ON TWO-STAGE NON-PARAMETRIC ESTIMATION!

By Euizaers H. YN
University of Minnesota

1. Introduction and summary. In this paper, a two-sample, two-stage non-
parametric estimation problem will be studied. The parameter § = 0(F, G)
under consideration is estimable (i.e., there exists an unbiased estimator ¢ =
(X1, -, Xr; Y1, -+, Y,) of 0). ¢ is a function of independent observations
from two populations with cumulative distribution functions F(X) and G(Y).
The functions F(X) and G(Y) belong to a specified class D, such that a U-sta-
tistic based on ¢ is the unique minimum variance unbiased estimator of §. The
total number of observations on populations X and Y will be a fixed number N.
The sampling procedure is carried out in two stages. First, take M observations
from each of the populations; then allocate the remaining N — 2M observations
between the populations. The method of allocation utilizes the information from
the first stage observations.

Two kinds of two-stage estimators, represented by U’, and U” will be intro-
duced in this paper. Both U’ and U” are U-statistics with random sample sizes.
U’ is based essentially on the second stage observations only. U” is defined on
all N observations. Intuitively, the statistic U” is more appealing. The first
stage observations are used not only to determine the allocation of the second
stage observations, but also to estimate the parameter 6. (see Section 3) One of
the main results (Section 4) is that U’ is unbiased and under certain conditions,
the variance of U’ approaches asymptotically to a particular variance V.
(Here we shall consider the cases that both the variances of U’ and U”, are
finite.) U” is in general biased. However, under the same conditions the value
E(U” — 9)* approaches asymptotically to the same value V, . This value V, is
the smallest variance of any one-stage U-statistic estimator of 6, subject to the
restriction that the total number of observations on X and on Y is N. V, is
computed (see Section 2) when the best one-stage allocation of N observations
to the two populations is made with the help of partial or even complete infor-
mation about the distributions F(X) and G(Y). Such information about F and
G is represented by the “nuisance parameters” by = bi(F, @), bu = bu(F, @),
ete., defined in Section 2. No prior knowledge of by and by, is required to compute
Var(U'), and E(U” — 6)°.

In Section 5, the “optimal” choice of the first stage sample size M relative to
the fixed total sample size N is discussed. The term “optimal” is in the sense
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that the particular choices of M in relative order of magnitude of N, such that
as N goes to infinity, the ratios Var(U’)/V, and E(U” — 6)*/V, approach
unity as fast as possible in order of magnitude of N. Three cases with different
conditions on ¢ are considered. It is found that the “optimal” choices depend
on the specific conditions.

Section 6 contains some examples. To each 6(F, @), the corresponding esti-
mators for by and by together with their behavior under different conditions on
F and G, will be given. The examples include cases where the proposed pro-
cedures can be applied as well as cases where it cannot be applied.

Section 7 shows the asymptotic normality of U’ and U”.

Section 8 indicates that the proposed procedures can be extended to k-sample
case, for k > 2, with similar results.

The technique of two-stage estimation has been used in several papers. Stein
[12] used it to determine confidence interval of a pre-assigned length for the
mean of a normal population with unknown variance. Putter [8] used it to
estimate the mean of a stratified normal population, Robbins [10] discussed such
a technic for the design of experiments. Later, Ghurye and Robbins [4] used it
to estimate the difference between the means of two normal populations (or
some other specified populations). Richter [9] discussed the estimation of the
common mean of two normal populations. During the preparation of the present
paper, Alam [1] discussed the estimation of the common mean of & = 2 normal
populations. This paper generalizes these two-stage procedures in two ways.
First, the underlying cumulative distributions F, G are members of a larger
class of distributions. Secondly, the underlying parameters 8(F, G) are not re-
stricted to population means or functions of means. Consequently, in such a
general setup the question of ‘“the best” estimator of any particular parameter
6(F, @) is not considered in this paper.

2. Some notations and the smallest variance of any one-stage U-statistic. For
convenience of presentation, some specific notations are adopted in this paper:

(1) K is used as a specified generic constant.

(2) € is used as any given positive real number.

(3) Vectorial notations will be used such as: (r = 1, 2, -.-), _X, =
(Xl’ ) X")) XTJ = (X.’i+1’ Tty XT)’ Xii = (Xn ) T XZ;‘); Xik,i =
('X’ii+1 y T X%Ic)

(4) 215 : (C1, C2); 71,6 : (C3, Cy) represents the statement ‘“The summation is

taken over all sets of integers, C1 < o1 < -+ < 4 = Co;C3 S fon < -+ <
Ji = 0y

(5) The no‘,oa,tions Yea and &4 used by Hoeffding [5] and Rosenblatt [11] will be
replaced by ¢.q and b.q respectively, fore,d = 1,2, --- , r.

