A NEW PROOF OF THE PEARSON-FISHER THEOREM
By M. W. BircH

Glasgow University

1. Introduction and summary. This paper is concerned with the theorem that
the X’ goodness of fit statistic for a multinomial distribution with r cells and
with s parameters fitted by the method of maximum likelihood is distributed as
x” with » — s — 1 degrees of freedom. Karl Pearson formulated and proved the
theorem for the special case s = 0. The general theorem was formulated by
Fisher [2]. The first attempt at a rigorous proof is due to Cramér [1]. A serious
weakness of Cramér’s proof is that, in effect, he assumes that the maximum
likelihood estimator is consistent. (To be precise, he proves the theorem for the
subclass of maximum likelihood estimators that are consistent. But how are
we in practice to distinguish between an inconsistent maximum likelihood esti-
mator and a consistent one?) Rao [3] has closed this gap in Cramér’s proof by
proving the consistency of maximum likelihood for any family of discrete dis-
tributions under very general conditions.

In this paper the theorem is proved under more general conditions than the
combined conditions of Rao and Cramér. Cramér assumes the existence of con-
tinuous second partial derivatives with respect to the “unknown” parameter
while here only total differentiability at the ‘“true” parameter values is postu-
lated. There is a radical difference in the method of proof. While Cramér regards
the maximum likelihood estimate as being the point where the derivative of
the log-likelihood function is zero, here it is regarded as the point at which the
likelihood function takes values arbitrarily near to its supremum.

The method of proof consists essentially of showing that the goodness of fit
statistic is a quadratic form in the observed proportions when the observed
proportions are close to the expected proportions. The known asymptotic
properties of the multinomial distribution are then used. The asymptotic effi-
ciency of the maximum likelihood estimator is proved at the same time.

2. Formal statement of the theorem.

TaEOREM. Suppose =(8) = (m:(0), -+, m(0)) s defined for 0 & ©, where ®
s a subspace of s-dimensional Cartesian Space R°. For each 0 and i, 7:(0) is a
posttive or zero real number and, for each 8, D i_y w:(0) = 1. Suppose (A) that
0o <s an tnterior point of ©. Suppose (B) that, given any e > 0, there exists a 6§ > 0
such that |=(0) — =(8)| > 6 whenever |6 — 8| > e. Suppose (C) that m:(6,) > 0
for each i. Suppose (D) that, for each i, numbers a;; exist such that

7i(8) = 7:(8) + [1:(80)P 2 aij(8; — 60;) + 06 — 6] as © — 6,
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818 M. W. BIRCH

i.e. that 7;(0) is totally differentiable at 8, with partial deriatives
Omi(00)/30; = ailmi(00)]h

Suppose (E) that the matrix A has rank s.

Let {Xy}k = 1, 2, --- be a sequence of independent random variables, each
taking the value © with probability my; = w:(8). Let Py be the proportion of X’s in
the first n trials taking the value 7.

Let 8, be any value of 0 & © for which there exists a sequence {0,m}, m = 1,2, - --
such that 0, € © for each m and

T T

20 Y [PoiIn 7:(0m) — PaiIn Ppil — supyee 20 2 [PriIn 7:(0) — P In Pl

7=1 i=1
and Onm — 0, .

Then, as n — o, the joint distribution of 0} (s — 0a1), - -+ , 1} (ne — 60s) and
A [Pai — mi(8,)]/mi(8,) tends to a distribution in which n'(8, — 8)
and 1Y [Pni — w:(8,)1/7:(8,) are independently distributed, n*(6, — 6o) as
(0, (A'A)™) and n 2 [Poi — mi(8,)]"/7:(8a) as x5 -

NotE 1. 7Y [Pailn 7:(8) — P,;1n P,;] may be interpreted as the likelihood
of 0 given the first n “observations” Xi, -+, Xn. 02, [Pni — mi(0,)]"/m:(6,)
is the Y (0 — E)*/E statistic for testing goodness of fit.

Notk 2. Regularity Condition B is equivalent to saying that = " is continuous
at = .

Nore 3. A’A is the information matrix for 8 at 6, .

