APPLICATIONS OF THE CALCULUS FOR FACTORIAL ARRANGEMENTS
II: TWO WAY ELIMINATION OF HETEROGENEITY!

By M. ZeLEN? AND W. FEDERER

Mathematics Research Center, U. S. Army and Cornell University

1. Introduction. This paper is the second in a series of papers which applies
the special notations and operations developed by Kurkjian and Zelen (1962)
to problems in experimental design. This body of notation and operations has
been applied previously to block and direct product designs by Kurkjian and
Zelen (1963).

In this paper we consider general methods for both the analysis and construc-
tion of designs which can be used for two-way elimination of heterogeneity.
General methods of analysis are derived in Section 2 and applied to. balanced
incomplete and group divisible designs in Section 3. Section 4 discusses new
methods of constructing designs and their analysis.

2. The analysis of designs for two-way elimination of heterogeneity. Consider
a block design with » treatments in b blocks such that each block contains %
experimental units and every treatment is replicated r times. For visualization
purposes, it is convenient to regard the design as an array with b columns and %
rows where the entries in the array consist of the treatment numbers. Define the
matrices N = (n;) and N = (%) to be of dimension » X band » X k re-
spectively where n;; = number of times treatment 7 occurs in block j and 75 =
number of times treatment ¢ occurs in row h. The matrix N is the incidence
matrix for the design which relates the treatments to the (columns) blocks;
the matrix & similarly relates the treatments to the rows. In this paper we shall
call N the column incidence matrix and N will be termed the row incidence
matrix. Let Y 4(j = 1,2, -+ ,b;h = 1,2, - - - , k) denote the measurement made
in the jth block and hth row. When treatment ¢ is made in block 7 and row &,
the random variable Y 4 will be assumed to have.the expected value

(2.1) E{ th} =u-+t+ b,‘ + 7

where u is a constant, and ¢; , b, , r, are the (fixed) effects associated respectively
with the treatments, blocks, and rows. These parameters satisfy the restraints
Dicati = Y ogeab; = > obam = 0. Furthermore, we shall assume that the
{Y;x} are uncorrelated with common variance o°.

When analyzing such an experiment design, interest is usually focused on
estimating the treatment effects ¢; . The solution for the estimates of the treat-
ment effects can be obtained by solving a set of » simultaneous linear equations
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TWO WAY ELIMINATION OF HETEROGENEITY 659

which depend on N, N, and the adjusted treatment totals which are a function
of the observations. The adjusted treatment totals are obtained by first defining

T; = Total for treatment 7;

k
B; = ;.Z Y ; = Total for jth block;
=1

b
R, = 2 Y = Total for hth row;

Jj=1

v b k b k
g = Z T; = 21 B; = }; R, = Z; h; Y i = Total for all observations.
i= = i= 1

=1

Then the 7th adjusted treatment total is defined to be
b k
Q:=T; — j;lijj/k - hz_l’ﬁith/b + g/v

or expressed in matrix notation
(2.2) Q=T — NB/k — NR/b + 1g/v

where T(v X 1), B(b X 1), and R(k X 1) are the respective column vectors of
the treatment, block, and row totals, and 1 denotes a » X 1 vector of all unity
elements. It can be shown cf. Tocher (1952) that the (reduced) normal equations
for estimating the treatment effect vector ¢ = (#,,%, - - - &) can be written as

(2.3) [rI — NN'/k — NN'/b + J(r/0)lf = Q

where I is the identity matrix of order » and J = 1 1’. Furthermore the estimate
of the variance with v, = (bk — b — v — k + 2) degrees of freedom is s* =
[Y'Y — §{'Q — R'R/b — B'B/k + ¢*/vr]/v..

The paper by Kurkjian and Zelen (1963) introduced a structural property
of the design which was related to the (block) incidence matrix N of the design.
This structural property was termed Property (A) and is defined as follows. Let
v = J]#a m: and denote the m; x m; identity matrix by I;, and the m; x m;
matrix with all elements unity by J; . We then define D¥ by

Dg‘.=I‘- if8.=0

24
@ = J; if & = 1.