Consider two populations X and Y with cumulative distribution functions
F(X) and G(Y) respectively, and a real valued estimable parameter § = 0(F, G).
By Fraser ([3], Chapters 1 and 3), if F, G belong to a specific class D of cumulative
distribution functions, (e.g. class of pairs of absolutely continuous distribution



TWO-STAGE NON-PARAMETRIC ESTIMATION 1101

functions) then there exists a U-statistic which is the unique minimum variance
unbiased estimator of 6. Let ¢(X, ;Y,) be the symmetric kernel of (see [5], [11])
such that,

21) OF, Q) = [ - [&(X,; 7.) dF(X)- - -dF(X,)dG (Y1) - - -dG(Y).

Since any function of 7X’s and sY’s can be written as a function of max(r, s) of
X’s and Y’s, we shall assume r = s = 0.

Denote ¢'(Xi, ; ¥;,) = (X, 5 ¥s,) — 6 and ¢ea(X. ; V) = Eo' (%, Xy o ;
G4, Y,.a), the conditional expected value of ¢ given %, and 4, where ¢, d =

0, 1,2, ... r. The “nuisance parameters” can be expressed as

(2.2) bea = Elpea(Xe; V)P for ¢,d =0,1,2, ---,r,

where (¢;, - -+, 4,) and (k, - -, k) are any two sets of r distinct integers from
(1,2, - - -, m) and ¢ is the number of integers common to the two sets; (51, - -+,
and (¢, ---,t) are any two sets of r distinet integers from (1,2, -.-, n) and

d is the number of integers common to the two sets.

Now in a fixed sample of mX’s and nY’s the lower bound of the variance of
the associated U-statistic of 6 is by Rosenblatt ([11], Lemma 2.4 and Lemma
2.5) :

©3) Var(Uns) Z (©°/m)by + (7*/n)ba + (+*/mn)nu,
) where n = b11 - blo - b01 = 0.

Denote U as the U-statistic of § with m + n = N, and N is fixed. When m, n
satisfy the condition 0 < a; < m/n =< a2 < ®asm,n — o, then by Rosenblatt
([11], Lemma 2.6),

(2.4) Var(U) = (©*/m)byw + (©*/n)bo = V', say.

V' can be minimized, if by , boy are known and both bounded away from zero and
infinity, by selecting the best values of m, n, subject to m + n = N, such that

(25) mo = N(bw)/[(bo)! + (bn)'] = NQ, say, no=N —mo=N(1—Q).
The minimum value of V', denoted by V,, is
(26) Vo = N—l[’l‘(blo)% + ’I'(bm)%]z = V'(mo , ’I'&o).

Clearly, V, is the smallest variance of any estimator of 6 based on U-statistics
subject to the restriction that m + n = N. It will be used as a basis for com-
parison in the remaining sections.

3. The two-stage procedures and the estimators.

DEriNtTION of U’. Let the total observations be fixed at N where N > 6r.
At the first stage, M observations are made on each of the two populations,
where M > 2r and 2M < N — 2r. From these 2M observed values, we estimate
the parameters by, ba . Clearly, by and by are estimable functions [5]. The
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associated U-statistics, called Ty and Ty , can be expressed as follows:

G0 o= () () St = (3) T A, P

G2) Ta=(3) () Thrar = (3) Zolt,s 7,

where '1:2,,0 . (]., M);jzr'() . (1, M)
In analogy with (2.4), we define
(3.3) Z = (T)[(Tou)! + (Tw)™ for Ty , To both positive, and 0 otherwise.

The second stage is constructed by taking m’ and n’ more observations on X
and on Y respectively. With m’ + n’ = N — 2M = N’, we define,

m' = [N'Z) whenr/N' £ Z £ (N’ — r)/N’
(3.4) m =r when Z < r/N’
m =N —r when Z > (N’ — r)/N’

and n' = N’ — m’, where [a] is the largest integer contained in a. (Note: In
general r is the minimum number of observations required from X and Y such
that ¢ is an unbiased estimator of 6); and

N —1 N —1
35) U = (";) <’;> > o(Xi,; ¥;,), where 4,0:(M + 1, M+ m');
Geot(M + 1, M + ).

Hence, U’ is explicitly a function of the second stage observations only. It
depends implicitly also on the first stage, through m’ and n’'.

DErINITION of U”. Tts first stage procedure is the same as U’. The second-stage
N — 2M observations are combined, after allocation, with the first-stage 2M
observations to form a U-statistic of all N observations.

The second stage is constructed by taking m” and n” more observations on
X and on Y respectively. With m” + n” = N’, we define,

m” = [NZ] — M when (M + 1)/N £ Z < (N — M)/N
aey "0 when Z < (M + 1)/N
' m" =N when Z > (N — M)/N

4
n” = N — m”; and

o U= () (T ") T 6K T,

r r
where 4,0: (1, M + m”);  jro:(1, M + 2n”).
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Here U” is an explicit function of all N observations.