Nortk 4. Regularity Condition D may be replaced by the stronger but more
easily verified condition D’ that the partial derivatives dm;/d6; exist for each
7 and j in some neighbourhood of 6, and are continuous at @, .

Note 5. Here ® denotes the closure of ® in R® if © is bounded and the
closure of ©® in R’ plus a point at « if © is not bounded. Thus 6, may be in-
finite if © is not bounded.

Nore 6. The definition of the maximum likelihood estimate is slightly un-
conventional. Technical difficulties arise if the maximum likelihood estimate is
defined as the point at which the likelihood attains its supremum. For example,
no such point may exist. The likelihood function may tend to its supremum at
a point of discontinuity or at a point of the boundary of ® not in © or in remote
regions of R°. If the maximum likelihood estimate is defined as above, there is
always at least one such estimate, though it may be a point at which = has not
been defined. Exceptionally there may be several or even a whole interval but,
in practice, it is usually found that there is only one.

If O is closed and bounded and if =(0) is a continuous function of 6 for all
0 ¢ O, then the supremum of the likelihood function is attained at 0, . If these
further conditions are satisfied, 0, may be defined simply as a point at which
the likelihood attains its supremum and the conclusions of the theorem will

follow.
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If =(0) is continuous but © is not necessarily closed and bounded, the loga-
rithm of the likelihood is maximised at 6, except when 8, ¢ ® — ©. The con-
clusions of the theorem show that the probability of the latter happening tends
to zero as n — .

We deduce, therefore, that, if the further regularity Condition (F), that
=(0) is continuous at all points 0 of @, is satisfied, then §, may be defined as a
point at which the likelihood attains its supremum and the conclusions of the
theorem will still apply.

Note 7. Regularity Condition B is due to Rao [3], regularity Condition E.
to Cramér [1]. Regularity Conditions D and D’ are believed to be new. Regu-
larity Condition B is sufficient for the consistency of the maximum likelihood
estimators.

3. Proof of the theorem. This will be broken up into a series of lemmas.
LemmA 1. Let py, -+« , p, be any numbers =0 such that D im1 pi = 1. Then
—2; [piln7:(0) — pilnp] = [p — =(6)[".

Proor. If we interpret p;In m;(8) as — o if m;(6) = 0 and p; > 0 and as
0 if ;(0) = p; = 0 and if we interpret p; In p; as 0 if p; = 0, then it is easily
verified that —2[p; In m; — p;In p;] — 2(ps — ™) = (ps — m)* if pior m; = 0.
When p; and m; are both >0 we find by application of Taylor’s theorem that

pilnp; = milnm; + (1 + Inw) (ps — ) + 3wi (ps — m:)°
where w; is between p; and m; and therefore <1. Therefore
—2[pilnm; — piInp] — 2(ps — m:) = wi'(ps — 7)) = (ps — 7)"

Summation over ¢ gives the required result.
LEmMA 2. Let p1, « -+, pr be as tn Lemma 1. Put

yi = (pi — 7"01')/7736 1=1,---,r.
Then, as p — = and 6 — 6
—2;[% In7,(08) — p:Inpi

= [y — A6 — 6)]'ly — A(6 — 8)] + olly[* + [6 — 6.

Proor. If we apply Taylor’s theorem in the same way as in Lemma 1 we get
—2§ [pilnm:i(0) — psInpi] = ;lw?[m(o) — o,

where, for each 7, w; is between 7;(0) and p; . (Because of regularity Conditions
C and D, ;(0) and p; are >0 when |6 — 6 and |[p — =| are small enough.)