Then a block design will be said to have Property (A) if

(A) NN'=X{ >  h,b, - ,5)D xD* x --- x Dy}

8=0 = Sy+dgte - +,=s
where the expression in square brackets is the direct (or Kronecker) product of
the matrices D} and the k(3 , 8, - - - , 0,) are constants. Property A may be
written a bit more concisely by regarding & = (&1, 82, --, 8.) as a n-digit
binary number and writing ‘
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D' = Di* x D x --- x D’.
Then the Property (A) can be written as
(A) NN’ = > w(s)D’
é
where the summation goes through all n-digit binary numbers §. Property (A)
as defined earlier by Kurkjian and Zelen refers only to a structural property of

the block incidence matrix. We can define a similar property for the row incidence
matrix N. A design will be said to have property (B) if

(B) NN' = ZB) h(8)D°

holds, where #(8) = h(61,8:, - , 8,) denote known constants. When Properties
(A) and (B) both hold, we have

(2.5) rI — NN'/k — NN'/b + J(r/v) = ; g(3)D’
where
=r — h(8)/k — h(8)/b for 6 = (0,0, ---,0)
(26) ¢(8) = —[h(8)/k + h(8)/B]  for 8 (0,0, ---,0), (1, 1,--,1)
= —[h(3)/k + h(8)/b — r/v] for 6= (1,1, --,1).

Consequently, substituting (2.5) in (2.3), the (reduced) normal equations take
the form

(2.7) (290D = Q.

It will be assumed that the design is connected both by rows and columns
separately, so there will always be (v — 1) linearly independent estimable func-
tions of the treatment effects. These will be constrasts. Otherwise the number of
estimable function of the treatment effects will be reduced. To solve for the £,
one usually introduces the non-estimable restraint ) -y #; = 0. With this non-
estimable restraint the term having § = (1, 1, ---, 1) drops out and hence the
summation over all n-digit binary numbers § in (2.7) need not include
6= (1,1, ---,1). The solution of the system of linear equations (2.7) has been
shown by Kurkjian and Zelen (1963) to be

=21 > (IBM3 x I2M3 x - xITM%)/
(2'8) s=1 = zytaet: - zp=s
TUE(.’L‘],.’L'z, Tt xﬂ)}Q
where z; take the values 0 or 1,
IFMS for z,=0

M; =ml; — J, for 2. = 1.

I
=

(2.9)
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and E(xy, 22, -+ -, z») are efficiency factors defined by

rE(xy, Xpy -+, Xa)
(2.10) n—1

( g8, 8, +- -, &) [T mi™%(1 — x.-a.-)).
§=0 \81+0p+++dp=s =1

Defining z = (1, 22, - - , Z») to be an n-digit binary number, the solution of
the reduced normal equations can be written as

(2.11) t={X' M /nE(x)}Q

where

I’M® = I'M7?* % IPM3* x --- x I7M»
and the summation .. ranges over all n-digit binary numbers except
2= (0,0, ---,0). Thus (2.8) or (2.11) is the solution of the treatment estimates
for all designs which allow for two-way elimination of heterogeneity when
Properties (A) and (B) hold.

The paper by Kurkjian and Zelen (1963) also gives the explicit expression for
the variance of the difference between two treatment estimates. This result is
summarized as follows. Let the 7th treatment be indexed by an n-tuple
i= (&1,%, " ,%) where g, = 1,2, -+ ;myand s = 1,2, - -+ | n. Then the
expression for the variance of (f; — f1) is

var (f; — ) =

(2.12) 20_2 z,,: { TI:Il (m, — 1) + (—I)HITI:II (1 — mr)x,a,g
et x1+zz+'z"+xn=s E(xy, 22,y Tn) )

where
&% =0 if 4 % i
=1 if i =1,

and the z, take the values zero or one. The assignment of the n-tuples to the
treatments is made in such a way that the treatment numbers ¢ = 1 through

my, correspond to the n-tuples ¢ = (1, 1, ---, 1, 4,) for ¢, = 1,2, -+, my;
treatment numbers ¢ = m, + 1 through 2m, are given by ¢ = (1,1, « -+, 2, ?x)
fori, = 1,2, - -+, my . This procedure continues replacing ¢,—; by 3, - -+ , Ma_

which assigns the treatments up to m,_1m, . The element 7,3 = 1 is then changed
to 4.—s = 2 and the process is continued, etc. until the vth treatment is given by