4. Asymptotic efficiency of the estimators. Before we present the main theo-
rems, some lemmas will be given first.

LemmA 4.1. Let 0(F, G) = 0 be an estimable parameter with symmetric kernel
S = S(X, ; V,), where 2ith moment of S is finite. Let W = W s be the associated
U-statistic. Define: (a) W = W — 6, (b) 8 = 8 — 6 and (¢) 8" (Xt ;
Vrisrre) = St , then for any positive integer 5, E(W)* = O(M ™).

Proor. For convenience, again let r = s. Also define:

k—1
w" = (1/k)D. S, where & = M /r.
t=0

W” is an average of k independent and identically distributed random variables
with mean zero and finite variances. From the work of Tchouproff [13], E(W”)*
= O(M™%); and by Hoeffding [6], W' = (M!)>>_ W"(Xuy ; ¥iy), where the
summation is taken over all permutations of (hy, ---, hu), (j1, ---, ju) of
(1, 2, -, M). Next, since (W)* = [(M1)Y (W”)*] £ (W”)*, one has
E(W"HY < E(W”)* = O(M™*), and the lemma is proved.

LemmMa 4.2. Let Z and Q be defined as in (3.3) and (2.4) respectively. Assume
forO0 <p < (2 —1)/2¢,7 = 2,8, ---, that ¢ has 4ith finite moments, and by,
ba = a > 0 for any positive constant a. Then Pr{|Z — Q| > M "] = O(M 7).

Proor

Pr|Z — Q| > Ml = Prl|Z — Q| > M™"; Tw, Ta > 0]
+ Pr{|Z — Q| > M™*; Ty, Twu not both positive]
(4.1) < Pr{(Tw)[(To)! + (Tw)' > Q + M7}
+ Pr{(Te)'[(To)* + (Tw)' ™ < Q — M?}
+ Pr[Ty £ 0] + Pr{Ty < 0].

The first term on the right side of (4.1) can be expressed in the form of
Pr(U — EU > —EU).

Using the generalized Chebyshev’s inequality of the form, Pr[[X| > a] <
o »E(X)”, and applying Lemma 4.1, one finds that it is a term of order of
O(M "), for large M. Similarly, the second term on the right side of (4.1) is
also of order of O(M "),

Using Lemma 4.1, the last two terms of (4.1) is of order of O(M~*). There-
fore, Pr(|Z — Q| > M ?) = O(M ") + O(M %) = O(M~ ") is proved.

LemMA 4.3. Let X be any random variable with cumulative distribution function
F(X) and Pr (X < 0) = 0. Let K be any real number. Then E(X | X £ K) £
E(X).

The proof is elementary and will be omitted.

LemMA 4.4. Define

’ M\ M\ - -~
- (O () 2t 5,
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where ty0: (r + 1, M); juwo: (r + 1, M). Let To; be defined in an analogous
way. Define Z' analogously as Z (see (3.3)) with Ty, To replaced by T1o , To ,
respectively. Let by , ba = a > 0 and ¢ has finite eighth moment. Then B|Z — Z'| =
om™).

Proor. The procedure by Cramér ([2] pages 353, 356) for treating functions
of moments will be followed. Define,

"o ’ "o 4 — M M M — M—r
Tio = VT1(Tor = V7o), where V = <2»,-> <27->/< 2r >< 2r >

Then, T10(To1) is a U-statistic with M — r observations on both X and Y.
For Ty, Tor(T1o , Toy) within small intervals by = €', by &= ¢ respectively, one
may represent Z(Z') by a Taylor’s series around the point (by, be). This
agsertion follows from the facts that @ is bounded away from zero and unity
and that for small ¢” all order of derivations of Z(Z') are bounded. Let R be
the condition that [Ty — bu| < €, [T — bu| < €, |T1o — bw| < € and
[T61 — bu| < ¢ are all true, and let R = complement of R. The expectation is
broken down according to whether R or R occurred. Since Z(Z’) are bounded,
so is their difference; and by the generalized Chebyshev’s inequality, fore’ = M2,
0<p< (41—1)/2%.19=2 3, ---,. The expectation when R’ occurred is of
order of O(M~*?) = o(M™"). While the expectation when R occurred, after
applying Lemma, 4.3, is less or equal to

KE{|Tw — Tio| + |Ta — Tor| + (T — bw)?
(4.2) + |(To — b)(Toar — ba)| + (Tor — bor)’ + (Tt — by)’
+ [(T1 — b)) (Tor — ba)| + (To1 — ba)’}.

With or without first applying the Schwarz inequality, we use the definition of
V, and the result of Lemma 4.1. Then each term in (4.2) is found to be of order
of O(M™). Therefore E|Z — Z'| = O(M™"), and the lemma, is proved.

