ESTIMATES OF LINEAR COMBINATIONS OF THE PARAMETERS
IN THE MEAN VECTOR OF A MULTIVARIATE DISTRIBUTION!

By ArtHUR COHEN
Rutgers—The State University

1. Introduction. Let y be an observation on a p X 1 random vector whose
distribution is multivariate normal with mean vector ¢ and known nonsingular
covarlance matrix ®. Let ¢ be a p X 1 vector of constants. Suppose we wish to
estimate ¢'0 when the loss function is squared error. For the case p = 1, it follows
from a result due to Karlin [5] that a linear estimate of the form vy is admlss,1ble
if and only if v lies in the interval [0, ¢]. In this paper we generalize this result
to the case of arbitrary p by proving that v’y is admissible if and only if the p X 1
vector v lies in or on the ellipsoid

(v — ¢/2)'®(y — ¢/2) £ ¢'Bp/4.

In proving this result we will identify linear estimates which are better than the
inadmissible linear estimates, thereby adding to the practicality of the result.

The model assumed in this paper is appropriate for the problem of predicting
from a regression function. Another result given here is concerned with the
problem of including or deleting the pth variate of a pth order regression to be
used for prediction. It is shown that the predictor which depends on the outcome
of a significance test is inadmissible. That is, the following predictor is inadmis-
sible: If the absolute value of the pth sample regression coefficient exceeds a
given constant, predict by the ‘“usual” linear combination of the p sample regres-
sion coefficients; otherwise predict by the ‘“‘usual” linear combination of the
first (p — 1) sample regression coefficients. This type of predictor has been used
in practice and has been studied by Bancroft and Larson [2], and others. (See
Kitigawa [6], where other references are given.) In proving this inadmissibility
result we do not identify any predictor which is better than the predictor in
question, thereby limiting the practicality of this finding.

For the problem of predicting from a regression function it is interesting to
note that the generalization of Karlin’s result mentioned above, implies that the
predictor, which modifies the “usual” linear predictor by multiplying the pth
sample regression coefficient by a small constant, is admissible. This latter type
of predictor has been suggested by Tukey [11].

We remark at this point that the decision theory terminology and definitions
used in this paper are more or less that of Blackwell and Girshick [3]. Now note
that there is no loss in generality for the problem at hand when we consider only
a single observation on y. This is so, since for N independent observations, the
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sample mean is a sufficient statistic, whose distribution is multivariate normal
with mean vector 8 and covariance matrix ®/N. Also for the problem of estima-
tion with squared error loss function, it is well known that the nonrandomized
estimates form a complete class. Furthermore, for the squared error loss function,
the problem of predicting a function of parameters, which represents the ex-
pected value of a random variable, is essentially the same as predicting the random
variable. This follows since the risk for the latter problem equals a constant plus
the risk for the former problem. Hence we will use prediction and estimation
interchangeably, always meaning estimation of the function of the parameters.

In this paper we use the term linear estimate meaning a homogeneous linear
estimate. The results could be transformed to results for non-homogeneous linear
estimates. For such a case, estimates v’y + k, for any constant k, are admissible
if and only if v lies in or on the ellipsoid

(v — ¢/2)®(v — ¢/2) < ¢Pp/4,

save for the case ¥y = ¢. That is, if v = ¢, vy + k is admissible if and only if
E=0.

In the next section we prove the generalization of Karlin’s result. In Section
3 we prove that the predictor which depends on the outcome of a significance
test is inadmissible. Finally, in Section 4 we conclude the paper with some
generalizations and discussion.

9. All admissible linear estimates. In this section we find all admissible linear
estimates. We do this by first finding the admissible estimates for the case when
the covariance matrix ® is the identity matrix of rank p. For Theorems 2.1,
2.2, and 2.3 to follow then, ,We assume ® is the identity matrix of rank p. In
Theorem 2.1 we show that v’y is inadmissible whenever v lies outside the sphere

(2.1) (v — ¢/2) (v — ¢/2) < ¢'o/4.

As a result of Theorem 2.2, we will see that v 'y is an essentially unique Bayes
solution for a specified a priori distribution whenever v lies inside the sphere
defined in (2.1). Hence such estimates are admissible. In Theorem 2.3, we apply
a theorem due to Stein [9] to prove that v 'y is admissible when v lies on the sphere
given in (2.1). Finally, by use of a transformation, we obtain the result we are
seeking in Theorem 2.4.

