SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL
DECISION PROCEDURES!

By Epwarp Pavurson
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1. Introduction and summary. In Chapter 10 of his classical work on sequen-
tial analysis [8], Wald started a program for dealing with multiple decision
problems based on sequential estimation, and this work was to some extent fur-
ther developed by Stein [7]. However, as far as the present writer is aware, this
program was never completed.

In a recent paper [6] a sequential procedure for estimating the mean of a nor-
mal distribution was given and the results applied to the problem of deciding
which of k& non-overlapping intervals contains the mean. In the present paper,
the main results of [6] are first derived in a different manner, using a slight
modification of a procedure given by Wald (see Chapter 10 of [8]). This new
derivation lends itself to dealing with other situations, and sequential confi-
dence limits are worked out explicitly for two other cases, namely, for the vari-
ance and for the ratio of variances of normal distributions.

These results are then applied to get closed decision procedures for a number
of decision problems, including (1) testing a hypothesis regarding the mean of a
normal distribution against either one-sided or two-sided alternatives; (2)
comparing the means of & experimental categories with a standard or control;
(3) testing a hypothesis about the variance of a normal distribution; (4) decid-
ing which of k non-overlapping intervals contains the variance; (5) testing a
hypothesis about the ratio of variances; (6) comparing the variances of & ex-
perimental categories with a standard or control. In addition, a brief discussion
of “mixed” problems, where we are concerned with finding a confidence interval
for the parameter after a decision has been reached is given in Sections 3.1 and
3.3.

In some of these problems open sequential solutions (in which there is no
upper bound to the number of measurements required to reach a decision) are
already known which have some optimum properties. However, for adminis-
trative and other reasons it is often desirable to restrict consideration to closed
sequential procedures, so as to have an upper bound to the time or cost of an
experiment. This has recently been emphasized by Armitage in connection with
medical applications [2]. All the sequential procedures of the present paper are
closed, but the point of closure in Section 3 depends on s? if ¢% is unknown.

2. Sequential confidence limits for the mean of a normal distribution. Let
Xi, Xz, --- be a sequence of independent random variables with a common
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normal distribution with mean m and variances o”. Let &, = 2 X,/n, and let
fa(m) = [e(2m) " exp { — 2oy (X, — m)?/26%. Tt follows from Wald’s work
(see Chapter 10 of [8]) that P[f.(m + 2d)/f.(m) > 1/a for at least one n, n =
1,2, .-+ ] £ a. Upon simplifying, this reduces to

Plm < & — d — (o’ log (1/a))/2 dn

(2.1)

for at least onen,n = 1,2, --- ] £ a,
which is equivalent to
©2) Pli, — d — (c’log (1/a))/2dn £ m < »

foreveryn,n =1,2,---12 1 — q,
where all logarithms are to the base ¢, and d is a positive constant.

By starting with f,,(m)/f.(m — 2d), we obtain

3) Pl—w <m £ &+ d+ (log (1/a))/2dn

foreveryn,n =1,2,---121 — a.

If we now let '

Un(@) = min, (1 £ r < )& + d + (o’ log (1/e))/2 dr]
and

va(@) = max, (1 £ 7 £ n)lF, — d — (o’ log (1/a))/2 dr],
then it follows from (2.2) and (2.3) that
(24) Plv(a/2) = m = un(e/2) foreveryn,n =1,2,---]1 21 — a,

which agrees with Equation (5) of [6].

When o is unknown, suppose that an estimate s* of ¢* is available such that
fs’/o” has the x” distribution with f degrees of freedom and that s’ is independent
of &, . If we let a(a) = [(1/a)*’ — 1)(f/2), then using the results of [6], we
have

(2.5) P, — d — s'a(a)/2dn < m < » foreveryn,n 2 ngl = 1 — o
and
(2.6) P[— < m £ &, + d + s’a(a)/2dn for every n,n = ng) = 1 — a.
If we let

un(e) = min, (n < 7 < n)[E + d + a(a)s’/2dr]
and

vn(a) = max, (ng < r £ n)[& — d — a(a)s’/2dr],
then ‘

(2.7) Pln(a/2) £ m < un(a/2) forevery n,n = ngl = 1 — a.
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3. Applications to decision problems concerning the mean.