(ml;m27 tee ’mn)°
3. Latin Squares (LS), Balanced Incomplete Block (BIB), and Group Divisible

Designs (GD). Block designs such as the randomized blocks (RB), the BIB’s and
partially balanced incomplete blocks (PBIB) are characterized by a treatment
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occurring at most. one time in any block. We use the convention that when the
design is referred to by name, it characterizes the column incidence matrix. The
problem in using these designs for elimination of heterogeneity for both columns
(blocks) and rows is to arrange the treatments in the rows such that Property
(B) holds, while at the same time preserving the same column incidence matrix.
Often this results in a treatment occurring more than once in some of the rows.
In this section we discuss the analysis and row re-arrangement for the LS, BIB,
and GD designs.

The GD designs introduced by Bose and his associates (1952a, b), (1954) can
be characterized as being PBIB designs with two associate classes such that the
v = mym, treatments can be divided into m, groups of m, treatments each.
Furthermore the column incidence matrix has Property (A) and can be written

(31) GD: NN =(r =M x L+ (M — M) x Jo+ NJ1 x J,

where \;, A\ are parameters associated with the design. When m,; = 1 and
M = Az = X the design can then be regarded as a BIB design with

(3.2) BIB: NN = (r — NI +\J

where I and J are now of dimension ». Specializing the parameters still further
so that b = r = ), the design will be a RB design with

(3.3) RB: NN' =rJ.

Thus one can specialize the analysis for GD’s and obtain the results for the BIB
and RB designs. These same remarks clearly hold for row incidence matrices.
Therefore one can consider a GD design with row incidence matrix having the
property that

(34) NN’ = £(0,0)I; x I, + £(0, 1), x J; + A(1,1)J1 x J,

and specialize the solutions to obtain various different combinations of row and
column incidence forms.

In this paper we shall be dealing only with column and row incidence matrices
having the form (3.4). The constants associated with the column incidence
matrix are denoted by h(d;, 8;). When the three constants are non-zero, we call
this the GD form. If ~(0, 0) = 0, we will term the incidence matrix a modified
GD (MGD) form. When A(0, 1) = 0, the form will be BIB. If (0, 0) =
h(0,1) = 0, NN' = h(1,1)J: x J,and will be called the RB form. When each
treatment is repeated in every column (row) p times we have NN’ =
p’bJy % Jo, NN’ = p’kJy % Jo.If p = 1, this corresponds to a RB design.

It will be convenient to adopt a means of identifying designs by specifying
the type of column and row incidence matrices. The identification will be (column
incidence type)/(row incidence type). Thus the symbol GD/RB corresponds
to a design with GD column incidence and RB row incidence matrix.

We also remark that since 41 s = b for all b, and D _j fig, = 7 for all 4,
we have
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UNN' = 1’ = 1'{#(0,0)I, x I, + (0, 1)I; x Js + A(1, 1)J; x Ja}
and thus b = £(0, 0) + m3h(0, 1) + mamsh(1, 1).

3.1 The case NN’ = p’kJ. Suppose that each treatment occurs in every row of
a design exactly p times. Therefore the row-incidence matrix is of the RB form;
ie.
(3.5) NN' = p*%J.
When the design is such that b = pv, then r = pk (by virtue of vr = bk) and
Hartley, Shrikhande, and Taylor (1953) have shown that the treatments can

be arranged so that each treatment occurs p times in every row. Substituting
this value for NN’ in the Lh.s. of the reduced normal equations (2.7 ) results in

{r — NN'/k — NN'/b + (r/v)J}t = {r] — NN'/k}{
as J{ = 0 due to X i—1&; = 0. Therefore the reduced normal equations become
(3.6) {rI — NN'/k}t = Q

which is independent of N. The Lh.s. is the same as the reduced normal equations
for block designs with one-way elimination of heterogeneity.

