A THEOREM ON RANK ORDERS FOR TWO CENSORED SAMPLES!

By CARL-ERIK SARNDAL

University of Lund

0. Summary. Let m and n be the sizes, respectively, of two independent ran-
dom samples both of which may be censored in an arbitrary manner so that
h(1 £ h.=m)and k(1 £ k £ n) observations, respectively, remain. If arranged
in ascending order, the remaining observations can appear in (“4*) possible
rank orders. In this paper we prove a theorem which is useful in obtaining the
probability associated with any one of these rank orders, provided the two
samples are drawn from populations with identical distribution functions.

1. Introduction. Let F(z) and G(y) be continuous cumulative distribution
functions. Denote by zqy < 2@ < -+ < Zwm , the ordered observations in a
sample of m from F(z), and let yoy < ¥y < -+ < Ywm be an independent
ordered sample of size n from G(y). Select any h < m out of the a’s and any
k = m out of the y’s, say

Ty < Tmg < 0 < Timp) Yoy < Yny < < Yap,

where the indices m;, -+, mu ;m1, « - -, n; are fixed integers. Define
My = Ng = 0, Mpy1 = M -|" 1, Ny = N + 1,

Lang) = Ymg) = — , Lonppy) = Ygpn = %
The number of 2’s in the interval (Xem;_ ), Temy) IS @ = my — m_y — 1
(¢ =1,---, h + 1), and the number of y’s in the interval (Y, ,) , ym,) is
b;=n; —n,,—1(G =1,---, k + 1). By definition the a’s and the b’s are

fixed non-negative integers, and D _itia; = m — h, D o1 b; = n — k.
Assume F(z) = G(y), let K = h + k, and consider the combined sample of
the selected 2’s and y’s. Denote the elements of the common ordering by

(1.1) 2y < 2wy < 0 < 2w,
and call it a z sequence. Defining zw,) = — =, 2wg,,) = », we have K + 1
mutually exclusive intervals (zw,_,),2w,)) (» = 1, -+, K + 1). (The proba-

bility of ties is zero.) Denote the number of a’s (y’s) in the interval (zw,_,),
zw,y) by a,(8,). The o’s and 8’s will be referred to as cell frequencies. Some of the
a’s and B’s are fixed integers, others are discrete random variables.

Clearly, «,(8,) is a fixed interger and identically the same as one of of the a’s
(b’s) if either of the conditions,

(1) » = 1 and 2z, is an z(y),

(ii) » = K 4+ 1 and 2wy is an z(y),
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TWO CENSORED SAMPLES 317

(iii) both zw,_,) and 2w,y (v = 2, - - -, K) are @’s (y's),
holds. We have

T+l g, = ) Mlg, = m — h, DErg = Y ktlp = — [,

p=1 t=1 r=1 T=1

and if none of the three conditions stated above holds, then the o’s(8’s) are
discrete random variables subject to linear restrictions implying that two or
more of them add up to a fixed integer a:(b;). These points are clarified by an
example.

ExampLE. Let b = 3, k = 4, and consider the z sequence T, < Yuy <
Zimy < Yy < Ymp < Yy < Lmg) - FOr brevity, let us in the future denote such
a sequence simply by xy 2z y y y x. The sequence can be more elaborately de-
scribed in the following way :

ﬁl oy O3 a4 Qs Qg Q7 _O_b?

ay ag ag [47]

Br B Bs Bs B Bs B PBs
b b2 by by bs

The sum of cell frequencies underscored by the same line equals the a or b written
just below the line. For example, 8; and 8. are random cell frequencies, one of
them being redundant since their sum equals the fixed integer b; . The number
of lines used in underscoring the a’s(8’s) ish + 1 =4, (k + 1 = 5).

For the future we make it a rule to consider as redundant the last «(8) in a
sequence of o’s (B’s) that add up to a fixed integer a;(b;). Then, with the example
considered above we can associate a vector composed of seven non-redundant
random cell frequencies, namely, (81, az, 83, a4, a5, as, B7). Noting that the
2 sequence is x y £ y ¥ y x, the corresponding vector of random cell frequencies
is obtained by entering a 8(«) in the place of an x2(y), and furnishing each « and
B with the proper order index. This holds, of course, for any z sequence and for
any values of k and k. Thus, the vector will contain & 8’s and k a’s.

The main result of this paper is a theorem that gives the probability associated
with any vector of random cell frequencies. As a byproduct the probability of any
of the (5) different z sequences can be computed.