To start we prove

LeMMA 2.1. The sphere given in (2. 1) 1s contained in the sphere

(2.2) Yy £
Proor. If v lies in or on the sphere given in (2.1), then
(2.3) Yv £ e

The lemma now follows by applying the Cauchy inequality to the right-hand
side of (2.3). Next we prove
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THEOREM 2.1. Any estimate v'y where ~ lies outside the sphere given in (2.1) 4s
inadmassible.
Proor. First note that the risk function for any procedure of the form ~'y is

(24) p(6,vy) = v'v + ((v — ¢)0)".

Now suppose we consider 7'y where ¥ lies outside the sphere given in (2.2).
By Lemma 2.1 it follows that ¥ also lies outside the sphere given in (2.1). Now
for such a ¥, ¢’y is obviously better than 'y and so 4’y is inadmissible.

Now choose ¥ so that 4 lies outside the sphere in (2.1) but lies inside or on the
sphere given in (2.2). Then this ¥ satisfies

(2.5) Vo <95 £ ¢e.

We assert that the procedure y*'y is better than 4y, where v* = ¢(¥ — ¢) + o
for

(2.6) c= (e — 7o)/ (7 — ) (7 — e).
For from (2.4)
p(6, v'y) = vv* + (7 — #)'8)’,

and so if we can show

i) 0<c<1
and
(ii) Yy* < '3,

then our assertion will be correct. That (i) is true follows from (2.5). With re-
gard to (i), if we write out the expression for v*v* substituting the right-hand
side of (2.6) for ¢, we find that (ii) reduces to

(2.7) oo — (¢ (e —7)/(7— o) (7 — ) <77

If we transpose, expand, and reduce, we find (2.7) can be written as

(28) 0 < (%) 4+ () = 26'N(Y) = (FF — )

But again from (2.5) it follows that (2.8) is true and so we have verified (ii)
and thus have completed the proof of Theorem 2.1. We next prove

Levmma 2.2. If the a priort distribution of 0 is multivariate normal with mean
vector zero and covariance matrixz =, then the conditional expectation of 6 given y is

E@|y) =2+ 1)y

Proor. Suppose 2 is of rank » = p. Then there exists a nonsingular matrix B
such that

’ I, 0
pow = (1 9),
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where I, is the identity matrix of rank ». Let V = B6. Then V = (58; ), where
V% isan r X 1 vector which is multivariate normal with mean vector zero and
covariance matrix I, , and V® isa (p — r) X 1 vector of zeros. Now suppose we
partition B into (3.) where By isr X p and By is (p — 7) X p, and we also parti-
tion B into (C, D), where Cisp X rand Disp X (p — 7). Then§ = B™'V =
CV™. Now suppose we consider the (p + ) X 1 vector (%«n). It is easy to verify
(see [1], p. 29) that this vector is multivariate normal with mean vector zero

and covariance matrix
2+1 C
¢ L)

This implies that I{"D given y is multivariate normal with mean vector
EV®|y)=CCE+ 1)y

Since V? is a zero vector, and V® given y is a zero vector, it follows that
E(V|y) = (C'(z+ D7y).

Now from an elementary property of conditional expectation we have
E(B7V|y) = B'E(V|y)

and hence it follows that

EBWV|y)=E@|y) = CC'(Z+ D7y =22+ )7y

This proves the lemma, for any r, 1 < r < p. Now we are ready to prove

THEOREM 2.2. Any estimate vy, where v lies inside the sphere given in (2.1)
1s an essentially unique Bayes solution for some a priori distribution.

Proor. We shall show that if v lies inside the sphere given in (2.1), then v’y
is an essentially unique Bayes solution for an @ prior: distribution which is normal
with mean vector zero and covariance matrix 2, where = has rank one. It will
also be clear, from the technique of the proof, that 'y is an essentially unique
Bayes solution for other a priore distributions which are normal with mean vector
zero and covariance matrix of rank r, for all » such that, 1 < r < p.