Now w;* = 7o + o(1) as 6 — 8, and p — =, . Moreover, for each 7, (m; — p;)*
< 2 (m — mi)® + 2(ps — mo:)®. Because of regularity Condition D, w; — o, is
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0|6 — @&|. Therefore, (m: — p)’ is 08 — & + |y[Y] for each ¢ and
3wt (m = p)’ = Diamal(mi — po)” + ollo — &l + [yl
Now, for each 7,

m = Pi = (Woi)§; [@:;(0; — 60;)] — yi(qro,.)* + 0|6 — 6.
And so
Z Wo—z'l (mi — pi)2
j=1

=2l — ; a;(6; — 80;) + 010 — 0|

= 2; ly: — 2= ai;(6; — 001 + o(|y| + |6 — 6ul) |6 — 6|

= J

= Z:l ly: — Z a:(6; — 60) + o [ly[* + |6 — 00|"]
1= J
since
(y| 4+ |6 — &l[6 — 6] = 3[y|” + 36 — "
— 1yl — 6 — 8)* = $(lyI" + |6 — 6]").

This gives the required result.
Lewmma 3. Let 0%(p) = (A'A)'A'y + 6,. (Because of regularity Condition E,
A’A is non-singular and 8% is well-defined.) Then

—2X Ipinm(0) = pilnpd = B+ (0 — 0°(0)) A'A( — (D))

+ o (Jy]” + (6 — 0*(p)|*) as p — m and 6 — 8,
where
R=1[y — A(6"(p) — 0)]Ty — A(6*(p) — 6)] = ¥'y — YA(A'A)'Ay.

Proor. The quadratic form [y — A(8 — 6)]'ly — A(8 — 6o)], obtained in
Lemma 2, is at a minimum when 6 = 0* and it may easily be verified that

[y — A(6 — 8)]ly — A(6 — 8)] = R + (6 — 0%)'A'A(6 — 0*).

It follows from Lemma 2 that

2% [pInwi(0) — pilnpd = B+ (0 = 0°(p))A'AC0 — °))

+ o(lyl* + [6 — 6").

But [ — 8|° = 2|6 — 0% + [6* — /"] and 6% — 8 is Oly]|. The required re-
sult follows.
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LemMa 4. Let 6(p) be any value of 8 for which there exists a sequence {0,(p)},
m = 1,2, - such that 0,(p) — 6(p) and

n Zl [p: In 7:(8,(p)) — piln p:] — supgee Zl [p: In 7:(8) — pi1n pl.

Then
6(p) — 0%(p) = olyl asp — w0,

ie. 0(p) = 0, + (A'A)T'A'y + oly| as p — = .
Proor. It is sufficient to prove that, given ¢ > 0, there exists a § > 0 such
that

inf|g—ge>ely — 2 2_:1 [p:In7(8) — p:Inp] > — 2 Z‘i [piIn 7:(6¥) — ps1n pil

<% infg.g — 2 Z [pi In7:(6) — p:1In IL])

whenever |p — m| < 8. For then | — 8% = ¢[y| whenever [p — =| < 8.
Now let A be the smallest eigenvalue of A’A. Because of assumption C, A’A

is non-singular and A > 0.
Choose & > 0 and n > 0 such that, whenever |[p — m| < 6, and [6 — 6*(p)| <
nand 0 £ O,

R+ (6 —0*)'A'A(0 — 0%) — [N/ (& +2)] (ly]* + |6 — 6*")
< =2 2;:1 [p:In7:(8) — psInpi] <R+ (6 — 0*)'A’A(6 — 0%)

+ [/ (€ + 21yl + [0 — 6*")

(8, and n can be so chosen because of Lemma 3).
Now, for e|y| < |6 — 0% < n, [p — =0 < &1,

(Iyf* + 1o — %"

—2> [pilnmi(6) —pilnpl >R+ N0 — 0% —
i=1 2.|_2

éN 2112 EN 2 DY 2
>R+<>\—m>ely| —gga M =E+ g5l

while
éN
eF2

Therefore, when Ip bt ﬂol < & , mf,,>|H‘|>,|y| -2 Zi-l [pz In 1[',‘(0) — P: In p;] >

_221—1 [Zh In '"'z(o ) - Di In p1]
Because of regularity condition B there exists an n such that