TrEOREM 4.1. E(U’) = 0. Also, if M — o, as N — o, and

(i) Limity.. N/M? exists and is finite for some 8, such that 1 < 8 < 2,

(il) the eighth moment of ¢ is finite, and

(iil) buw, b = a > 0 for any positive constant «; then

Limityae Var (U')/Vo = Limity.e Ew[Var (Un)]/Voe = 1

REMARK. In most non-parametric problems ¢ is bounded, hence all moments
exist. Therefore, the restriction (ii) is not severe. (Note that (ii) insures by,
ba both finite). Also, Var (U,',,:) denotes the conditional variance of U’ given
m’ and »’, and Var (U’) denotes the expected value of Var (Un), where the
expectation is over m’ and n’.

Proor. Notice that m’, n’ are functions of Xy, -+, Xa; Y1, ---, Yy
only. While all the arguments of ¢(X;, ; ¥;,) in the definition of U” are func-
tions of Xarq1, «-+, Xoram' 3 Yous1, -+, Yargn . Thus the arguments of U’ are
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independent of X7, ---, Xa; Y1, -+, Y. Therefore
-1 n —1
By = B B(U) = B (7)) (V) S Bo(Ke; i) = 0.

Now, let C be the condition that |Z — Q| < M™?; ¢' = complement of C, for
0<p<i
N Var (U') = NEn[Var (Un)]

= N Pr (C)Eu.c Var (Un:) + N Pr (C")Ew o Var (Un).

Noticing that E,.cr Var (U,:) < Var (Us,) = b, = Var (¢) is bounded, by
assumption (ii); and by using the result of Lemma 4.2 for ¢ = 2; we find the
second term on the right of (4.3) is of order of O(M *™7**),

It is easy to show that there exists a number A which is independent of m’,
n/, such that Var (U,n,) £ (r%bw)/m’ + (*bu)/n’ + A/min (m” n"*). Also,
under condition C and for sufficiently large N and M, m’, n’ can be written as
m = N'(Q — M7?),n =N (1—-Q— M7). Thus,

N Var (U")
— [T(bm)% + T(bm)}]z[l + O(N(l—ﬂ)lﬁ) + O(N—p/B) + O(N(——2+4p+ﬂ)/ﬂ)]’

after some computation and simplification, and by putting M = K(N"?),
where K is an unknown non-zero constant. By assumption (i), 1 < 8 < 2,
there exists p, so that 0 < p < %, and (—2 + 4p + B) < 0. Hence

Limity.. Var (U')/Vo = Limity.e NE. Var (Un)/NV,
= Limity.s [L + O(NP#) 4 O(N ) 4 (NP8 = 1,

which completes the proof.
TueoREM 4.2. If the conditions in Theorem 2.1 are satisfied, then, E(U”) =
9 + O(M* + M**), and Limity.. E(U” — 0)*/V, = 1.

Proor. Let
= () (1),

T

daamn =" )E) (")

Using Z’ in Lemma 4.4, we denote

(4.3)

(4.4) m" = NZ' — M, n" =NZ — M.
For ¢, d = 0, 1, ---, 7, let D, be the summation overall (41, ---, %),
(ji, +++,Jr), such that
1286 < - <6 EM<tepn< - <t EM+m,
1sha<  <faEM<jap< - <jp=M+n".
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Then
45) |BE(U”) — 6 =

) {p(m”, ORDIDIDII:2 10 OFD #W) Im”]}

Notice that U” is in general biased. For some of its kernels are functions of
observations from both stages. The conditional expectation of such kernels given
first stage observations fixed, does not (in general), equal to the unconditional
expectation. Since the number of terms under Y . is g(c, d, m”, n”), (4.5) is
less or equal to the following expression:

ZZ Em" {[Q(C; drm , N ) _ Q(C, d7m , N ):l¢:d(Xc,Yd)}

=0 &= p(mll’ nll) p(mlll, nlll)

(4.6) q(c d mlll nlll) , _ _

+ Em” W ¢cd(Xc, Yd)
By (4.4) m” and n” are independent of X;, ---, X,; Yy, --- Y,, and
q(e, d, m"”, n”)/p(m”, n”) is bounded. The last term in (4.6) is zero for all
¢, d=20,1, ..., r. Also,

" on - m m ,
Em”{l:z:(c,d,m ,n") > (e, d,m",n ):|¢0}=0'

p(m//, n//) p(m///’ ,n///) 0!