To prove Theorem 2.2, we first note that from Lemma 2.2, and the fact that
the essentially unique Bayes solution is the a posteriori expected value of ¢'6,
that the Bayes solution with respect to an a priors distribution which is multi-
variate normal with mean vector zero and covariance matrix 2 is¢' (2(Z + I)7'y).
Therefore, if we are given a vy which lies inside the sphere given in (2.1) and we
can find a covariance matrix = (that is, a positive semi-definite symmetric matrix)
such that

(2.9) y= 2+ )72,

then it will follow that v’y is an essentially unique Bayes solution.
Note that we can write (2.9) as

(2.10) v =Z(¢ — 7).
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Also since any positive semi-definite symmetric matrix T is such that

z = QAQ,
where  is an orthogonal matrix and A is a positive semi-definite diagonal matrix,
we can write condition (2.10) as

(2.11) v = QAQ (¢ — ),
and if we multiply (2.11) on the left by Q’, we get
(2.12) Qv = AQ (¢ — ).

Thus, for the given vector v, we need to show the existence of appropriate ma-
trices Q" and A satisfying (2.12). Now notice that if v lies inside the sphere given
in (2.1), this implies that v’ (¢ — ) > 0, which in turn implies that there exists
an orthogonal transformation, Q* say, such that
(Q¥y) = (21,0, ---,0) and (Q"(¢e — 7)) = (21,2, -+, 2)

where x12; > 0. Hence if we let d; = x1/21,d; = 0,7 = 2,3, - -+, p, and define
the diagonal elements of A to bed;, 7 = 1,2, -- -, p, then A and Q™ are existing
matrices that satisfy (2.12). Hence, if we set =* = Q*AQ*, we have shown the
existence of a positive semi-definite matrix satisfying (2.10), thus completing
the proof.

Next we proceed to prove the admissibility of vy for those v lying on the sphere
given in (2.1). We shall use a theorem and remark by Stein [9], which we state as

LeMMA 2.3. Let B be the o-algebra of all Borel subsets of the real line U, and C
a g-algebra of subsets of a set V. Let u be Lebesgue measure on B and v a probability

measure on C. Let f be a nonnegative valued BC measurable function on U X V
such that
[ fu, v) du = 1 for all v,
[ uf(u,v) du = 0 for all v;
fdv(f Wf(u, v) du)t < o,
where we write du instead of du(wu). If we observe (U, V') distributed so that for some
unknown & (U — &, V) has probability density f with respect to uv, then U is an
admissible estimator of & with squared error as loss. Furthermore, if g(u, v) is any
BC measurable function on U X V such that its risk is less than or equal to the risk
of the estimator U, for all £, then g(u, v) = u almost everywhere (uv).
Now we prove
THEOREM 2.3. If v lies on the sphere given in (2.1), then v’y is admissible.
Proor. Suppose 7'y is not admissible. Then there exists some estimate; say
g(y), which is better. The risk function for g(y) is

e JZe e [2a (g(y) — 8’
“(2r)Pexp[—(y — 0)'(y— 0)/2 dyrdys - Ay, = [Z [0 [Zu
(213)  (g(y) — Y0 2r) ™ exp [—(y — 0)'(y — 6)/2dydys -+ dy,
+ 2(y — S’),ofiw foo tee ffoo (9(y) — ’Ylo)
(2r) ™ exp [—(y — 0)'(y — 0)/2] dy1dyz - - - dy, + ((v — ¢)'8)".
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Note that since v lies on the sphere in (2.1) it follows that v (y — ¢) = 0 and
hence we may define an orthogonal p X p matrix T' whose first row is v’/ (y ‘)
and whose second row is (v — ¢)'/[(v — )’ (v — qo)]%. Now let z = I'y, and
w = I'f, so that the right-hand side of (2.13) becomes

e J2 e [0 [9(T'2) — ()T
(2r) ™ exp [— (2 — w)'(z - w)/2 dey dzz ceedzy
(214) A+ 2wf(y — ) (v — ) [Zo [Za - [Zal9(D'2) — wi(v'y)]]

c2r) ™ exp [— (2 — w)'(z2 — w)/2]derdzs -+ - dz,
+ (v — o) (v — o).
If g(I'z) is better than 4T’z its risk must always be less than or equal to the
risk of v'T"z for all 6 or equivalently, for all . In particular, since the coordinates
w1, ws, " ,wpare orthogonal, the risk for g(I'z) for w, = 0 wy=0, -+ ,0,=0,

must be less than or equal to v "y, which is the risk for v ‘Yatw, = wy = -+ =
wp, = 0. That is, from (2.14) we must have

