LIMITING DISTRIBUTIONS OF RESPONSE PROBABILITIES

By J. R. McGregor and J. V. Zidek

University of Alberta

- 1. Introduction and summary. In an earlier paper [3], one of us considered certain limiting distributions of response probabilities arising from the two experimenter-controlled events learning model of Bush and Mosteller [1]. There, as here, the probabilistic model took the form of a Markov process p_0 , $p_1 \cdots$ satisfying the following conditions:
 - (i) p_0 has an arbitrary distribution on (0, 1);
- (ii) if p_n is given, then $p_{n+1} = a_1 + \alpha_1 p_n$ with probability π_1 and $p_{n+1} = a_2 + \alpha_2 p_n$ with probability π_2 ;
- (iii) $\pi_1 + \pi_2 = 1, 0 \le a_j \le 1 \text{ and } 0 \le \alpha_j \le 1 a_j, (j = 1, 2).$

The random variable p_n is called "the response probability on trial n."

It has been shown by Karlin [2] that a limiting distribution exists as $n \to \infty$. If p is the random variable of this limiting distribution, it can be shown ([1], p. 98) that the distribution of p is concentrated on $[\min(\lambda_1, \lambda_2), \max(\lambda_1, \lambda_2)]$, where $\lambda_1 = a_1/(1 - \alpha_1)$ and $\lambda_2 = a_2/(1 - \alpha_2)$.

In the present note, it is shown that for the case $\alpha_1 = \alpha_2 = \alpha$, $\pi_1 = \pi_2 = \frac{1}{2}$, the characteristic function of the distribution of the random variable

$$(1.1) x = (\lambda_1 + \lambda_2 - 2p)/(\lambda_2 - \lambda_1), (\lambda_1 \neq \lambda_2),$$

when suitably standardized, tends to the characteristic function of the standardized normal distribution as $\alpha \to 1$.

2. Asymptotic normality as $\alpha \to 1$. For the case $\alpha_1 = \alpha_2 = \alpha$, $\pi_1 = \pi_2 = \frac{1}{2}$, it follows from results of Bush and Mosteller [1] that $E(p) = (\lambda_1 + \lambda_2)/2$, and $\operatorname{Var}(p) = (1-\alpha)(\lambda_2-\lambda_1)^2/4(1+\alpha)$. Using these in conjunction with equation (1.1), we obtain E(x) = 0 and $\operatorname{Var}(x) = (1-\alpha)/(1+\alpha)$. Thus the random variable $z = x[(1+\alpha)/(1-\alpha)]^{\frac{1}{2}}$ is standardized.

McGregor and Hui [3] have shown that the characteristic function of the distribution of x is

$$\varphi_x(t) = \prod_{n=0}^{\infty} \cos\left[(1-\alpha)\alpha^n t\right] = \cos\left[(1-\alpha)t\right] \varphi_x(\alpha t).$$

Thus the characteristic function of the distribution of z satisfies

(2.1)
$$\varphi_z(t) = \cos\left[\left(1 - \alpha^2\right)^{\frac{1}{2}}t\right]\varphi_z(\alpha t).$$

Since $\varphi_z(t)$ is an even function of t, we may write

(2.2)
$$\varphi_z(t) = \sum_{r=0}^{\infty} \mu_{2r} (-1)^r t^{2r} / (2r)!,$$

where $\mu_{2r} = E(z^{2r})$. Combining equations (2.1) and (2.2), we have

Received 8 July 1964; revised 26 October 1964.

$$\begin{split} \sum_{r=0}^{\infty} \mu_{2r} (-1)^r t^{2r} / (2r) \, ! \\ &= \{ \sum_{r=0}^{\infty} \mu_{2r} (-1)^r (\alpha t)^{2r} / (2r) \, ! \} \{ \sum_{k=0}^{\infty} (-1)^k t^{2k} (1 - \alpha^2)^k / (2k) \, ! \} \\ &= \sum_{r=0}^{\infty} (-1)^r t^{2r} \{ \sum_{k=0}^{r} \mu_{2(r-k)} \alpha^{2(r-k)} (1 - \alpha^2)^k / (2r - 2k) \, ! (2k) \, ! \}. \end{split}$$

Thus

$$\mu_{2r} = (2r)! \sum_{k=0}^{r} \mu_{2(r-k)} \alpha^{2(r-k)} (1 - \alpha^2)^k / (2r - 2k)! (2k)!,$$

or

$$\mu_{2r} = (2r)! \sum_{k=1}^{r} \mu_{2(r-k)} \alpha^{2(r-k)} (1 - \alpha^2)^k / (2r - 2k)! (2k)! (1 - \alpha^{2r}).$$

Let $\mu_{2r}^* = \lim_{\alpha \to 1} \mu_{2r}$. Then $\mu_{2r}^* = (2r-1)\mu_{2r-2}^* = \prod_{k=0}^{r-1} (2r-2k-1) = (2r)!/r!2^r$. Thus $\mu_{2r}^*/(2r)! = [r!2^r]^{-1}$ and the characteristic function of the distribution of z obtained by letting $\alpha \to 1$ is, therefore,

$$\sum_{r=0}^{\infty} (-t^2/2)^r / r! = \exp(-t^2) / 2,$$

which is the characteristic function of the standardized normal distribution.

REFERENCES

- [1] Bush, Robert R. and Mosteller, Fredrick (1955). Stochastic Models for Learning. Wiley, New York.
- [2] Karlin, Samuel (1953). Some random walks arising in learning models I. $Pacific\ J$. $Math.\ 3\ 725-756$.
- [3] McGregor, John R. and Hui, Y. Y. (1962). Limiting distributions associated with certain stochastic learning models. Ann. Math. Statist. 33 1281-1285.