Let conditions C, C” as defined in Theorem 4.1. Apply the Schwarz inequality
on each non-zero term, then break down the expectation according to whether
C or ¢ occurred. Using Lemma 4.2 for 7 = 2, and noticing that the coefficient
before each kernel is bounded, the expectation when C” occurred is of order of
O(M***?). While the expectation when C occurred can be written as:

(4.7) K(MN Y™ E,...[(1 — Z')°2" — (1 — Z2)°Z°F.
Since the higher order terms are for ¢ + d small, we shall retain only the terms
(c,d) = (0,1) and (¢, d) = (1,0). Now, for 0 < 2,2 <1, (Z — Z)’ =
|Z — Z'|, and by Lemma 4.3 and Lemma 4.4, Enw.c(|Z — Z'|) = O(M7").
Therefore, it is found,
|E(U”) — 6] = O(M** + M),

In Section 5, we shall find that the ‘“optimal” choices of 8 and p lead to
[E(U”) — 6] = O(N~*"). But when ¢ is bounded, from (4.5) we can have
|E(U”) — 6] = O(N") + O(M ™) = O(N™"), for =2 + 4p + 8 < 0.

E(U” — 0) is computed by the truncation method. Let ¢(X,; Y,) =
o(X, ;7)) —0=9¢"(X,; 7,)if |6/ (X, ; V.)| < M? (for brevity, call this situation
T); and 0 otherwise (call it 7”). Add and subtract ¢ from the kernel of U” and
expand the square, we have,

NE(U” — 6)* = NE[p(m”,n")" > $(X:, ; ¥;,)I" + 2NE{p(m", n")™*
(4.8) (X Vi) 26 (Xi, 5 Vi) — (X, 5 Vi)l
+ NE{p(m”,n")" 2 [¢'(Xs,; ¥3,) — 8(Xs, 5 Vi)I}'
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where 4.0 : (1, M + m”); jro : (1, M + n”). Now the second term on the right
of (4.8) is of order O(NM?). It is seen by first applying the Schwarz inequality
then writing ¢(X;, ; ¥;,) in terms of ¢'(X;, ; ¥;,), and finally using the gener-
alized Chebyshev’s inequality, for ¢ have finite eighth moment. Similarly, the
last term of (4.8) is of order of O(NM™*). Now the first term of (4.8) can be
written as

wa a0 55 (4 7))

¢=0 d=0 r C

w O )

E{$(X;,;Y5,) (X, ; Vi,) Im"},
where (¢, +--, 4,) and (b1, ---, k) ((J1, -+-, J») and (&, ---, %)) have
exactly ¢(d) common integers. Any X (Y) having subscripts less than or equal
to M is taken as constant under the second expectation sign. For (¢, d) =
(0, 0) in (4.9), the term is less or equal to
(4.10) NE.E{l6(X;, ; ¥;,)8(Xs, ; Vo) | m”} < N{|Eo(X, ; ¥;,) I}

Since E[¢'(X;, ; ¥;,)] = 0, we find the absolute value of the expectation under
the situation T is equal to the absolute value of the expectation under its com-
plement. Using the generalized Chebyshev’s inequality, |E¢(X,, ; ¥;,)| =
O(M ™). Therefore, (4.10) is a term of order of O(NM ). Consider the term
(e, d) = (0, 1) in (4.9), the expectation is broken down according to whether
C or ¢’ occurred. (C, €’ defined in Theorem 4.1). The part when C” occurred is
of order of O(M ™), and the part C occurred is computed first by applying
Lemma 4.3 then adding and subtracting a term ¢'(X., ; ¥;,)¢'(Xs,; V.,).
We obtain,

Bl$(X:, ; V;,)é(Xs, ; Ys,) | C] Pr (C)
< ba + Blo(Xs, 5 Vidlo(Xs, 5 Vo) — ¢' (X, 5 7))
(4.11) + Ele(X:, 5 Y5,) — ¢' (X, 5 Vi)lo' (X, 5 Vo,
< bu + ME¢'(Xs, ; Vo) | T Pr ()
+ Bl' (X, ; Vo,)" | T Pr (T') = bu + O(M™),

by the generalized Chebyshev’s inequality. Combine with the coefficient, the
term (¢, d) = (0, 1) in (4.9) is

/(1 — Q) + O(M™) + O(M ™) + *b,.N/M -O(M ™)
(4.12) + lower order terms.

= Tz(bm)%[(bm)% + (blo)%] +O0(M™*) + O(M2+4?+B),
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Similarly, it can be shown that the term (¢, d) = (1,0) in (4.9) is
(4.13) 7 (00)'[(ba)* + (buo)'] + O(M ™) + O(M*H7%),

Combining results (4.10), (4.11), (4.12), and (4.13) with the main expressions
(4.9), and (4.8) one obtains,

NE(U” — 9)*
(4.14) = O(NM™) + O(M™N) + ONM™) + 7*(be) [ (bo)? + ()]
+ 7 (010)'[(ba)? + (b10)!] + O(M™?) 4 O(M*7+),
Therefore,

" __ 2 " __ 2

Limity-e Ve NV,

Cre o)t F (b)) -» AT N
= Limityw S ) 1+ 0"+ O(M N =1,

which completes the proof.