The most widely used designs for two-way elimination of heterogeneity are
the LS and Youden Square (YS) designs. These are such that each treatment
occurs exactly once in every row. When the LS design is repeated p times so
that the parameters are (v, r = pk, b = pk, k), the incidence matrices become

(3.7) NN’ = pbJ, NN = pkJ.

The case when a BIB has b = pv has been discussed by Shrikhande (1951),
and as can be seen from (3.6) presents no problems in obtaining the treatment

estimates.
3.2 GD/GD. Consider a GD design with row incidence matrix having the

property
(38) NN'=#(0,0)I; x I, + A0, 1)I; x J; + k(1,1)J1 x Ja.
Using (2.6) results in

9(0,0) = r — (r — \)/k — h(0, 0)/b,

g(0,1) = —[(M — N)/k + K(0, 1) /),

g(1,1) = —[\/k + A(1,1)/b — r/v].
It is convenient to define the quantities

Ey(1,0) = [r(k — 1) + M — me(M — N))/7k

(3.9)
Ey(0,1) = [r(k — 1) + M]/rk.
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Then using (2.10) the efficiency factors are
E(1,0) = r[g(0, 0) + mag(0, 1)]

(3.10) = [Eo(1,0) — 1] + [rb — £(0, 0) — %(0, 1)ms]/rb
E(0,1) = E(1,1) = ¢(0,0)/r = [Ee(0,1) — 1] + [rb — %(0, 0)]/7b.

The quantities Eo(1, 0) and E,(0, 1) denote the efficiency factors of the GD
when it is used only for one-way elimination of heterogeneity.
Using (2.11) and (2.12) the treatment estimates are

A_—l M1XJ2 J1XM2 M1XM2
“"r‘v{Eu,O) T I D T OEGD }Q

(3.11)

and can be simplified to

1 {mlIl x Js
E(1,0)

)

1 fol x I, 11 ' }
- 2{5on + e ~ o) mn e
In order to obtain the variance for the difference between two treatment
estimates one associates the ¢th treatment with the 2-tuple (7, 7:) where
4=1,2,--+,mefors =1,2. Thenif ¢ = (4;, ) and s’ = (41, ¢2) are associ-
ated with treatments ¢ and ', the variance (f; — #{) is obtained from (2.12) with
n = 2. This results in
var (& — £) = (26"/m){mi/E(1, 0) + mu(my — 1)/E(0, 1)} ,
(3.12) , for 4 % 4;
var (£ — £3) = 24%/7E(0, 1) for 4 = 4.
If the design is a BIB (A, = X2 = \, mp = 1) with the row incidence matrix
being of the form (3.8), the efficiency factors (3.10) become

E(1,0) = [Ey — 1] + [rb — (0, 0) — A(0, 1)ms]/rb,
(3.13) E0,1) = [E, — 1] + [rb — (0, 0)]/b,
Ey = [r(k — 1) + \/rk.

3.3 Row arrangements for r = pk = 1. Hartley et al. (1953) have shown that
for a BIB design, if r = pk + 1 orr = pk — 1(p = 2), the treatments can be
arranged in rows such that NN’ is MGD; i.e.

-+

SN

vl x Iy — myI; % Jz}Q
E(0, 1)

(3.14) NN' =1, x Jo + (1, 1)J; x Jo
where m; = k and ms = v/k. The value of the constant A(1, 1) is
h(1,1) = p'k + 2p if r=opk+1

= pk — 2p if r=pk—1.
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This rearrangement of the treatments within the rows results in dividing the v
treatments into & groups of v/k treatments each so that in each row all the treat-
ments of one group oceur p + 1 (p — 1) times while the remaining treatments
oceur p times when r = pk + 1 (pk — 1). The same result will also hold for
GD designs if my = k and me = v/k and b > v. Therefore with NN’ given by
(3.14), 7(0,0) = 0, ~(0,1) = 1, and the efficiency factors in (3.13) and (3.10)
reduce to

BIB/MGD: E(1,0) = Ey, — me/rb,

E(0,1) = Ey = [r(k — 1) + \/rk
GD/MGD: E(1,0) = Ey(1,0) — my/rd,

E(0,1) = E(1,1) = Ey(0,1).