3.1 Testing a hypothesis about m with one-sided alternatives. Let H, denote
the hypothesis that m < m, and let H; denote the class of alternatives m > my .
Suppose we ask for a closed sequential procedure for testing H, such that
Plrejecting Hy | m < my) = a and Placcepting Hy | m > mg + A] < 8. When ¢ is
known, this can easily be solved as follows. We take measurements one at a time,
and stop the experiment as soon as either (a) & — d — (o’ log (1/a))/2dn >
moor (b) & + d + (¢’ log (1/8))/2dn < mo + A. If (a) occurs we reject Hp,
and if (b) occurs we accept H, . This rule is equivalent to stopping as soon as

5 (X~ mo— 8/2) > (log (1/w)/2d — n(8/2 — )
or
; (X, —mo — A/2) < —( log (1/8))/2d + n(A/2 — d).

For each d with 0 < d < A/2 the boundaries consist of two intersecting lines
and we get a closed sequential procedure.

In order to get some information on ‘what value to choose for d and on the
efficiency of the resulting sequential scheme, a number of Monte Carlo experi-
ments were carried out, and the results are summarized in Table I.

The data of Table I indicates that the sequential procedure with d = 3A/8
is substantially more efficient than the procedure with d = A/4, which had been
recommended in [6]. At present we suggest using d = 3A/8, not only for the
present problem but in other applications of the results of Section 2.

TABLE 1
Average sample size for testing the hypothesis m < 0 against m = .25*

Sequential Procedure

« B m
d=A/4 d=3A/8 SPRT
.05 .05 0, .25 119 92 85
(3) 3)
125 184 146 139
®) ®)
.01 .01 0, .25 192 152 144
4 (5)
125 317 272 338

®)

(6)

* The values ¢ = 1 and A = .25 were used throughout. The estimated standard error

of each empirically determined mean is given in parenthesis below the mean. The numbers
in the SPRT column are the theoretical values for the sequential probability ratio test of
Wald when the excess is neglected.
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The data of Table I indicates that this procedure (with d = 3A/8) seems to
compare reasonably well with the sequential probability ratio test of Wald, and
in addition to being a closed test has the further advantage that for small values
of « and B it substantially reduces the maximun average sample size. In these
respects it is somewhat similar to a modification of the Wald sequential test
given by Anderson [1]. Although an exact comparison with the procedures of
Anderson is not possible at present, the sequential test of this section with d =
3A/8 seems to be somewhat less efficient than the Anderson procedures when
a = B = .05, but seems to be about as efficient when o = g8 = .01.

When ¢ is known, closed sequential procedures were given by Armitage and
Schneiderman [3] for this problem for nine different combinations of « and 8.
The present procedure has the advantage that it can be used for any combina-
tion of @ and B.

A more important advantage of the present procedure is that it can easily be
modified to solve the problem when ¢ is unknown. In the past the problem when
o is unknown has usually been dealt with by means of a sequential ¢ test, but
this amounts to changing the problem rather than solving it in the form speci-
fied. Recently an open sequential solution for ¢ unknown was given by Hall [5],
who also gave a closed sequential solution for the special case @ = B, which is
similar to but not identical with the solution given here. A closed sequential
for any « and B can now be obtained as follows. We start by taking a sample of
no measurements, compute s* = D 1% (X, — &ny)"/(n0 — 1), take f = ng — 1,
and then take measurements one at a time, and stop the experiment and reject
H, as soon as ) vy (X, — mg — A/2) > s'a(a)/2d — n(A/2 — d), and stop
and accept Hy as soon as )y (X, — mo — A/2) < —s%a(B)/2d + n(A/2 — d).
It follows from (2.5) and (2.6) that we still have Plrejecting Hy | m = m £ o
and Placcepting Hy |m > mo + A] £ 8.

