occasion to make use of the way in which this partial ordering is
reflected in the spaces H(R) and H(K).

To treat appropriate combinations of kernels generally, we let (A, ®, x) be a
probability space and suppose that {K, , A € A} is a family of elements of (T
having the property that K-(s, t) is measurable and in L;(du) for each
(s, 1) eT X T. A straightforward computation shows that the kernel B on
T X T given by R = f A Ky du()) is also in %(T'). We shall bound the Gram
matrix in H(R) of a family of functions by a suitable combination of the Gram
matrices of the same family in H(K,). To accomplish this, a lemma is given
first to ease the proof. Note that henceforth all norms are indexed by the kernel

in question.
Let fi, -+, f» be a family of functions on 7' which are linearly independent.
Let f be the vector valued function on T defined by f(¢) = (fi(t), -+, fa(2))’

and let M (f, K) denote the matrix ((f;, fi)x).

LemMa. For K e X(T), M (£f,K) < M if and only if Fx < K where F (s, t) =
£(s)' ML) for (s,t) e T X T.

Proor. According to Theorems I and IT on differences of kernels in [1], F,, < K
if and only if H(Fy) € H(K) (set inclusion) and for every ge H(F,),
lgllz,, = llgllx . To see the structure of H(Fy), let my, - -+ , m, be the columns
of the positive definite matrix M % so that Fu(s, t) = D res)e:(t) with
¢i(+) = £(-)'m, . In this form it is easily checked through conditions (1) and (2)
that the functions ¢, , - - - , ¢, are a complete orthonormal basis for H(F,) and
£(-) = M*M7*(.) implies M(f, Fo) = M. If F)yy < K then M(f, K) <
M(f,Fy) = Mandif M(f, K) X M, K> Fy¢x) > Fu.

For R = fA K, du(\) we obtain an upper bound for M(f, R) in terms of
M (f, K,) in the

TrEOREM. Suppose M (£, K\) ' is measurable and in Ly (du), with M (f, K,)™*
taken to be the zero matriz if f; 2 H(K)) for some 1, then

M(ER)T > [aM(£ K™ du()).
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Proor. By the lemma above, F ¢ x,) << Ky , and therefore
JalKy — Fugrnldu(A) = R — Fae >0

where M*™ = [4 M(f, K)) 'du(\). By reapplying the lemma one obtains
M, R) K M*or M(f, R)™'> [4 M(f, Kx) " du(}).

3. Applications. In this section, the inequality just derived will be applied to
problems of linear regression on time series to obtain lower bounds on minimum
covariance matrices with attending lower bounds on efficiency. Due to the de-
pendence of the bound on information relative to the spaces H(K»), we will at
present be able to give explicit bounds when the underlying correlation structure
is stationary and completely monotone or only convex.

Suppose one is allowed to observe Y (¢) = 2 i Bf(t) + X(¢),te T, a sub-
set of the real line, with EX(t) = 0, EX(s)X(t) = p*(s — t), p*(0) = 1. For
minimum variance linear unbiased estimation of the 8, , we appeal to the follow-
ing result due to Parzen [8],

THEOREM. The covariance matriz of best unbiased estimators of the B; vs given by
M(f, p*) 7

Thus for a correlation function p* appropriately spanned by correlation func-
tions px , the inequality of Section 2 is directly translated into a lower bound on
the covariance matrix of best estimators.

Since one is dependent on knowledge of the H(p,), attention is focussed on the
classes defined below. For p a correlation function on the real line, p(0) = 1,
let px be defined by pa(t) = p(At) and let @, be a class of correlation functions on
the real line given by

e, = {p*|p* = [T emdF(A), F a distribution function on (0, )}.

If p(t) = cost, then @, is the class of all (real and normalized) correlations
functions whose spectral distribution functions do not have a discontinuity at
the origin. If p(t) = (1 — [t|)*, || < 1, then €, is the class T, , with p*( ) = 0,
defined in [5] and generalizing the convex or Pélya correlation functions. If
p(t) = ¢ ' then @, is the class of all completely monotone correlation func-
tion with p*() = 0. The classes @, shrink in the following sense: if p* ¢ @,
then €,» C @, for if

p* = [CmdF(N), 5= [F e dR(8),
then
p=[CodH(t) where H(§) = [5 F(£/6) dG(6).
The inequality then has the property
M(t, 5)7 > [T M(f, p5) 7 dG(0) > [T [T M(£, o)™ dF (A) dG(6)
= [ M(f o) dH(8),

i.e., it is increasingly good as the class decreases. At one extreme p(t) = cos (),
and in this case f ¢ H(p) for at most one choice of A and so for most p*, £, the
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uninteresting result M (f, )" >> 0. At the opposite extreme of = [¥ o dF(N)
where F has a unit jump at A = 1, and there is actual equality.