Some simplification occurs in writing the treatment estimates for the BIB and
GD designs. From (3, 11) we have

(3.17) BIB: = 1{y — {I, x Jo/rEo(1 — rbEy)}Q
(318) GD: £= fo - {Il X Jg/TEo(]., 0)[17’L2 - ron(l, 0)]}Q

where & is the estimate obtained without eliminating row heterogeneity with the
adjusted treatment totals defined by (2.2).

In general special methods are needed for arranging the rows of the design so
that the row incidence matrix has Property (B). These methods involve finding
a design with the parameters

(3.19) =, F=r, b=k, k=5

(3.15

(3.16)

where a treatment is allowed to appear more than once in a block. This design
is then used to arrange the treatments in the rows.

One useful method for constructing such a design is when the parameters satisfy
the conditions

(3.20) E=mp4+ kS 7=pb+r*=pk+r

With these parameters one forms a design in two stages. The first stage consists
of constructing a design with parameters v, = v, = pk, by = k, ky = pv by
replicating each of the v treatments p times in each block. The second stage
consists of constructing a design with parameters v, = v, 7, = ¥, by = k, ks = k™.
This second design need not be connected. This second design is then appended
to the first, block to block to make the total number of experimental units in a
block ky + ks = pv + k¥ = k.

Shrikhande (1951) discussed a special case of the above method for the class
of BIB designs with parameters

(321) v=¢, b=s+s r=s+1 k=s A=L1

In order to arrange the rows, we consider a design with the parameters (3.21);
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iev=s,F=s+1,b=s k= s + s. Note that & and 7 are of the form
(3.20) with p = 1, k* = s and #* = 1. The design in the second step of the
procedure is to construct a design with parameters v; = S re=1,br=35k =s.
Since r; = 1, this design must be disconnected and consists of the s X s array of
s’ treatments.

Another two stage method of constructing a design for row arrangements when
# > b is to construet the first stage design with parameters v; = b = k, r, = r,
by = b = k, kx = r. The second stage design is constructed with the parameters
ve =v — k, 7y = r,bs = k, ks = b — r where the treatments in this second design
are different from that of the first design. This second design is then appended
to the first, block to block to make the total number of treatments » and block
size &k = b.

It should be stressed that when the GD designs are used, the row incidence
matrix must be of the GD form where the treatments fall into the same associ-
ation scheme. In many instances such an arrangement may be impossible.

4. New classes of designs with two-way elimination of heterogeneity. When
the number of blocks is not a multiple of the number of treatments b # p,
special methods are needed to arrange the treatments within the rows so that
the row incidence matrix has Property (B). In this section we discuss classes of
incomplete block designs which have Properties (A) and (B); yet b # po.
We construct these new designs by taking the direct product of the incidence
matrices of two separate incidence matrices. Such constructions have been dis-
cussed by Kurkjian and Zelen (1963), Shah (1959), Rao (1961), and Vartak
(1955). However these earlier papers have only constructed these designs for
one-way elimination of heterogeneity. Mandel and Zelen (1954) have reported
on such constructions of which this section is a generalization.

Consider two designs with respective column and row incidence matrices
N:, Ni(i = 1, 2). A new design is constructed by taking the direct product of
these incidence matrices. This resultsin N = N; x N;and N = N, x N,.
Furthermore if both these designs possess Properties (A) and (B), it is clear
that the derived design will also possess such properties. When two designs are
used to form a new design we shall designate the resulting design by
(+/+) % (-/+). For example, the design formed by GD/RB and BIB/MGD
will be denoted by GD/RB x BIB/MGD. In this section we shall investigate
the analysis of such designs where the results for the GD/GD x BIB/MGD
are found and various special cases are derived from it.

