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1. Introduction. Some statistical problems concerning a one-parameter family
of distributions may be formulated in such a way that they reduce to deciding
whether some equivalent parameter 6 is positive or negative. In this paper, the
problem is assumed to be already in the reduced form and the family of distribu-
tions to be exponential with a real parameter 6. If Fg(x) is the distribution func-
tion corresponding to 6 and F_4(z) = 1 — Fe(—x ), then the family and the
problem have some degree of symmetry. If, in addition, the loss through wrong
decision is an even function of # which is zero for § = 0, then the problem is
symmetric and it is reasonable that such symmetry be reflected in any procedure
used. If O is the parameter space and a prior distribution on ® symmetric about
zero is selected, the corresponding Bayes procedure will certainly have the
required symmetry and indeed any Bayes procedure which is symmetric can be
shown to be also Bayes with respect to a symmetric prior distribution. Under
certain conditions Wald [2] has shown that Bayes procedures and their limits
form an essentially complete class and therefore, if attention is to be restricted
to symmetric procedures, it may be further restricted to those procedures
which are Bayes solutions for symmetric prior distributions. In a sequential
solution to a problem of this type, Chernoff [1] obtained results which suggested
that the expected number of observations required had a maximum at 8 = 0,
precisely where the possible losses are least. The present paper shows that the
same is true of two-stage sequential solutions in a somewhat more general

context.

2. Assumptions and definitions. Suppose that there are available real-valued
observations {X;} which are independently and identically distributed with
common distribution belonging to a one-parameter exponential family. Suppose
that the natural parameter set contains a neighborhood of the origin so that all
members of the family are absolutely continuous with respect to the distribution
given by 8 = 0. Let the latter probability measure be denoted by x. Then the
distribution corresponding to 8 will have density g(8) exp {6z} with respect to u.

AssuMPTION 2.1. The measure u is symmetric about the origin and is either con-
tinuous or discrete. Also u({0}) = 1.

For the proof of Lemma 4 a further property is required of x which will in
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point of fact tend to rule out measures which are mixtures of continuous and
discrete measures. For any n, let H, be the space of values of S, = > X:.
For any real number s, let u; be the distribution of X 4 s when p is the dis-
tribution of X. Let K, = {u, : s € H,}. The distribution of |X + s| will depend
only on |s|.

AssumpTION 2.2. If the distribution of a random variable Z belongs to K, then
the distribution of |Z| is stochastically increasing in |s| for s e Ho(n = 1,2, -+ -).

The preceding assumption will be verified if x is continuous and its density
is unimodal or, if u is discrete and H; is a set of equally spaced points whose
probabilities under u are nonincreasing as a function of their distance from the
origin.

REMARK. It is a simple matter to show by induction that, if u satisfies As-
sumptions 2.1 and 2.2, then for every n the n-fold convolution of u will also
satisfy them.

Let there be a prior measure » on the Borel sets of .

AssumPTION 2.3. v is symmelric about zero and »({0}) # 1.

The statistical problem under consideration is to decide between the hypoth-
eses H : 0§ < 0and H: 0 = 0 and it is assumed that if 6§ = 0, then it is of no
consequence which hypothesis is accepted. Let L(6) be the loss made when 6 is
the value of the parameter and the wrong hypothesis is accepted.

AssuMPTION 2.4. L(0) is a bounded Borel-measurable function of 6 with L(—89)
= L(8) = 0, L(0) = 0 and »({6: L(6) > 0}) > 0.

Let the cost of each observation be c.

3. Symmetric procedures. By a symmetric two-stage procedure I shall mean a
procedure which specifies a first-stage sample size n;, a second-stage sample
size function ne(X;, X,, -+, X,,) and a final decision rule with the following
properties.

(l) n2<_X17 _X2) ] _an) = 1’L2<X1, Xoyooey X"l) (= N2, Sa'y)-

(i) If o (X1, Xo,++* Xnyy Xnyt1, *, Xniin,) is the probability that
H™ is accepted when X, X5, -+, Xa,, Xny41, -+, Xa 4w, have been ob-
served and ¢ (X1, Xa, +++ Xny, Xnys1, -+ + , Xnysn,) is similarly defined with
respect to H*, then

¢+<_X1 ) _X2, ) —an ) _Xﬂ1+l) ] _Xn1+N2)
= ¢_(X1 ) X, y " an ) Xn1+1, ] Xn1+N2)-

It is easy to see that for any such procedure the probability of error will be
an even function of 6.