When a decision has been reached whether H, is accepted or rejected, that is
whether m < m,or m > my, it may often be useful to have a confidence interval
for m. If n denotes the number of measurements required to reach a decision
about H, and ¢ is known, it follows from (2.4) that Plv.(v/2) £ m < u.(v/2)]
= 1 — «. If the resulting interval (v,(v/2), u.(v/2)) is too large to be useful,
additional measurements can be taken. For example let 7’ equal the number of
additional measurements required after H, is rejected in order to have wu, 1 (v/2)
— Vnyn(v/2) = L (where L > 2d). Then if n” = n when H, is accepted and
n” = n + n' when H, is rejected, we can still assert that Plo.(v/2) £ m <
Unr(v/2)] 2 1 — v. When ¢ is unknown, from (2.7) we have a similar result,
namely Plvas(v/2) £ m < un(v/2)] = 1 — 7. These ideas are used in Section
3.3.

3.2 Testing a hypothesis about m with two-sided alternatives. Let Hy now denote
the hypothesis that m = m, and H, the set of alternatives m = my . We briefly
consider the problem of obtaining a closed sequential procedure for testing the
hypothesis H, so that

Plrejecting Hy | m = mg) < « and Placcepting Hy | |m — mo| = A] £ 8.
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This can be easily accomplished by combining two one-sided closed sequential
tests of Section 3.1. That is, we test m = m, against m < my — A with Type I
and II errors of («/2, B8) and test m = m, against m = my + A with Type I
and II errors of («/2, ). Then we reject H, if either of the two component tests
reject my , otherwise we accept Hy, . When this is explicitly worked out, it reduces
to the following rule:

Accept H, as soon as both

2 (X — mo) > [" log (1/8)1/2d — n(A — d) and

2, (X, = mi) < —lo"log (1/8)/2d + n(A — d).
Reject H, as soon as either

21 (X, — mo) > [0 log (2/a)]/2d + nd or

: (Xr — m) < —[o"log (2/a)]/2d — nd.

We again recommend choosing d = 3A/8.

If o* is unknown, we start by taking n, measurements, calculate s* = Y 7% (X,
— &n,)?/(mo — 1), take f = nyg — 1 and then taking measurements one at a
time, we use the above procedure with ¢* replaced by s, log (1/8) replaced by
a(B) and log (2/a) replaced by a(a/2).

3.3 Comparing the means of k experimental categories with an unknown stand-
ard. We first introduce some additional notation. Let m, denote the standard
(or control) category, let w1, my, « -+, m denote the k experimental categories,
and let X, denote the rth measurement with category =; . We assume that for
each r, X, is normally distributed with mean m; and variance o, and that for
allrandj (j =0,1, -+ ,kand r = 1, 2, - --) all measurements are independ-
ent. An experimental category m, (v = 1,2, --- , k) is said to be superior to the
standard or control if m, > my .

We will first consider the problem of finding a closed sequential procedure for
classifying each of the & experimental categories as superior or non-superior which
will satisfy the requirement that the probability is =1 — « that all experimental
categories with means <my or =m, + A are classified correctly.

FiI'St, let er = Xjr — Xor y let éj,, = Z:;l er/’ﬂ, let O'Zj = O'? + 0‘02. Let

ui(d, M, Zjn , @) = Zim + d + [07;log (1/a)]/2 dn,
vj(da Ny Zjn a) = Zjn — d— [Uzj IOg (l/a)]/z dn,
u]'n(d) a) = min, (1 sSr=s n)[ud(d) Ty Zjr OL)],

Uin(d’ OL) = max, (1 =Ers n)[vj(d, Ty Zjr s a)]'
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When the variances are known the desired closed sequential procedure can be
obtained as follows. At the first stage of the experiment we start with one meas-
urement on all k + 1 categories. At the rth stage (r = 2, 3 ---) we take one
measurement with the standard category and one measurement with each of
the experimental categories not yet classified. We classify an experimental
category , as inferior as soon as u,(d, n, Z., a/k) < A and classify =, as su-
perior as soon as v,(d, 1, Z., a/k) > 0. The experiment is terminated as soon
as all the categories are classified. As mentioned earlier, we recommend using
d = 3A/8 to attempt to minimize the number of observations required to classify
all the experimental categories.