2. Further notation. It will prove useful to introduce an alternative way of
denoting the cell frequencies o, and 8, (v = 1, ---, K 4+ 1). To this end, let
ri (i =1, -+, h 4+ 1) be positive integers such that Y =1 r; = K + 1. Assume
that the sequences ai, as, -*-, agts and Gu, “ -+, Gy, G, * ¢, Aoy, Aoy
<+, Grt1r,, are identically the same, element by element, from left to right.
Assume also that D jiyay; = a; (=1, --- , b+ 1).

Similarly, let s; (¢ = 1,---, k 4 1) be positive integers such that

k1 si = K + 1. Assume that the sequences B1, B2, -, Bgraand by, -+,
bis; , bar, *++, bagy, bar, + v, bryrs,, are identically the same, element by
element, from left to right. Assume also that D 3y by = b; (6 =1, --- , k + 1).
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Referring to the example of the previous section, r(s;) is the number of o’s(8’s)
underscored by the 7th line, the lines being counted from left to right.

Obviously,r; = 1(¢ =1, -+ Jh4+1),8, 2 1(i =1, -+ , k& + 1). At least two
among the h + k& + 2 integers r;, s; equal unity (two that equal unity are ob-
tained from the extreme cells). If r;(s;) equals unity, then a;, = a, (by = b)), i.e.,
the cell frequency a.;(ba) is a fixed integer (one of conditions (i), (ii), and (iii)
of Section 1 is fulfilled ). On the other hand, if r;(s;) exceeds unity, then

(21) Dy = a; (25t by = by),

where a(b;) is fixed, which means that au, -+, @ir—1(ba, -+, bis—1) are
non-redundant discrete random variables to be entered as components of the
vector of random cell frequencies.

Consider the z sequence (1.1) consisting of hz’s and % 3’s. Denote the observed
rank order by z = (21, - - -, 2x), where z, = 0(1) if 2,y is an z(y). Furthermore,
let v = (v1, -+, v&) be the corresponding vector of observed random cell fre-
quencies, i.e., v, = a,(8,) if 2, = 1(0). Denote the vector random variables cor-
responding to z and ¥ by Z and T, respectively. The probability that ' = v is
thus to be interpreted as the probability that Z = z and that, in addition, the
magnitudes of the individual random cell frequencies are as specified by the
components of v. Thus, P(Z = z) = »_ P(I' = v), where the summation is a
multiple one extending over all components of v which are non-negative integers
fulfilling the restraints imposed by (2.1), i.e.,

(2.2) e a4

(2.3) b <bi (4

Jh+ 1> 1),
Sk 418> 1).

3. The theorem. We shall prove the following
TueoreM. If F(x) = G(y), then the probability associated with any vector of
random cell frequencies can be written in the form

P(T =) = [T 2P/ (mam.
We recall that if v, = a, then B, is given, and, conversely, if v, = 8, , then a, is
given.
Proor. Let us find the joint probability of the event I' = v, X = 2, ¥ = y,
where z = (x(ﬂu) y Limg) 5 * x(mh))y Yy = (y(nl) y Y 5 0, y(nk))y and X; Y

denote the corresponding random vectors. We have

P(X=2a,Y=yT =)

m! h+1 i h
(3.1) =T H {H: oy H (Fij — F; ;—1)““} Hf(x(mi)) A% my)

=1 az « =1
n| k+1 bz b k
"1 H {H] byl H (Fij — Fi 1) }iI:Ilf(?/m)) AYny) »

where the three sequences (with K + 2 elements each)
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FlO,Flly“'yFlrl =F20,"'7F2'I'2=F30,“"Fh+1,rh+1,
Fio,Fu, -+, Fiuy=Fu, -, Foy = Fo, -+, Fugrionrr »
0 = F(ewy), Fzap), -+, Flzag ), F(2avg,n) = 1

are identically the same, element by element, from left to right. Summing over
all the relations (2.2) and (2.3), thus eliminating the vector v, we obtain the
marginal probability

! ht1

m! .
PX=2Y=y =m — H [F(Zmy) — F(Timg_p)]™ Illf(x(m;)) AT (my)
' 1= =
i=1
n! k1 b k
M III [F(y(n.')) - F(y(n.'_;))] ¢ IIlf(y(n.')) dy(n.‘) .
bl =
L.e., the joint probability of the order statistics under consideration, the two
samples being independent.
We are, however, mainly interested in the marginal probability for v which is
obtained by eliminating the vectors X, Y through integration. We note that
(3.1) can be rewritten in the form