An example will serve to clarify the construction of new designs. Consider the
two designs

D1 . 4 Dz . 1 2
1 2 2.
31
The designs are respectively a GD/RB and RB/BIB. The new design obtained

1 2 3
2 3 4
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by taking the direct product of the respective row and incidence matrices can be
easily constructed by using the operation of the symbolic direct product (SDP)
(see Kurkjian and Zelen (1962)). An illustration will clarify the details. Taking
the SDP of the two designs results in

(11)(12)(21)(22)(31)(32) (41) (42)
(12)(13)(22)(23)(32)(33) (42) (43)

12 3 4®; 2 _ (13)(11)(28)(21)(33) (31) (43) (41)
23 4 1%% 37 (31)(22)(31) (32) (41) (42) (11) (12)

(22)(23)(32)(33) (42)(43)(12)(13)
(23)(21)(33)(31)(43) (41)(13)(11)

The resulting design has parametersv = 12,7 = 4,k = 6,b = 8 and is a PBIB
(83 associate classes) for its columns and is a GD design for its rows. A treatment
is associated with the 2-tuple ¢ = (41, 75) where d; = 1,2, 3,4 and 4, = 1, 2, 3.
Note that the SDP operation consisted simply of constructing an array by ad-
joining the second design to each treatment of the first design.

4.1. GD/GD x BIB/MGD: Let N, and N, correspond to the respective
column and row incidence matrices of a GD design having parameters
(vy = mumg, 11, k1, b1y M1, M2) where NyV7 is assumed to be of the form

(4.1) NiNi = 7(0,0)I; x I, + 5 (0, 1)I; % Ja + Fa(1, 1)Jy x Js.

Denote by N, and N, the respective column and row incidence matrices of a
BIB with parameters (v, = mgmy, 2, ba, ks, As) where N, is assumed to be
of the form

(4.2) NoN3 = 70, 1)I; % Jy + Fa(1, 1)J5 x Jy.

When a new design is formed by taking the direct product of the two incidence
matrices the resulting design will have parameters (v = vy , 7 = 112, b = byb,,
k = kik;) and also will have Properties (A) and (B) with n = 4. (In some
instances n can be n = 3 with m, = 1). The respective values of the non-zero
h(8) and /(8) constants are

h(0,0,0,0) = (11 — M) (12 — N2), £(0,1,0,0) = (Ax — Mz)(r2 — M),
h(0,0,1,1) = (11 — M)A, h(0,1,1,1) = My — M2)As,
h(1,1,0,0) = Aa(rs — Ne), A(1,1,1,1) = Aghe,

R(81, 02,085, 08:) = Fa(d1, 82)ha(8s, 64).

Using (2.6) to find the g(8) values and (2.10) to evaluate the efficiency factors
results, after some lengthy algebra, in
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E(1,0,0,0) = E(1,0),
E(0,1,0,0) = E(1,1,0,0) = E(0, 1),
E(0,0,1,0) = E; + (1 — Ex)(Es(1,0) — Ey),
E(0,0,0,1) = E(0,0,1,1) = Ex + (1 — Ex)(Ey(1,0) — Ey),
E(1,0,1,0) = E(1,0) + E;(1 — E(1,0))
(4.3) + [Eo(1,0) — E(1,0)][1 — Ey]
+ [E0 — EpJl1 — E(1, 0)],
E(1,0,1,1) = E(1,0,0,1) = Ey(1,0) + Exn(1 — E(1,0)),
E(0,1,1,0) = E(1,1,1,0) = E(0,1) + Es[1 — E(0, 1]
+ [By(0, 1) — E(0, D]l — Ey)
+ [Ex — Edll — E(0, 1)],
E(1,1,1,1) = E(1,1,0,1) = E(0,1,1,1) = E(0,1,0,1) = Ey(0, 1)
+ Exnll — Ey(0,1)]

where
Ey(1,0) = [ri(ks — 1) 4+ Mx — me(Ma — M2)]/riken
Ey(0,1) = [ri(ks — 1) + Mul/rikr,
Ey = 01>\12/ T 1701,
Eyn = vaho/1oks
(4.4)

E(l, 0) = [Eo(l, 0) - 1] + [7‘1b1 - 51(0, 0) -+ 51(0, l)mz]/rlbl,
E(0,1) = [Eo(0,1) — 1] + [rbs — hu(0, 0)]/7ib1,
Ez = [Ezo —_ 1] + [szz - ﬁz(o, l)mg]/rzbz .