We now consider a mixed decision and estimation problem. Suppose in addi-
tion to classifying all & experimental categories subject to the requirement that
all categories w, with m, either <mo or >m + A are classified correctly with
probability =1 — «, we also want to have a simultaneous confidence interval
for {m; — mo} (j = 1,2, ---, k) when the experiment is terminated with joint
confidence coefficient 1 — v so that the width of the confidence interval for
each category classified as superior shall not exceed L(L > A). This can be
accomplished in the following manner. We stop as before taking measurements
with any category when it is classified as inferior, but continue taking meas-
urements with any category =; after it has been classified as superior until
Uin(d, v/2k) — vju(d, v/2k) < L. If n; is the number of measurements taken
with category =; when the experiment is terminated, we easily see that

P[anj(d, 7/2’6) = m; — My = uj,.,.(d, 7/2]0) for every
3= 1,2,"',]6] 21—y,

and obviously the width of the confidence interval for each category classified
as superior cannot exceed L.

When the k + 1 categories have a common unknown variance, we start by
taking no measurements from each of the (k¥ 4 1) populations, let

k no
s = JZ; ;I(Xir — Zjny)"/ (ke + 1)(no — 1),
take f = (k + 1)(ny — 1), and taking measurements one at a time, use the
procedure just described with o2; replaced by 2s*, log (1/) replaced by a(a) =
[(1/a)*’ — 1]f/2, and uin(d, @) and v;,(d, @) defined as the min and max with
(mg £ r = n)instead of (1 < r < n).

3.4 The determination of ny . We conclude Section 3 with a brief discussion of
how to choose 7o when the variance or variances are unknown. A reasonably
efficient choice of 7, is important, since the efficiency of the sequential procedure
is reduced if n, is taken either too small or too large. Although an optimum rule
for selecting 7, is unknown, it is hoped that the following somewhat tentative
procedure will be useful.

First we consider the situation in which no knowledge of o° is available. Let
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8 = min (a, 8) for the problem of Section 3.1 and let § = min («/2, 8) for the
problem of Section 3.2. Then for the problems of Sections 3.1 and 3.2 we suggest
selecting ny so that a(8) does not exceed its limiting value log (1/8) by more
than (say) 25 per cent, that is, select the smallest value of n, so that a(8) <
1.25 log (1/8), while for the problem of Section 3.3, when several populations
have a common unknown variance, we suggest selecting ny so that a(a) =
1.1 log (1/a).

When a moderately accurate estimate 4 of ¢* is available from past experience
it may be desirable to modify the preceding procedure for selecting n, . It seems
difficult to give any precise rule, so we will attempt to illustrate what is involved
by means of an example. Consider the problem of Section (3.1) and assume
a = B = .02. Then when no a priori knowledge of ¢” is available, the preceding
procedure would result in taking m, = 20. Suppose now that a moderately
accurate estimate of ¢” is available for ¢°, let N(¢) denote the number of meas-
urements required by the corresponding fixed sample size procedure when ¢ = 4,
and consider the following three cases: (1) N(é) = 120, (2) N(é) = 50, (3)
N(é) = 25. In Case (1) it would seem reasonable to increase no, say to ny =
42, so that a(.02) is within ten per cent of its limiting value, in Case (2) n, would
presumably be left unchanged, while in Case (3) it would seem reasonable to
decrease no , say to ny = 15.

4. Sequential confidence limits for the variance. We again let {X,} (r =
1, 2, ---) denote a sequence of independent and normally distributed random
variables with mean m and variance o”. Let s = Y r (X, — %)%/ (n — 1)
and let

2 | 2y _ 1 n — 1\*" 2\ (n—3)/2 (n — l)si
gn(sn Io' ) = I‘((n — 1)/2) ( 9g2 > (sn)( ! exp [_ 952 ]

denote the probability density function of s, and let n*(«) denote the largest
integer contained in 1 + log (1/«)/log N, where A > 1. Then it follows from the
work of Cox [4] that

(4.1) Plga(si | N6")/gn(sa | ¢°) > 1/a for at least one n,n = 2,3, -] < a

After simplification, this can be written in the equivalent form
(42) Plsi(\* = 1)/2\%(log A + (log (1/))/(n — 1)}