Za JZa o [Zalg(T') — (V)T
-(2m) 7 exp [— (a1 — @1)Y/2) dea ][ 2= (27) 7" exp [—2/2] dzs < v,
which may be written as
J2a 20 [Zlg(D2)/ (YY) = el
(2‘”) exp [— (21 — @1)”/2] dar ] [P (21r)—% exp [—2/2]dz; < 1

Now if we apply Lemma 2.3 with f(u, v) = exp [— (u — Eu)2/2]/(21r)% and with
v equal to the probability measure corresponding to the (p — 1) dimensional
normal distribution with mean vector zero and covariance matrix the identity
matrix of rank (p — 1), we find that the only function (except for sets of p-dlmen-
s1onal Lebesgue measure zero) g(I'z) satisfying (2.15) is g(P 2) = (v'v)a
= 4'y. Hence we may conclude that g(y) cannot be better than y 'y and therefore
~'y is admissible. This completes the proof of Theorem 2.3.

We conclude Section 2 by considering the case where y is multivariate normal
with mean vector § and with known nonsingular covariance matrix ®. We prove

TraEOREM 2.4. The estimate 'y is admissible if the p X 1 vector of constants ¢
lies in or on the ellipsoid.
(2.16) (c — ¢/2)®(c — 90/2) ¢ Po/4;
otherwise ¢'y is inadmissible.

PROOF Let A be the nonsingular p X p matrix such that A®A" = I. Let

= Ay and w = A46. Than ¢ 1s multivariate normal With mean vector « and

covariance matrix I. Now let o™ = (47™)’p, s0 that 0w = ¢'A7w = ¢'8. Then
it follows from Theorems 2.1, 2.2, and 2.3 that vz = (y'A4)y is an admissible
estimate of ¢'6 provided the vector of constants v lies in or on the sphere

(2.17) (v — %/2) (v — ¢%/2) < o¥e"/4;

(2.15)
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otherwise v’z is inadmissible. Note that we may rewrite (2.17) as
(2.18) (v = (A e/2) (v = (A7) 'e/2) = ¢'Po/4.

If we set ¢ = Ay, we see from (2.18) that ¢'y is an admissible estimate for
¢'0 provided the vector ¢ lies in or on the ellipsoid in (2.16), and ¢’y is inadmis-
sible otherwise. This completes Theorem 2.4.

3. Inadmissibility of predictor that depends on a significance test. We now
show that a predictor which includes or excludes the pth variate of a pth order
regression, depending on the outcome of a significance test is inadmissible. More
formally, let the p X 1 vector y be normally distributed with mean vector 8 and
known nonsingular covariance matrix ®. We require that the covariances of
(yi,Y»)arezeroforalli = 1,2, ---  p — 1. (We may think of y as the vector of
least squares estimates of 6, where ¢ is the vector of parameters in a general
linear hypothesis model of full rank. The restriction on the covariances of
(¥, y») is not severe since the regression variates could be transformed so that
the covariance matrix has this property.) Suppose then that we wish to predict
©'6 for some vector of constants ¢ and we regard the loss function to be squared
error. Let us consider the predictor ¢(y) defined as follows:

Hy) = 2 E1ysei if [y, = C
= 2 yies if Jy,| < C

for C a positive constant. When p = 1, ¢(y) = 0if |y)) < C. We now prove

THEOREM 3.1. The predictor t(y) is inadmissible.

Proor. For the case p = 1, it follows from a result by Sacks [7] (See in par-
ticular the last paragraph on p. 767), that a necessary condition for the admis-
sibility of a predictor is that it be an analytic function of ¥; , or must be equiva-
lent to an analytic function; that is, it may differ from some analytic function
on a set of Lebesgue measure zero. But note that {(y) is not equivalent to any
analytic function. For, no matter how we alter {(y) on a set of measure zero,
we will always have

(3.1)

I_iglll"c t(y) é O’
and when ¢; is positive,
limy.c t(y) = Cer > 0.

When ¢, is negative, we could give a similar argument. Thus #(y) cannot be an
admissible predictor.

For the case of arbitrary p, we can reduce the problem to a one-dimensional
problem and again apply results of Sacks [7]. That is, suppose we consider the
problem of predicting ¢'6 by predictors of the form

3(y) = 25 ywer + F(yn),

where f(y,) is some function of y, . Clearly, if {(y) is inadmissible for this re-
duced problem, it will be inadmissible for the original problem. For the reduced
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problem, if we consider the expected risk for a procedure, for some arbitrary a
priort distribution £(6), it follows that any Bayes solution must be of the form

20 yiei + o) 20 05 €xp [— (Yp — 0,)%/207,) dE(6,)/
JZaexp [— (yp — 6,)°/20,,] dE(6,),

where £(6,) represents the marginal distribution of 6, .

