AN EVALUATION OF A FUNCTIONAL ON INFINITELY DIVISIBLE
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1. Introduction. We consider a separable, infinitely divisible stochastic process
{z(£),0 < t < o} with £(0) = 0 and E{e"*?} = ¢ ¥®, The result here con-
cerns the evaluation of the functional

o\, a) = _/: eME {exp l:oe j; cos z(7) d-r]} dt

for A > a = 0, and is obtained using the result of Nelson and Varberg [5] for
the functional

(1) [D e R {exp [—j;t V(r(s)) dr]} dt

on the collective risk process r(t). The collective risk process is the sum of a
Poisson distributed number of independent, Bernoulli variables each of which
has distribution P{X = 1} = P{X = —1} = %. In [5] V is nonnegative real,
but the result is still true if V is complex with nonnegative real part.

Our development parallels closely Baxter’s derivation [1] concerning the

evaluation of
) t
f ¢ 'E {exp [—u f 22(r) dr]} dt,
0 0

using Kac’s result [3] on the evaluation of

.[o e 'E {exp [—fo‘ V(w(sr)) dr]} dt

for the Wiener process w(t).

The present result is

TreoREM. If {2(t), 0 < t < «} is a separable infinitely divisible process with
£(0) = 0 and E{e’*P} = ¢ P, then o(\, a) is given by

o @) =3 el @)
(2) Pn+1 (2/&)(% + 'ﬁ(n))?’n + Pn—-1 = —(2/a)6n,0

en(\, @) >0 as |n| — .

Received 19 August 1963.
1 This research was supported in part by the Air Force Office of Scientific Research under

Grant AF-AFOSR 62-252.
336

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to 2

The Annals of Mathematical Statistics. MIK®RY
WWW.jstor.org



A FUNCTIONAL ON STOCHASTIC PROCESSES 337

2. Proof of theorem. In the derivation of this result we shall denote by E.

expectation with respect to the collective risk process r(t) and by E; expecta-

tion with respect to the process xz(¢) of the theorem. Note that the collective

risk process (with parameter ) is infinitely divisible with E{e'"¥} = ¢¢—eoe®
and 7(0) = 0. Then compute

Bife (& #[ee= (20) - 1])f
~ o (5w (G (2250 - (L2221
- mmden (i 2 (5= () - = (5529
- w540 (- (2529 ]}

where we have used the boundedness of the exponentials to exchange expecta-
tions. Again using this boundedness we can take limits in the above and obtain

E; {exp (a [ [cos z(7) — 1] dr)} = E, {exp [—‘/o-t Y(r(r)) dr]}.

Then if A > « = 0 we find

o\, a) = fow eME, {exp I:a ‘[ cos z(r) dr]} dt
= [o P {exp [a jo“ (cos z(r) — 1) d‘T]} dt
- fo T, {exp [— fo " w(r(r)) df]} dt.

We now employ the result of Nelson and Varberg to get

- 3

o @) = 3l @)

where
ent1 — 2l(A = @)/a 4+ 1 4+ o Y(n)len + @nr = —(2/)8n0
en—0 as [n|— .

3. Examples.

(a) Consider the Wiener process: ¥(£) = £. The solution of (2) in this case
is given by Nelson and Varberg as the evaluation of (1) for the case V(z) = 2.
They*find

0

e\, @) = i kZOAZk,O(a)AZk.zn(a)/(Vk + 4\)

N-=—00 K==
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where »; is an eigenvalue of the Mathieu equation (see [4], p. 46)
d*/dx’ + (v — 8a cos 2z)y = 0
y(z) = y(z + ) = y(—z)
and
—vpdoro + 4adoe = 0
8adsko + (4 — wi)Aswz + 4adAns =0
4adoions + (40" — w)Ason + 4l sk snie = 0, n>1
2(4%,0)" + (Ans2)’ + (Amg)’ + -+ =1
Agkgn = Aogt\_on , n < 0.

Inversion with respect to A yields

E{exp I:a .[ cos w(r) dr]} = i i Agi o) Aoy gn ()™ @08,

n=—00 k=0

(b) As another example we consider the Cauchy process: ¥(£) = |£. Then
(2) becomes ‘

o0 @) = 3 el @)
(3) ent1 — (2/@) (X + [n])en + on1 = —(2/@)bn,
en—0 as |n|—> .

The unique solution for ¢, is given by
¢ = Irpini(@)/ady(a)

where J is Bessel’s function of the first kind, as can be easily verified using
well-known properties of Bessel functions. To sum on 7 we use the formula

fo () dt = 2 ;0 Iriza(2).
(See [2] p. 145) to obtain

oa) = 3 Jam(a)/ati(a)

N=—00

[ [ " (a(®) + h(®) de — Jx(a):, / alia)

(4)

_ fo “%\ms) dt/adi(a).

The inversion of (4) remains a problem.
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(e) Consider the case of sums of independent random variables with identical
distribution function F(z), the number of summands being Poisson distributed
with intensity 8. Then we have ¥(£) = B(1 — [ ¢'¥ dF(x)) and the differ-
ence equation is

(5) Pni1 — g’ (>\ + 8 — B‘[ einz dF(x)) on + ona = —g On0.
o o a

Then let

(t) = eintﬂ%

N =—00

and note that ¢(0) = ¢(}, a). Then we obtain from (5) the relation
(6) (acost — N — B)e(2) + BL, ¢(t + o) dF(z) = —1.
We are unable to solve (6) unless the distribution F(x) is degenerate. Now if
m < n with m and n positive integers and if ged(m, n) = 1, let
F(z) =0,z < (m/n)2x
=1,z = (m/n)2r.

Then (6) becomes (a cos ¢ — A — B)¢(¢) + ﬁ¢('t + 2wm/n) = —1. Then set
t = 0, 2rm/n, 4em/n, --- , 2xr(n — 1)m/n and obtain n equations in » un-
knowns ¢(0), ¢(2xm/n), - -- , $(2rm(n — 1)/n). The solution for ¢(0) is

o\, @) = ¢(0) = A\ + B8 — &) H1+[1 + N/B — (a/B) cos (2rm/n)]™
+[1 + NB — a/B cos (2rm/n)]™"
- [1 4+ N\/B — a/Bcos (4xm/n)]" + ---}.

Now let sequences {ms}, {7} be chosen with 2w (mi/n:) — u, and consider the
corresponding processes with yi(£) = B(1 — exp[2mitmi/mi]) and ¥(£) =
B(1 — €“*). If the corresponding expectations are denoted by E; and E, then

it can be shown that

E {exp [a fot cos z(7) d‘T:I} = limz,» Ex {exp [a [ cos z(7) d‘T]} .

Then

f ) eME {exp [a fo t cos z(r) dr]} dt
=(A+B8—a) 1+ (1 +rB—a/fcosu)™
+ [(1 +2/8 — a/Bcosu)(1 + /B — a/Bcos 2u)] ™ + ---}.

Again the inversion of the transform remains a problem.
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