<d < wforalln,n=23,--]=21—a
In the same manner

Plga(sa | ) /ga(sh | 6*/AY) < a for at least one n, n = 2, 3, - - -]

1A
R

After simplification, this reduces to
Pl0 < o® £ s2(\ — 1)/2{log A — (log (1/a))/(n — 1)}

4.3)
( foralln, n > n*(a)] 2 1 —
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If we now let
U (@) = o forn £ n*(a)
= min, (n*(a) <r = n)[sF(\* — 1)/2{log X — (log (1/a))/(r — 1)}]
for n > n*(a)
via(@) = max, (1 <7 = n)lsi(\* — 1)/20log X + (log (1/a))/(r — 1}],
it follows from (4.2) and (4.3) that
(44) Plom(a/2) £ ¢ £ wn(a/2) foralln,n =2,3,---] 21 — a.

5. Applications to decision problems involving the variance.

5.1 Testing a hypothesis about ¢° with one sided alternatives. Let Hy denote the
hypothesis that ¢* = o; and let H; denote the set of alternatives ¢® < a7 . We
now ask for a closed sequential procedure for testing H, satisfying the require-
ments that

Plrejecting Hy | o* = 03] < a and Placcepting Hy | ¢° < ob/w’] < 8,

where w > 1. Using the results obtained in Section 4, we obtain a solution in
the following manner. We take measurements one at a time and stop the experi-
ment and (a) accept Ho, when

sn(\ — 1)/23%log (\) + (log (1/B))/(n — 1)} > ao/w’,
(b) reject Hy when
s2(N — 1)/2{log A — (log (1/a))/(n — 1)} < o5 and n > n*(a).

This is equivalent to accepting H, as soon as

3 (X, = &)* > Re/w'¢ = DIl(n — 1) log A + log (1/8)]
and rejecting H, as soon as

3 (X, — &)° < 26/(¢ = Dil(n — 1) log A — log (1/a)].

For each A with 1 < A < w we get a closed sequential procedure. Although the
optimum choice of A is unknown, on the basis of some preliminary calculations
we recommend taking A = 1 + .7(w — 1). A number of sampling experiments
were carried out to obtain some information as to the efficiency of the sequential
procedure when A = 1 4+ .7(w — 1), and the results are summarized in Table
11.

5.2. Deciding which of k non-overlapping intervals contains o°. Let I = [0, ¢1),
I = [c1, ¢), Is = [c2, ¢3) -+, and Iy = [ex1, ») denote k& non-overlapping
intervals whose union is [0, «). Let D; denote the decision that ¢” falls in I; (j =
1,2, ---, k). We assume that on the basis of practical considerations we can
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TABLE II
Average sample size for testing o2 = 1 against ¢ < 3*

Sequential Procedure

o B8 a?
N=14J@w—1) _ SPRT
.05 .05 2 84 73
(2)
.81 114 106
(2)
1 56 56
)

* The estimated standard error of each empirically determined mean is given in paren-

thesis below the mean.
The numbers in the SPRT column are the theoretical values of the sequential probabil-

ity ratio test of Wald, neglecting the excess.

find an indifference zone (a;, b;) about each end point ¢; in which it does not
matter whether decision D; or D, is taken. Let W (D, , ¢°) denote the error in
taking decision D; when ¢ is the true value of the unknown variance. We let
a, = 0 and b, = «, and assume the following form for the error function: for
eachj (7 =1,2,---,k)

if a1y < 0'2 < bj

I
=

W(D] ’ 0'2)

otherwise.

We now ask for a closed sequential procedure for choosing one of the k decisions
D;, Dy, ---, Dy so that the probability of making an error shall be <. Let
w’ = min (b/ay, bs/as, -+, bes/x—), let I; denote the interval (a;_,, b;)
forj=1,2,---, k and take A = 1 4 .7(w — 1). Then we get a solution as
follows. We take measurements one at a time, and stop the experiment and make
a decision as soon as the interval [v1,(/2), w1, (/2)] falls inside one at the inter-
vals I1, I, -+, It . If [omm(e/2), usn(e/2)] falls in interval I %, we choose decision
D, , and if it falls in the intersection of I and I, , we can choose between D;
and D;; at random. It follows directly from (4.4) that the probability of making
an error is <oa.