Since the admissible procedures are the ones of interest, there is no need to
take into account procedures with arbitrary large values of n; or N, . If Assump-
tion 2.4 is satisfied and L(8) < M, taking more than M /c observations would
mean that the cost of observations would be larger than the largest loss that can
be made.

DeriniTiON. Let © be the class of symmetric two-stage procedures with
m < M/cand ng(xy -+ - Tny) = M/c for all (xy, -+, Tn,).
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Assumptions 2.1 to 2.4 imply that Assumptions 3.1 to 3.6 of Wald’s book [2]
on statistical decision functions are satisfied and enable use of his Theorem 3.17
to show that the symmetric Bayes procedures obtained by using symmetric
prior distributions » and limits of such procedures form a class which is com-
plete relative to D.

4. Preliminaries. If X;,---, X, are observed then S, = D.i-1 X; is a
sufficient statistic for 6. For any two-stage procedure let S© = > 7% X, and
S® = > Xn,+i. After n observations have been taken, whether in one
group or more, the posterior distribution will be absolutely continuous with
respect to the prior distribution, and if .7 X, = s, there will be a Radon-
Nikodym derivative for which the specific form

(4.1) [9(6)]" exp {65}/ [ [9(6)]" exp {65} »(db)

can be used.

The first two lemmas are well known or almost obvious and the proofs will be
omitted.

Lemma 1. If S© = s, is observed at the first stage and S® = s, at the second,
an optimal symmetric final decision rule is given by the following.

If (1 + ) <, =, > 0 then accept H with probability 1, %, 0, respectively.

LemMA 2. If Xy - -+ Xn, are observed at the first stage and S© = DX,
the Bayes second stage number N is a function of S©.

ReMARK. Lemma 2 is true because S is sufficient for 9. For the Bayes pro-
cedures discussed in this paper N, will be also an even function of S®.

NotaTion. Let ¢ (¢, s) = 1, 1, 0, respectively, if (¢ + s) <, =, > 0. Let
¢*(ts) =1 —¢(ts).

If 8% = s 8® = ¢ then ¢ (¢, s) is the probability that H~ will be accepted
when the optimal decision rule of Lemma 1 is used.

Let
p(0;n2, 81) = EoloT (8P, 8) | 8V = s, No(8V) = ng] if 6 <0,
= 07 if 0 = O,
= B¢~ (82, 8P| 8 = s, No(8V) = ng] if 6 > 0.

Thus p(8; 12, s1) is the probability of error when 6 is the true value of the parame-
ter given that s; was the observed value of S® and the second stage is to con-
sist of n, observations. Let

R(’ﬂz | 81) = CNy

(4.2) . .
+ o L(8)p(6; 2, s1)|g(8)|™ exp {651} »(d0)/ [ ¢ lg(8)|™exp {651} »(db).
Now R(n,|s1) is the conditional Bayes risk if the second stage consists of 7.
observations and S® = s; was observed at the first stage (using (4.1)). The
Bayes second stage number 7:(s;) will be that value of n, which minimizes

R(nz I 81)-
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5. The second-stage sample size. The main result of the paper is to show that
for any first sample size n; , the Bayes solution for the second sample size, n2(s1),
is a nonincreasing function of |s;|. This is proved in Theorem 1 by considering
AR(nz|s1) = R(ne + 1|s1) — R(na|s1). Lemma 4 establishes a technical
result which is needed in the proof of Lemma 5. Lemma 5 shows that AR(7: | s1)
is an increasing function of |s;| and is the key to the proof of Theorem 1. Theorem
2 establishes a general property of the admissible symmetric procedures. In
Lemmas 4 and 5 and Theorem 1, numbers u, and 5(n.) are used and need to be
defined.

Let u* be the ns-fold convolution of u if n; = 1 and the distribution degenerate
at 0 if no = 0. Let up = sup {u: u—u((0, ©)) > 0} > 0 since u({0}) == 1.
Let §(ny) = sup {s: us((—uo, %)) > 0}.

LemMa 3. §(ny) = (n2 4 1)uo .

The proof is straightforward and will be omitted.

Lemma 4. If Assumptions 2.1 to 2.3 are verified, then, for fized § = 0 and ny
the expression

(5.1) [—exp {8 Ap(8; ma , s1) — exp { —Osi} Ap(—0; nz, 81)]

is a posttive decreasing function of |si| of |si] < 3(nm2). If |s1] = §(ne) the expression
is zero. ‘
Proor. Suppose 6§ > 0.