Now, by virtue of the proof of Sacks’ results (See [7], Section 2, pp. 754-765)
any procedure that is the limit (regular sense) of a sequence of Bayes procedures
must be of the form

(3.2) 2o yiei + (Y,

where f(y,) is an analytic function of y, . Also, as mentioned in Sacks [7], only
procedures which are the limits of Bayes procedures can be admissible. Since
t(y) is not of the form (3.2) we conclude that ¢(y) cannot be admissible. This
completes the proof of Theorem 3.1.

4. Generalizations and discussion. The first generalization we recognize is
concerned with the result of Section 2. If we relax the assumption that y is multi-
variate normal, assuming only that the covariance matrix of y exists, and if we
restrict ourselves to linear estimates, then Theorem 2.4 is still true. This is so,
since we note that the risk function for linear estimates depends only on first
and second moments. Hence, the proof of Theorem 2.1 never requires the nor-
mality assumption. Furthermore, if ¢’y were inadmissible for some ¢ lying in or
on the ellipsoid in (2.16), then from Theorem 2.1 there would have to exist a ¢*
lying in or on the ellipsoid such that ¢*'y would be better than ¢'y. But if this were
true, it would also be true in the case where y was normally distributed, con-
tradicting the result of Theorem 2.4.

The next generalization, which is somewhat obvious, is concerned with the
problem of estimating the individual 8, ,7 = 1,2, - - - | p, where y is multivariate
normal with mean vector 6, covariance matrix the identity and when the loss
function is the sum of the squared errors. That is, the loss function is

W(8,8) = > P2y (8:(y) — 6:)°,

where 8" = (6:(y), -+, 8,(y)), and 8:(y) is an estimate of §;. If we use the
results of Karlin [5] and Stein [8] it is easy to show that the estimates of the form
G'(y) = (YW1, Y2, -+ , Volp) are admissible if and only if 0 < v; < 1, for all
j=1,2, ---,pand vy; = 1 for at most two of the indices, 7 = 1,2, --- , p. A
question that now arises for this case is, can we find all the admissible estimates
of the form I'(y), where

I'(y) = (yuyr + vy + -+ + Yo
Yoy + vey: + 0+ YU, s YoY1 + YpeYe + - ’Yppyp)?

Some final generalizations are concerned with the following problem: Let z;,
1 = 1,2 ---, n, be independent observations on a random vector z, where
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! . . . . . .
2 = (y,z), is bivariate normal with mean vector zero and covariance matrix

0, Oyz
2 —_ vy Y .
Ogy Ozz

Suppose we assume that ., and ¢° = 0,, — 0.s/0.s are known (and without loss
of generality these variances are set equal to 1). If we denote ¢4,/0., by 8 and
consider the problem of estimating 8 when the loss function is squared error, it
is possible to prove

THEOREM 4.1. The estimate

AG) = Zimzyy/ 2imad + ),
for0 < N < o, and for N = 0 and n = 4, is admissible; while the estimate
We) =8 if[gl zC
=0 if|g<cC,

where B = D1y &/ D rm i, C is a positive constant, is inadmissible.

The proof follows by showing A(z) is an essentially unique Bayes solution
whenever 0 < A < o, and when N = 0, the result has been proved for n =
4 by Stein [10]. The proof of the inadmissibility of ¢(z) uses essentially the same
arguments given to prove Theorem 3.1.

In the introduction we made a remark concerning the problem of deleting or
including the pth variate of a pth order regression to be used for prediction.
We said that whereas the predictor t(y) given in (3.1) is inadmissible for the
squared error loss function, the predictor which modifies the ‘“usual” linear
predictor by multiplying the pth sample regression coefficient by a small constant
is admissible. One may think of this perhaps as being a compromise between
leaving the pth sample regression coefficient in or out. It is also interesting to
point out that in the author’s dissertation [4] a formulation is given for a problem
where one decides if the regression is of the pth order or lower, and then predicts.
For the formulation given there a predictor of the type ¢{(y) given in (3.1) is
found to be admissible.

I
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