~2 X IpiIn 7:(0*) — pilnp] < R + 5 Iyl"

|# — m| > # whenever |6 — 6] > %7. Now,as p—m,y—0.
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Therefore, by Lemma, 3, 8* — 6, and
—22 [p:In7:(6%) — p:Inp] —0

asp—>m.
We may choose a number 8 < 14’ such that

|6 — 8 < 3n and —22 [p:In 7(6*) — psInpJ < 1"

whenever |p - wol < 8. Now, when [0 — 6| = nand [p — m| < 8, [0 — 6|
> [0 — 6| — |6* — 6] > 3" and therefore ]ﬂ—ﬂo|>n

23 [p:In wi(0) — pilnpd 2 |p — = (by Lemma 1)
2l —ml — Ip— =l > (1 — &) > 1"
Therefore, when [p — | < 82,
infig—g#i 21— 22 [p: In 7,(8) — p:In pi] —22 [p: In 7:(6%) — p:In pil.
Finally, take 6 = min (8, &). For [p — = <3,
infg—g#i>ey — 2; [p:In 7y(8) — psInpi] > —22 [p: In 7:(6%) — pilnpi.
LEMMA 5.
3 (W/n®) (i — 10" = [y = A — 00YTy — A — &)]
+ ollyl” + [0 — &/’]

as 0 — 6 and p — = .

Proor. Similar to the proof of Lemma 2. The only difference is that we do not
need to apply Taylor’s Theorem at the beginning.

LemmMa 6.

3 (/m() (p: — 7(0)" = ¥y — YAWA) Ay + oyl
asp — o .

Proor. By combining Lemma 4 with Lemma 5.
LEMMA 7. Deﬁne Y, by YVai = (Pui — m0:)/ (m0:)}. Then the joint distribution

of WY, -, 'Y, tends as m— o fo a (smgular) multivariate normal dis-
tribution with mean 0 and covarzance matriz I, — vv' where v is the column vector
with elements (7o), -+ -, (7o)}

Proor. See Cramér [1] (method of characteristic functions).
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Lemma 8. Let Z be a random variable having a multivariate normal distribution
with mean O and covariance matriz I, — vw'. Then (A’A)T'A’Z and Z'Z
— Z'A(A'A)T'A'Z are independently distributed, the former as 91(0, (A’A)™)
and the latter as x’——; .

Proor. (Essentially due to Cramér [1].) Let U be an orthogonal matrix with
v as its last column. Let it be partitioned as (U;:v). Let

W=U2Z W, =U2Z and W,=vVZ

so that
Wi
W=|...1].
w,
Now
E[W,Wi] = E[Ui1ZZ'U}] = UL, — w'|U; = L,
and

E[Wf'] = E[V,ZZ,V] = V'[I,- - VVI]V = 1 —_ 1 = 0.

Thus W, = 0, and Wy, ---, W,_; (the components of W;) are normally and
independently distributed, each with mean 0 and variance 1.
Z = UW = U;W,;. Put B = U,A. Now

o= Bt = T =[5 L

since > iey m; = 1.
Thus v'A = 0. It follows that B = U’A. U is non-singular and A has rank s
(by regularity condition E) and therefore B has rank s.

(A'A)7' = (B'B)™, (A’A)7'A’Z = (B'B)”'B'W,
and
Z2'Z — ZA(A’A)7'A'Z = WiW, — W;B(B'B)'B'W;.

By normal least squares theory (B'B)™'B’W; and WiW; — W:B(B'B) 'B'W;
are independently distributed, the former as 91(0, (B'B)™") and the latter as
Xo—s—1 - This completes the proof.

CompPLETION OF PrOOF oF THEOREM. Lemma 4 gives

n}(8, — 8)) = n}(6(P,) — 6) = (A’A)'ARY, + o(n!|Y.)

while Lemma 6 gives

nz; (I/Wz(én))[P1 - Wi(én)]z = n[Y;Yn —_ Y;A(A,A)_IA'Y”] + O(nlY,,IZ).
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In the limit, therefore, using Lemma 7, n(6, — 6,) and
n2> (mi(6.)71P: — wi(8)f

are distributed as (A’A)™A’Z and Z'Z — Z'A(A’A)7'A’Z respectively, where
Z is 9(0, I, — wv').
Lemma 8 completes the proof of the theorem.
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