—Ap(8; mz, s1) = Ealo (8%, 8P| 8% = s, na(8Y) = my]
_ E9[¢—(S(2), S(D) | P = 81, M(S(D) = ng + 1]
= [20¢7(s, 81)[ 20 9(6) exp {08u(dt)][(g(6)]™ exp {0s}u*(ds)
— 2 [[20 ¢t s + s1)g(8) exp {68u(dt)]g(6)]™ exp {0s}u™(ds)
= [20d7(s, 81) [2a 87t s + 51)g(8) exp {6u(dt)[g(0)]™ exp {6s}u™(ds)
— % dT(s, 1) [Z0 87(t, s + 51)g(8) exp {08u(dt)[g(6)]™ exp {0s}u™(ds).

The first term represents the probability that one more observation will turn a
wrong decision into a right one whilst the second term gives the probability that
an extra observation will turn a correct decision into a wrong one.

—exp {051} Ap(0; nz , s1)[g(0)] ™ *P
= [20d (s, 81) [20dT(t, s + 81) exp {8(t + s + s1)}u(dE)u*(ds)
— [2a0T(s, 1) [2d (L s + 51) exp {8(t + s + s1)}u(dE)w*(ds).
Tetu=s+s,v==0t+s+s.
—exp {051} Ap(0; ma , ) [g(O)] "™
= (0o (u,0) [Z0 ¢t (v, 0) exp {0} uu(dv) - ui; (du)
— J2a 8" (4, 0) [2 67 (2, 0) exp {Oo}uu(dv) i (du).
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Similarly
—exp { —0s:} Ap(—6; 1z, &1)[g(—0)]"* "
= [2, 0T (u,0) [2 67 (v, 0) exp { — 60} uu(dv) ps; (du)
— [0 (u, 0) [2, 6T (v, 0) exp { — 00} uu(dv) ud; (du).
Since g(—0) = g(9),
—[g(0)] ™™ lexp {61} Ap(8; ma, 51) + exp { —0s} Ap(—0; ma, s1)]
= 2[% ¢7(,0) [Z% 7 (v, 0) sinh {00} wu(dv)ui; (du)
+ 22,61 (u, 0) [20 ¢ (v, 0) sinh { — 00} u,(dv) s (du).
Now ¢™(», 0) sinh {0} = 0 if » < 0 and is a positive increasing function if
v > 0. Since the distributions {u, : — o < u < «} are stochastically increasing
in u,
2w @' (v, 0) sinh {6} u,(dv)
as a function of u is positive and increasing if u > —uy and, when wu, is finite,
it is 0 if v £ —uo . Similarly
[24 ¢7(v, 0) sinh {— 6} u.(dv)
is positive and decreasing if v < uo and, when w, is finite, it is 0 if v = o .

Let
h(u) = 2[g(0)]™ " [20 6™ (v, 0) sinh {60} uu(dv) if u <0,

20g(0)]™ ™+ 2.0 67 (v, 0) sinh { — 00} uu(dv) ifuzo0,

then A(u) is an even function of w which is positive and decreasing if 0 < u < uo
and if uo is finite, h(u) = 0 for v = wu, .
Thus

[—exp {0s:} Ap(6; na, s1) — exp { —0Osi} Ap(—0; nz, 1))
= [Z% h(w)ui(du) = E,lh(|U])]

where U — s; is a random variable with distribution u*. By Assumption 2.2
the distribution of |U| is stochastically increasing in |s;| in the special sense
defined. Therefore if |si| < §(n2), E,,[h(|U])] is positive and decreasing as a
function of |s;| so that the first result follows. If |s;] = 5(ne) then E, [h(|U|)] = 0
and the second result is proved. By symmetry, the lemma holds for 6 < 0.

LemMa 5. If Assumptions 2.1, 2.3, and 2.4 are valid and the conclusion of Lemma
4 holds, for fixed ne, AR(ng | s1) is an increasing function of |si] if |s1] < §(me)
and is equal to c if |s1] = §(m2).

Proor. AR(n2 | 81) = ¢ — B(s1)/A(s1) where

A(s1) = [g[g(8)]™ exp {0s:}v(d0),
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and
B(s) = — [ L(8)Ap(8; nz, 51)[g(6)]™ exp {61} »(do),

using (4.2).
Let ©F = {6: 0 ¢ ©, 6 > 0}. Then

A(s1) = [g+ [9(0)]™ (exp {61} + exp {—6si})»(d0) + »({0})
= 2[g+ [9(0)]™ cosh {6s:}»(d6) + »({0})

since g is even and » is symmetric about zero.