In addition to U’, one may like to estimate 6 separately at both stages, then
combine these two estimates by weights. The determination of the proper weights
under some criterion are quite complicated in such a general set-up, hence such
procedure is not included in this paper. However, another one-stage statistic
will be discussed.

Assume that N observations are to be made, and that the b.s’s are unknown,
(except that by, bor are positive and finite), then proceed as if by = by . The
variance of such a one-stage U-statistic is minimized with respect to m, subject
tom + n = N, when m = N/2, n = N/2. Let the statistic be denoted by
U*, then its variance is given by

Var (U*) = N2 (b + ba) + O(N?).
Hence,
Limity.. Var (U*)/Vy = Limity.. N Var (U*)/NV,
= 2(1 4 ¢")/(1 + p)’, where p = (bu/bu).

When p nears 0 or o, (4.15) nears its maximum 2. Thus, an appreciable decrease
in variance can be obtained by using a two-stage procedure.

ReMmark. For s # r, but we write ¢ as a function of max (r, s) X’s and ¥’s,
Var (U*) is minimized when m = Nr/(s + r) and n = Ns/(s + r). Con-
sequently, the variance ratio approaches 1 + s/r(1 4+ r/s) as p approaches
zero (infinity). Thus the variance ratio may have a maximum greater than 2.

(4.15)

b. “Optimal” choice of the value M relative to N.
For the ratio Var(U')/ Vs .
(1) The first eight moments of the kernel ¢ exist. From the last step of the proof
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of Theorem 4.1, one has
Var (U')/Ve = 1 4+ O(M™ ) + O(M™?) + O(M ),

Heuristically, the best 8 and p is the solution of the pair of equations, which
are obtained by equating the exponentials in the remainder terms of the above
equation, and get 8 = %, p = %, thus M = K(N*").

Actually, this pair of values is the “optimal” solution, because any other
choices will make one of the three terms have a larger order of magnitude than
O(M™*) (or equivalently, O(N*)). Therefore, Var (U’)/Vo = 14+ O(N 7).

(2) All moments of the kernel ¢ exist. By Lemma 4.2 and Theorem 4.1, for
1=23,---,0 <p< (z— 1)/2i, one has

Var (U')/Vo = 1 + O(M %) + O(M?) + O(M~ %),

Similar to (1) above, it is found that 8 = (3¢ + 1)/2(1 + ) and p = (¢ — 1)/
2(1 + 1) is the set of solutions. When 7 approaches infinity, 8 approaches ¢ and p
approaches %. Therefore, M = K (NPOHDIEHDY “where 2(7 + 1)/(3¢ + 1) has
2 as a lower bound. This bound, however, is not obtained. Thus,

Var (U,)/Vo =1 + O(N—1+2(l+i)/(3i+l))

for any <.

(3) The kernel ¢ is bounded. Referring to the proof in Lemma 4.2, and apply-
ing Hoeffding’s inequality 2([6], Theorem 2) and Lemma 5.1, we have
Pr (|Z — Q| > ¢) = 0(e* ™). Hence, from the proof of Theorem 4.1, one

obtains,
Var (U')/Vo = 1 + O(MN™*) + 0(¢') + O(Ne™™).

After taking logarithm and some computation, it amounts to solve the equations

(5.1) M = Ni(log N/é')},

and

(5.2) log (¢))™ = log N* — % log {log N + log (¢)7'}.
Since (¢')™" < N, log (¢')™" < log N, (5.2) leads to

(5.3) log (¢)™ = log N* — % log [log N°].

On the other hand, log (&) is positive, log N + log (¢')™" = log N, thus
(5.2) leads to

(5.4) log (¢))™ < log N* — 1 log (log N).

Comparing with (5.1), one has

(5.5) Nilog Nt — 3log (log N)I' > M > Ni{log N* — } log (log N*)[".

Therefore, Var (U)/Ve=14+ O(N~ '), where I is some value in the interval,
(llog N* — % log (log N*)!, [log N* — 4 log (log N)J’).
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For the ratio E(U” — 6)°/V,. In all three cases, there are no “optimal”
choices of M relative to N in order of magnitude. Because, for any fixed p,
one shall choose 3 as small as possible subject to 8 > 1. However, there exist,
for the Case (1), at least one set of values, 8 = §, p = %, such that the remainder
term of the ratio E(U” — 6)*/V,is of order of O(N ™). If one chooses 8 = 1 + A,
for some A > 0, the ratio is expressed as 1 4+ Q(N~ /BTy "which may con-
verge to unity faster than 1 4+ O(N*). The limit of the ratio is 1 4+ O(N™*%)
which is, however, never reached. In Cases (2) and (3), the situations are
analogous.

6. Some examples.

6.1. Consider the Wilcoxon Statistic. The class D contains all pairs of cumula-
tive distribution functions F, G' which are continuous. § = Pr (X > Y) with
the kernel: f(X,, ¥;) = 1,if X; > Y;, and O otherwise.