Note that the efficiency factors with a zero subscript refer to efficiency factors

used with one-way elimination.
The treatment estimates can be obtained by applying (2.8). After consolidat-
ing terms having the same efficiency factors, the estimate can be written as
Z= l{mllliz XJ;; xJ4+m111xM2 XJ3 XJ4
70 E(1,0,0,0) E(0,1,0,0)
+J1xJzxm313xJ3+J1XJ2xm3I3xM4+M1 xJyx M3 xJ,
E(0,0,1,0) E(0,0,0,1) £(1,0,1,0)
+M1 xszm3I3xM4+mlleM2 x M3 % J4
E(1,0,1,1) E0,1,1,0)
myly x My x mgly x M4} Q
'E(]'7 17 1’ ]‘) )

(4.5)

+
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There will be eight distinet variances for comparing differences between treat-
ments. These can be obtained by applying (2.12) withn = 4. The variances can
be written explicitly by recalling that the two treatments ¢ and ¢’ are associated
with ¢ = (41,4, 7%,4) ands = (41,42,15,41). Define fors = 1,2, 3, 4

6 =1 if 4, = 1,
-0 if 4, # 4,
¢s=1—(1—m3)88.

Then the variance for comparing the two treatment estimates (E:—1t)) is

var (£ — &7)

=2_a'2{ my — ¢1 +'m1(m2—1)—¢1(¢2—1)

r (E(,0,0,0) E0,1,0,0)
+ mz — 3 + ma(my — 1) - ¢3(¢4 — 1)
E0,0,1,0) E(0,0,0,1)

(my — 1)(mg — 1) — (pr — 1)(ps — 1)

(46) + E(1,0,1,0)
' 4+ (m = Dma(my — 1) = (o1 = Deslps = 1)
E(1,0,1,1)
+ mi(my — 1)(mg — 1) — o1z — 1) (s — 1)

E(0,1,1,0)

'ml(mz - l)m (m4 - 1) — (01((02 - 1)¢3(¢4 — 1)
+ : Ed,1,1,1) }

There will be eight distinet variances corresponding to the treatment compari-
sons where

(1) 6=8=0, (2) &=1, &=06=0 (3) s=&=0 &=1,
(4) so=8=1 86=0 (5) 6 =0, & =20 =1,

(6) 1=0=06,=0, =1, (7) s=0=08=1 &=0,

(8) =8 =0=1 06 =0.

A design of this complexity may not be useful in a practical sense. However
it supplies the basic results for the analysis of designs which can be derived from
it. Examples are discussed in the following sub-sections.

4.2 RB/GD x BIB/MGD. The design RB/GD has column incidence struc-
ture NiN1 = p’kiJ and GD row structure. It can be obtained by taking a GD
with (pv) blocks and using the rows as columns, etc. The value of the /(3;, &)
are thus 51(0, 0) = (7’1 - 5\11), 51(0, 1) = (5\11 - ‘)'\12), il:l(]., 1) = 5\12 where a
tilde (~) is used to denote that these parameters are associated with the row
incidence matrix. A GD goes into a RB design when A\; = A, = r. Therefore the
GD efficiency factors become
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Elo = Eo(O, 1) = Eo(l, 0) = 1,
(4.7) E(1,0) = [ri(by — 1) + Ay — me(Au — Aw2)]/mib1,
E(0, 1) = [rsb2 — £2(0, 1)]/72bs

which enables one to find the efficiency factors of this design. These can be found
by substitution in (4.3) and results in

E(1,0,0,0) = E(1,0), E(0,1,0,0) = E(1,1,0,0) = E(0, 1)
E(0,0,1,0) = BE», E(0,0,0,1) = E(0,0,1,1) = En,
E(1,0,1,0) =1 + [1 — E(1, 0)][Ex — B4,
E(1,0,1,1) = E(1,0,0,1) = E(1,1,1,1) = E(1,1,0,1)

= E(0,1,1,1) = E(0,1,0,1) = E(0, 1,1, 0)

= E(1,1,1,0) = 1 + [1 — E(0, 1)][Exn — Ei].