h+1 rg
L e H H (Fz] - T ]—l)a”
H aij ! 1 =1 j=

PX=2Y=yTl=vy)=

=1 7=1
n! k+1 s; K
U (Fis — Fij)" « ] f(2wwyy) dew,y
H H bi] 1 =1 j=1 r=1
=1 j=1

m! nl EH LS
= w1l (B — F,)"" Il few,) dew,y
H ay!H ﬁv!”=1 r=1
=1 r=1
where F, = F(zw,)(» = 0,1, ---, K 4 1). Integrating the last expression over
—w < zopy < 2oy < - < 2w < © we obtain the result stated by the
theorem, and the proof is complete.
The theorem can be used to compute the probability of any of the (&) different
z sequences (rank orders) obtained from the & 2’s and the k y’s. As pointed out in
Section 1, this probability is obtained by summing P(I' = «) over non-negative
v, fulfilling those linear restrictions that are pertinent to the sequence under
consideration. These summations are easily performed explicitly over either the
a, or the B, by the use of the following formulas.
Let p and q be integers satisfying 1 £ p < ¢ £ K 4+ 1, and set ZLP ay, = ¢,
2.2 .8, = d. Then

(3.2) > I, (etP) = (e,
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where the summation extends over all non-negative a,(» = p, ---, ¢ — 1) such
that > %=} a, < c. Similarly,

(3.3) 2 ID- (0P = (ra),

where the summation instead extends over all non-negative 8, (v = p, -+ ,¢ — 1)
fulfilling > 2% 8, < d.

ExampLE. Let us compute the probability of the z sequence x y z ¥ ¥ ¥ x con-
sidered in the example of Section 1. Letting 2z = (0, 1,0, 1, 1, 1, 0) we obtain by
summing over the a’s using formula (3.2),

P(Z =2) = Z (atlil-ﬂl)(dz"'ltgz"'ﬂa) (a3+3+ﬁ4";§5+ﬂ6+ﬂ7)(dfl-l;ﬂs)’

where the remaining summations are over non-negative 8’s such that 8; + 8, = b, ,

Bs+ﬁ4=b2135=b3;36=b4yﬁ7+38=b5-

4. Applications. As a first application, consider the case h = &k = 1. We
havea; = mi — 1,a: = m — my, by = ny — 1, by = n — n, . If the z sequence is
zy (Le., Tinyy < Ymy) ), thena; = a1, 2 + a3 = 62,81 + B2 = by , B3 = by, while,
if the z sequence is y z (i.e., Ywmy < Ty ), then ey + a2 = a1, a3 = a2, B1 = by,
BQ + ,83 = b2 . Let Pl = (Bl y 0[2), Ty = (Oll y Bz) According to the theorem,

(4.1) P(I' =Ty = P(T = Ty) = [ (“2*)/(").

The same thing can be written in a more detailed manner by inserting into (4.1)
those a’s and B’s which are fixed or given by the linear bands. Thus,

P(I‘ _ Pl) — (a1+ﬁl)(a2+b1—ﬂ1)(ag—ag+b2)/(m+n) 0 é 61 é bl, 0 as,

P(I‘ — Fg) — (a1+b1)(al—ar}-ﬂg)(a2+b2—ﬂ2)/(m+n) 0 é o é a, 0 é 62 b2-

In order to obtain the probability that, for instance, Xwm, < Y@y, let
2 = (0, 1). Then, by eliminating as through (3.2),

(4'2) P(Z — — 0 (a1+v)(a2+n— )/(m+n)

This expression may also be obtained by reasoning that at most by = (n, — 1) y’s
are allowed to be <xm, in order for £(m,) < Y@, to hold. Formula (4.2) was
originally derived by Thompson [3], compare also [1], pp. 395-397. By summing
over B, instead we obtain by using (3.3) the equivalent expression

P(Z = 2) = Xt ("1 /(7).

As another application we choose the case h = m, k = n, i.e., all the 2’s and
the y’s are selected to start with. Then all cell frequencies «, = 8, = 0 (v = 1,
, K + 1). For any z sequence, the vector of random cell frequencies is
(0,0, ---,0), and we obtain by the theorem the result that all z sequences are
equally probable, each having probability 1/(""), a well-known result widely
used in the theory of rank order statistics.
Possible applications of the theorem lie in the field of designing tests based on
rank order statistics in various cases of censoring of one or both samples. The
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general form of censoring considered in the theorem makes it possible to deal with
a wide range of censoring schemes.

Rank tests in connection with a simple censoring situation were considered in
[2]. Tt was assumed that the experiment is discontinued after the N* smallest
observations of the combined sample of N = m -+ n have been observed. If N*
contains m™ 2’s and n* y/’s, then the probability of any sequence of the N* 2’s is,
by our theorem,

")),
which confirms the result obtained in [2].
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