Here, r = s = 1, and by, bo can be shown as

blO = Pr (Xl > Yl y Yz) —_ [PI’ (.Xl > le)]2 = 2 Pr (Xl > Yl > Yz > Xz)
bp=Pr(X:,X:> V) —[Pr(Xy:>Y)=2Pr (V1> X:> X, > 1s).

The estimators of byo, by are respectively,

r= () (5) LS., 5, o T

1<91<9<M 1£571<jss=M

-1 -1
To = <]2W> <ﬂ24> 2 2 29X, 7,
12i1<is <M i571<jas M

where h(X,, ; Y;,) = 1 if the two Y’s are ranked between the two X’s, and 0
otherwise; g(X;, ; ¥j,) = % if the two X’s are ranked between the two Y’s,
and O otherwise. Here ¢, g, h are all bounded. When F, G are both strictly mono-
tone, both by and by are positive. In that case, the two-stage procedure is
applicable, and one shall choose M in order of magnitude, between

O{Nilog Nt — % log (log N)'} and O{Nilog N* — % log (log N)I'}.

6.2. Assume 0§ = E(X) — E(Y), where X and Y have cumulative distribution
functions F and G respectively. Here ¢ = X; — Y, and again r = s = 1. In this
case, by and by are the population variances. The corresponding U-statistic for
estimating by , by are, respectively.

Ty = (M>_1 > (X — X))Y2 = S5,

2) &

Il

M\ . .
Tn =g (Y — Y;)/2 = 8.
<jJ

The kernels are not bounded, unless the distributions of X and Y are bounded.
bio(ba) is positive if populations X (Y') is not a constant with probability one.
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To apply the theorems of this paper, the distributions of X and Y must have
finite eighth moments. One may choose, say M = O(N®").

If D contains normal distribution functions only, Ghurye and Robbins [4]
have given exact results for small samples.

6.3. An example where the theorems of this paper do not apply. Let the parameter
be 6 = [E(X)]’ — [E(Y)], and let F, G belong to any class D of cumulative
distribution functions having zero mean and all finite moments. Here, r = s = 2,
and ¢ = X;X,; — Y.,Y;. The kernels for by , b are respectively (X1 X, — Y1Y3)-
(X1 X3 — Y3Y4), and (X1 X: — Y1Ye)(XsXs — Y1Y5).

Since it can be shown that each of these has zero expected value, one cannot
use any of the results of this paper. However, the theory of U-statistic is ap-
plicable. The kernels for by and b are (X1X, — Y1Y2)(X:X: — Y3Y4), and
(X1 X, — YY) (X:Xs — Y1Y5) respectively. Their expected values are B (X .69
= [Var (X)I? > 0, and E(YiY3}) = [Var (Y)]* > 0, respectively.

Special attention should also be paid to the fact that in this case, the asso-
ciated U-statistic may not be asymptotically normally distributed, see [11].

7. The asymptotic distribution of U’ and U”. Consider two random variables
Y’ and Y™ defined as the following:

Y = (U = 0)/(BwlVar (Un)]),, Y* = Uvawa-o — 0/[Var (Uvaewao)l.

Rosenblatt ([11], Theorem 2.2) has proved that Y* is asymptotically normal
with mean zero and variance one.

TuroreM 7.1. Y’ and Y™ are asymptotically equivalent, therefore, Y is as-
ymptotically normal with mean zero and variance one.

Proor. It suffices to show that

E(Y — Y*? = E(Y)* + B(Y*) — 2E(Y'Y*) -0, as N — .
From Theorem 4.1, E(Y')? = 1. By assumption, E( Y*)? = 1. Now let U’ be
the statistic U’ with the kernel ¢'(X., ; ¥;,), and Uyq.xa-q be the statistic
Unwron a—g With the kernel ¢'(X;, ; ¥;,). Write the expectation into two parts,
namely when C' occurred or when C" occurred (defined as in Theorem 4.1).
Since E(Y'Y™) is the correlation coefficient of Y'Y* and since both Y’ and ¥*

are functions of random variables Xyq1, -+, Xartm ; Yauriy, -+ Yaqnr,
one has 1 = E(Y'Y™) = 0, and for any m',n’ = r, both parts are non-negative.