For p(t) = ¢ " and p(t) = 1 — |¢], |f| < 1, explicit bounds arise, since the
structure of H(p\) is known. Before exhlbltmg these, we note the isomorphisms
due to translation and scale change, viz. ||f|2 on T is ||} on T~" with f* (t)
f(t + b) and T the set T translated to the left by b (712 on T is [|fi]|°ex on
Th-1 with f(t) = f({\) and T)-1 the set T' scaled by A™*. We shall take T to be
either an interval or a finite collection of points and it is sufficient therefore to
give the norm for H(p) with T = [0, Alor T = {t;, - -+, &},0 =t < - -+ < .
For p(t) = '

(8) T =100,4], IIfli =3/ G +5°+7(0),f absolutely continuous,

) T = (-}, I} = 3y SR I)e D7y oy,

Case (a) is found in [8], while (b), which follows from (a), can also be ob-

tained by IlOtlIlg that ”f”ﬂ = (f(tl)7 T f(tk))R_l(f(tl)’ Tty f(tk)) with
R = (p(t; — t;)). For p(t) = 1 — |¢|, |{| = 1, the norm structure is newly found

and somewhat more tedious.
(a) T = [0, A], 4 an integer
Ifllp = (22 f DI/ (A + 1)
+ [1/(4 + D] Js 295 G + DA — 9w + 5)
+ [2/(4 + D] [s Zogicsca (0 — )@ + 1f (w + Of (u + ),
f absolutely continuous.

T =10,A4], A = (n — 1) + 8,0 < & < 1, define for an absolutely continuous
function f, a continuous function f, on [0, n] by f.(t) = f(t), t £ [0, A] and

n—2

fet+ (n = 1)) = —(1/n) ; G+DftG+45) +e 8<t=1

Then, ||f|: = min|f.]5, where |f.> is calculated from the previous case.
The first part of this assertion is verified by checking the two conditions which
specify H(p). The second part follows from the theorem on restricted kernels in
[1] and gives

|lf||§ = mina=f on [0,A]”g”§

where ¢ is a function on [0, n]. That this is equivalent to the minimization given
is easily checked, and we omit these unattractive details.

k
) T =1{t, . If f(t) = Dcp(t —t;) for t=1ti,5=1,---,k,
j=1

k k
then ||f]> = ; ;C;ij(ti —t).
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No particular benefit accrues here from knowing || ||; on intervals. The solution
of the equations above can be handled with knowledge of the spacing of the
points ¢; . One might also use the restricted kernel theorem as above, although it
does not make the problem substantially easier.

We now take some easily computable, one parameter examples to illustrate

the foregoing facts.

ExampLE 1. With T = [0, A], EY(¢) = B8, E(Y(s) — B)(Y(t) — B) =
p¥(s — t) = [ e " dF(\), note that ||1];, = 1 + \4/2 and so minimum
variance under p* = [ [2/(2 4+ M)1dF(\) = (2/A4) [T e */4p*(¢) dt.

ExampLE 2. In the same circumstances with EY (¢) = ff(¢), minimum vari-
ance under p*

2[5 2/U7 7 + A0) + £2(4)) + N [§ £} dF (V)
= (2/f8 %) [§ ¢ “[cos bt — a/b sin btlp*(¢) dt
where a = [f2(0) + f*(4))/2 [¢ ffand b = ([3 %/ 2 F* — a’)!

Before doing similar computations with p(t) = 1 — [¢|, [{| = 1, let us note that
we are writing a convex correlation function p* as

o = [EmdF(\) = [0 mdF(\) + [i-1 mdF())
=FA )+ (1 — F(A))p.
For T = [0, A], the initial inequality may be written as
M, 07> [SM(£, ) dF(N)
= [T ME ) TAFN) + [i- M, )7 dp(n).
Now () =1 — AMon [0, 4] if 4 = A lor A £ A7, and therefore
m(t) = [W/FA™D] 671 = M) dF(\) = 1 — ([I/F(A™)] [i7 NdF(\)t,
tel0, Al

Since the norm structure is completely known in H(p;), another application of
the basic inequality yields

M )T >FAMME, ) + (1 — F(AT)M(E, ;)™
> FAYME p) " + [ M(£, )7 dF (M)

which represents an improvement for most f.