The treatment estimates and variances for comparing treatments can now be
obtained with (4.5) and (4.6).
4.3 RB/GD x BIB/RB. The design RB/GD x BIB/RB will have

h(0,1) =0,  Fa(1,1) = pika.
Therefore from (4.4) E; = Ey and we have
E(1,0,0) = E(1,0), E(0,1,0) = E(1,1,0) = E(0, 1),
(4.9) E(0,0,1) = Ey,
E(1,0,1) = E(0,1,1) = E(1,1,1) = 1,

where E(1, 0) and E(0, 1) are defined as in (4.14). When my = 1, we have
M, = 0 and J; = 1. Hence the treatment estimate can be obtained from (4.5)
by ignoring those efficiency factors for which 2, = 1 and deleting the J, which
appears in the terms where z, = 0. This leads to

(4.8)

2‘_ l{mlll XJz xJ3+m111 XMg XJ3+J1 XJz xm313
“m | EQ{,0,0) E(0,1,0) E(0,0,1)
+M1 XJg xM3+mlIl XMzXMg}Q
E(1,1,1) )

Similarly the variances can be obtained from (4.6) by ignoring those terms for
which 44 ¢4 . This results in

Py My 20’2 my ml(m2 - 1) M3
var (& — &) = —rz_;-{E(l, 0,0) + E,1,0) + E(0,0,1)

(mamy — 1)(ms — 1) — 1
E1,1,1)

(4.10)

. o . s
+ } for 4, £ 21, 45 #= 13,
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var (f, - Z‘:)

_ 20’2{ mm, ™M

(411) " m \E,1,0) ' E(0,1,0)
' (mlm2 - 1)(’)77,3 —_ 1) - 1} Y g . .
+ 1,1, 1) for ¢y = 41, 42 5 12, 13 # 13,
sy 287 my (mamy — l)ma}
(412) "R = ’rv“{Ew, oD T T EL LY
for 4y = 41,4y = s, 5 5 1;
” N 25 my my(my — 1) myma(ms — 1)}
(413) "B = W{Ea,o, 0t EO, LY T ELLD
for 4 5% 11, 43 = 1.
A Ay 2" My M myme(ms — 1)}
(a1g) W)= ‘rv‘{E«), Loy T B, 1,1

for 4y = 41,4y # 45, 45 = 4s.

4.4. RB/BIB x BIB/RB. The design RB/BIB will have #1(0, 0) = £4(0, 1)
=0, m(1,1) = piby, }(0,0) = (r, — 1), la(1,1) = \i. All results may be
derived from the RB/GD x BIB/RB by taking Ay = A2 = 7, and m, = 1.

The efficiency factors may be obtained from (4.9) by ignoring those factors for
which z; = 1 and deleting the terms having 2. = 0. This gives

E(]., 0) = [Tl(bl - 1) + 5\1]/7‘11)1

(4.15)
E(O, 1) = Ezo; E(l, 1) = 1.
Therefore
A_l M, % J; J1XM3 M, x M;
w1 b= B{Ea,m T EO,D T OEGD }Q
' __l_{mlllxJ3+J1xm313+M1xM3}Q
" m | EQ1,0) E(0,1) E(1, 1)

and the variances for comparing treatments are:

(my — 1)m;

T TELD

2
(417) var (i — 1) = %‘;—{E(’flo) } for 4y # iy ,1s =15

2
(418) var (§; — ££)j=27‘;—{E(’(’)“1) + (m];(l Bma} for & =i, 4 % i} ;
my ms

E(1,0) + E(0,1) +

[(my — 1) (mg — 1)—1]}
E(1,1)

. o . N
fOI‘ il;ﬁll,’&s;é?/s.

(419) var (£ —t) = g‘ff{
. t3 ? rv
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