Consequently,
E(Y'Y")
2 (N'/Ir(bw)* + r(ba)'T}
(7.1) ¢ B{Bwoo(Un Unrawa—o |m € C)} Pr(m' e C)
> {N'/[r(bw)! + r(ba) TV B{Urratd v a-e-aUnana-al
+ o(MEY,
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by Lemma 4.2, where ¢ denotes some value in the interval (—M"", M 7).
Note that for ¢ identically zero, ¥ = Y*. Notice,

- _
E[ UN'(Q+2) ,N'(1—Q—¢é) UN’Q,N’ (l—Q)]

_(N@Q+a\ (NI —-Q—a\ (NQY (N1 -@QY"
(e O )
T T Y B (R )¢ (s T,

where 3,0 : (M + 1, N (Q+&)),jro: (M +1,(1 —Q —&)); ko : (M +1,N'Q),
and ¢.0: (M 4+ 1, N'(1 — Q)). The number of sets having (c, d) integers in
common are: for all & non-negative,

79) © <N;Q> (N(QT—I-_ ez — c> <:z> <N’(1 _rQ = e)) (N'(IT—_QO? = d>;

and for all &€ non-positive,

o ()40

Consider (7.2), and simplify, one has

- -
E(Uxr@io v a-e-oUna-a)

= ; ZO (r)%ea/ {(N)FHQ + &)°(1 — Q)% dl(r — o) i(r — )1}

¢,d50,0
= (N)7[r(bo)t + 7(bw)' + O(N"'M™?) + lower order terms,

where & — 0 is the slowest for & near M~ ".

Similarly, one finds the same results if ¢ is non-positive. Thus, combine (7.1)
and (7.2), it is found, 1 = E(Y'Y*) = 1 + O(M™?) + O(M*****). There-
fore,

Limityre E(Y' — Y*)?
= Limityroe [2 — 2 + O(N??) + O(N(—2 + 4p + B)/B)] = 0,
which completes th(,a proof.

Tueorem 7.2. Y, = (U — 0)/{N"}(r(Tw) + r(Ta)h)} s asymptotically
equivalent to Y'. Consequently, Y. is asymptotically normally distributed with
mean zero and variance one. ) )

Proor. It suffices to show that N'7*[r(Tw)' + r(T«)’] is asymptotically

equivalent to N’ [r(byw)? 4 r(bn)’] (see [7], Theorem 5 and applications).
In other words, it is sufficient to show that for any e >0,

(74) Limityraw Pr {|r(Tu)! + r(Ta)! — r(bo)} — 7(ba)’| > €N = 0.

Apply the Chebyshev inequality and evaluate the expectation by applying the
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identity on page 353 of [2]. Using the result of Lemma 4.2 for odd moments, one
finds that the probability in (7.4) is of order of O(NMe®)™", which approach
zero as N’ — oo for suitable ¢’. Hence, Theorem 7.2 is proved.

Next, consider the random variables,

U’ — o % Uwe,nva-o — 0
" = —, and Y = : ;
[Eom» Var (U] [Var (Uwne.va-o)J

b

where Y** is asymptotically normally distributed with mean zero and variance
one (same as Y*). U” is biased, and the bias is of negligible order of magnitude
comparing to the order of magnitude of the value [E,» Var (U] =
[E(U” — 6)" — (Bias of U” Y (see Theorem 4.2). Hence, by showing that
Y” is asymptotically equivalent to ¥** one concludes that U” is also asymp-
totically normally distributed. Along the similar arguments as for the case of
U’, we have the analogous Theorems in terms of ¥”, Y** and Y.

8. Extension of the two-stage technique to k-sample case, k > 2. Let

X® ..., X% be k populations (k > 2) with cumulative distribution functions
Fy(X), -+, Fi(X) respectively, and § = 6(Fy, ---, sz be the func_tiqnal to
be estimated. Let the symmetric kernel be ¢(X W, X% where X are r

independent observations on population X’. Analogously, define
bay.oor = Elbay,a( XY, -, XO)P

for vectors X” of dimension a;, a; = 0,1, ---,rforallj =1, ---, k; and

v =[] 5 E () C20) () G

Let N be fixed, and Y % n, = N.If n;— o in such a way that n,/n; are bounded

away from zero and one, for all ¢  j,¢,j = 1,2, .-, k, then the asymptotic

expression for Var (Uy) is Var (Ux) = kL (Ym)b® = Vi, say, where

¥ =0,.--,1,---,0, - ., with unity at the ¢th subscript and zero elsewhere.
When b, = 1,2, ---, k, are known; it is easy to show that V' is minimized

whenn; = (b)Y X%, (5”)* and its minimum valueis Vo = N[> 5 (@)
The two-stage estimating procedure will be as follows:

(a) Take M observations on each of the X” 4 = 1,2, ... k, where 27k <
EM < N — rk. . ‘

(b) Estimate the & unknowns b”, 4 =12, .-,k by, say, 7.

(¢) Take m; more observations on X, ¢ = 1,2, ..., k, such that m; =

N(T/ >k, (T”) where NN = N — kM, (or M + m; = N(T®)¥
k(T for using U”).
(d) Use Uy (or Uy ) the analogous two-stage k-sample estimator to estimate 6.
Under the same kind of conditions as in Theorem 4.1, but replacing the con-
dition (iii), by: b > 0,4 = 1,2, -- -, k, the analogous result can be obtained.
Also, the asymptotic distribution of U (or Uy) is again normal.
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