ExampLE 3. With T = [0, A), EY(t) = 8, E(Y(s) — B)(Y(t) — B) =
p(s — 1) = [T als — ) AF(V), m(®) = 1 = N, [t|= X7, 1[5, = n(n + 1)/
(2n — AA) where n = [AA + 1]. The inequality

minimum variance under p* = [§ (2n — AN)/n(n + 1) dF(N)

is that of Hajek [4] and the improvement above evaporates due to the nature of
the regression function.
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We turn then to some remarks about efficiency. It may be noticed that for
certain regression functions, the kernel p has a least favorable character in the
class @, as regards efficiency of least squares estimators. Specifically, let ¢,(f, T')
be the ratio of the minimum variance with regression function f to the variance
of the least squares estimator. Then ¢,(f, T') = e, (fai-1, T)) because of the scale
isomorphism. Consider, for example, the case of an unknown mean with
T = [0, A]’

e,(1, 10, A]) = (l|1[5(2/4) [§ (1 — u/A)p(u) du)™.
Suppose ¢,(1, [0, A]) has a minimum value, in 4, of ¢, and let p* = [3 pr dF(N).

* 5 |11l dF(2)
ep (1,0, 4]) = / £

(2/4) [ (1 — u/A)p*(u) du
_ J7 L5 aP Q). -

[F1@/A) T8 (1 = w/A)m(u) dd dF (V) = 7
as the ratio of the integrands is e, (1, [0, A]) = e,(1, [0, A\""]). Choosing
p(t) = ¢ ' this minimum is the minimum over 4 of A*/(2 + A)(4 4+ ¢™* + 1)
and for p(¢) = 1 — [t], |{| £ 1, it is
min<min2—A 3 min2[A+1]_A 3A2)

0sas1 2 3 —A’uxi[A+1][A+2]34—-1/°
These minimums which then are lower bounds for the efficiency of the least
squares estimator of the mean on intervals [0, A] for completely monotone and
convex correlation functions, are respectively, ~% and £. If, instead of taking
f = 1 so that f = f, we consider f for which A = ¢(\)f, the same type of result
will follow, as then

en(f; T) = e,(n, Tr-1) = €,(c(N)f, Tr-1) = ¢,(f, Tr-1).

With an appropriate definition of efficiency in the many parameter case, these
results will hold for polynomial regression. For a regression of the form i B:f:,
define the efficiency (cf. [6]) of the vector estimator 8 with respect to the best

estimator 8 by
e (£, [0, A]) = Ef¢ [F'1(t) — B dt/E ¢ [B'E(t) — BE(t)]" dt
= [3£()' M (£, p*)7H(t) dt/ [ £(2) Qe (£)E(2) dt

where Q,(f) is the covariance matrix of the estimator 8. If p* = [ ;n dF(A)
and B is the vector of least squares estimates, then Q,+(f) = [ @,,(f) dF(\) and

Jo 1o £(0)' M (£, )7 £(2) dt] dF(N)
IS U8 1) Qu(D)f(t) df) dF(N)

The ratio of the integrands is again e,, (f, [0, A]). Changing scale, the right hand
side becomes

eﬂ'(f’ [01 A]) _2_
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I3 U8 -1 (8) M (fa-1, p) " a-1(t) dit] dF (M)
JT 2* f-1(8)'Q,(Fa-1)fa-1(2) dt] dF (M)

with M (f\-1, p) and Q,(fr-1) calculated on [0, AN]. Imposing the restriction that
for each f; , f:(\7't) = ci(\V)f:(t) for all t £ [0, AA],

I3 [3* £(0)' M (£, o) 7'f(¢) dt] dF(N)
I3 13" £(1)'Q,()f(t) di] dF()\)

and the ratio of the integrands is e, (£, [0, AA]).

4. Acknowledgment. I am grateful to Ingram Olkin for an alternative proof
of the inequality of Section 2 stated specifically for positive definite matrices.
He has pointed out that the inequality is apparently new in this context but
can be handled quite easily by methods similar to those in [7].
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