6. Sequential confidence limits for the ratio of variances. Let {X,} and
{Y,} (r=1,2,.--) be two independent sequences of independent normally
distributed random variables with means m, and m, and variances i and o>
respectively.

Let ¢ = oifor, and let F, = > 1y (X, — &)/ 2 v (Y2 — §a)’. We
again let n*(a) denote the largest integer contained in 1 + log (1/a)/log A,
and let

AF () — al/(n—l)}
u(n, Fr,a) = D — 1
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Fo i\ — (1/a) ™)

MA@V =D — 1}

usm(a) = min, (n*(a) < r £ n)ul(r, F,, o)),

vam(@) = max, (n*(a) < r = n)(r, F,, a)l.

v(n, Fr,a) =

Let

I‘(n _ 1) F(n—m/z
[T((n — 1)/2)F ¢7[1 + Fu/¢*]"

denote the probability density function of F, . It follows at once from [4
Plha(Fn | N¢") /ha(Fn | ") > 1/a for at least one n, n =2, 3, ---]

where A > 1. This reduces to

(6.1) P(n, Fo, @) £¢" < o for all n, n > n*(a) ---]=1— a

ha(Fa | ¢°) =

that

—_—

IIA

o

In the same manner

Plha(Fr | ) /ha(Fr | ¢°/N°) < « for at least one n, n = 2, 3, -- -]

IIA
R

which reduces to

(6.2) Pl0 < ¢ Zun, Fn,a)foralln,n > n*@)] =1 — a.
Combining (6.1) and (6.2), we get

(6.3)  Ploz(/2) £ ¢* < usm(a/2) forallm, n > n*(a/2)] 2 1 — a.

7. Applications to problems involving the ratio of variances.

7.1 A hypothesis involving the ratio of variances. Let Hy denote the hypothesis
that 3/0; < 1, and let H; denote the set of alternatives o2/o> > 1. We now look
for a closed sequential procedure for testing this hypothesis subject to the re-
strictions Plrejecting Ho|¢’ < 1] < « and Placcepting H,|¢’ = R < 8,
where R > 1. This can be obtained as follows. Let #n* = min [n*(a), 2*(8)].
We start by taking n* 4+ 1 pairs of measurements, and then take one pair of
measurements at a time, and stop the experiment and accept H, as soon as
n > n*(8) and u(n, F,, 8) < R’, and stop the experiment and reject H, as
soon as n > n*(a) and v(n, F,, &) > 1. For each A with 1 < A\ < R we get a
closed sequential procedure. By analogy with the problem of Section 6, we ten-
tatively suggest takingA = 1 + .7(R — 1).

7.2 Comparing the variances of k experimental categories with an unknown stand-
ard. We have a standard category m, and % experimental categories m; , 5, - - ,
m With corresponding variances o5 , o5, - - - , o7 . An experimental category =; is
defined to be superior to the standard if o7 < ¢ . We will consider the problem of
finding a closed sequential procedure for classifying the k experimental categories
as superior or non-superior with respect to the standard so that the probability
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should be =1 — « of correctly classifying all experimental categories 7; such that
ot = osorol £ ag/RQ, where B > 1.
First let ¢; = o3/0¢ , let

Fin = T; (Xfr - x—in)z/;l (XOr - x—On)z‘

We can obtain a closed sequential procedure for this problem as follows. We
start by taking n*(a/k) + 1 measurements each of the k& + 1 categories. At
each subsequent stage we take one measurement with the standard and one with
each of the experimental categories not yet classified. A category =; (j = 1,
2, - -+, k) is classified as superior as soon as u(n, Fj, , a/k) is <1, and is classi-
fied as not superior as soon as v(n, Fj,, a/k) > 1/R’. The experiment termi-
nates as soon as all experimental categories are classified.

8. Concluding remarks. The methods of this paper can also be used to obtain
sequential confidence limits for parameters of certain non-normal distributions
such as the Poisson distribution, the exponential distribution, and the binomial
distribution.

In this paper we only considered taking one measurement at a time from any
category. In practice sequential sampling by groups may often be preferable to
item by item sampling.
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