But cosh {6s;} is an increasing function of |s,| for all 6 # 0, »({0}) # 1 and
A(0) > 0 since g(8) > 0 for all 9 ¢ ©. Therefore, A(s;) is positive and is a
strictly increasing function of |s|.

B(s1) = fe+ L(6)[—exp {8} Ap(8; na, s1) — exp { —Os:} Ap(—0; ma, 1))
-[g(6)]™ v(d6)

since L, ¢ are even functions, L(0) = 0 and » is symmetric. Since Assumption
2.4 and the conclusion of Lemma 4 hold, with positive probability the integrand
is positive and decreasing as a function of |s;| if |s;] < §(n2).

Thus B(s1)/A(s1) is a positive decreasing function of [si| if [s1] < §(nz)
and is zero if |si| = §(m). Therefore, AR(n:|s:) = ¢ — B(s1)/A(s1) is an
increasing function of |s| if [sa] < §(ng). If |s1] = §(ma) then AR(me|s1) = c.

TuroreM 1. If the conclusion of Lemma 5 holds, then for any first sample size,
the Bayes solution for the second sample function is a nonincreasing function of
[sal-

PrOOF. AR(nz | 81) = cif [s1] = §(ng), since for such values of s;, B(s1) = 0.
But §(n.) is an increasing function of n, by Lemma 3. Therefore, if s; = s(n2)
for some value of ny, B(s;) = 0 and AR(n, | s1) = ¢ > 0 for all smaller values
of n, and the Bayes solution 7;(s;) must be either zero or s; < §(2(s1)).

Now 72(s;) minimizes R(n; | s;) for each s; and since R(nz | s1) = R(ns | —s1)
it may be assumed that 7:(s;) = Az(—s1).

Suppose a, b are values of s; and 0 £ a < b, a < §(#x(a)). If 7iz(a) is the
Bayes solution for & = a, for all ny > #s(a), 0 £ R(nz | @) — R(#(a) |a) =
Smglo AR(k @) < Xorfae AR(E|D) (by Lemma 5) = R(na|b) —
R(#s(a) | b), therefore, R(n:|b) > R(#:(a)|b), therefore, 7is(b) = n2 >
fa(a), i.e., fa(b) < Az(a). If @ = s(x(a)) and Ax(a) = 0, a modified argument
can be used to show that 72(d) = 0.

THEOREM 2. If Assumptions 2.1, 2.2, 2.4 are valid and the conclusion of Lemma
5 holds, the expected number of observations for any admissible symmetric two stage
procedure is a nonincreasing function of |6).

Proor. Theorem 1 shows that, for every symmetric procedure with Bayes
second stage, the second sample size function 7iz( S?) is a nonincreasing function
of |S”|. Since the Bayes solution itself is such a procedure with some first
sample size 7, , the same property will hold. It is easy to see that the distribution
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of |S®| is stochastically increasing in |9]. Thus, Eg#:(]S®|)] is a nonincreasing
function of |6|.

Assumptions 2.1, 2.3, 2.4 are sufficient for Wald’s theorem 3.17 [2] to hold.
Using Wald’s terminology, Bayes symmetric procedures in the wide sense form
an essentially complete class of symmetric procedures. It is easy to see that
any admissible procedure must have the required property by considering con-
ditional Bayes risks with respect to appropriate prior distributions.

6. Some specific cases. The important conditions on the distribution of the
observations are those of Assumptions 2.1, 2.2. If u is continuous with a sym-
metric unimodal density, the conditions are satisfied. Thus, if u is a normal
distribution, Theorem 2 will be true and such a result compares nicely with
the work of Chernoff on fully sequential solutions. If u is discrete and its support
is a set of equally spaced values, then Assumption 2.2 will be satisfied if the
probabilities of the various possible values are nonincreasing as a function of
their distance from zero. With some adjustments, the problem of testing whether
a binomial parameter p is greater than or less than § can be fitted into such a
category. The required transformation will be to let § = In (p/1 — p) and to

let w(f—%) = u({d}) = 3.

7. Remarks. The problem which led to the present results concerned two-
stage solutions for the binomial case mentioned in the last section. Since the
values of possible losses could be expected to be smallest for values of p near 3,
it was hoped that symmetric designs could be found with at least a relative
minimum for the expected number of observations when p = 3. However,
Theorem 2 shows that such designs would be inadmissible. It is not known
whether the same is true of fully sequential solutions to similar problems, but I
would conjecture that it is, although it may not be possible to extend the methods
of proof used here.
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