ON THE COMPLEX ANALOGUES OF T72- AND R:-TESTS!

By N. Gir1?
Unaversity of Montreal

0. Introduction and Summary. Let ¢ be a complex Gaussian random variable
with mean E(¢) = o and Hermitian positive definite complex covariance matrix
2 =E(— a)(t — a)* where (¢ — a)* is the adjoint of (¢ — a). Its proba-
bility density function is given by

(01)  p(éle, 2) = 7 7(det )7 exp [ (¢ — )2 — )],
with E(¢ — &) (¢ — &) = 0. Write

Zu 2
z = (Efz 222)’

where 2y is the (p — 1) X (p — 1) lower right-hand submatrix of 3.

Goodman (1963) found the maximum likelihood estimate of = and o =
1522 212/Z1 when o = 0 and also found the distributions of these estimates.
The problems considered here are of

(i) testing the hypothesis Ho : @ = 0 that the mean of the vector £ is 0 against
the alternative H; : o*2 ' > 0 and

(ii) of testing the hypothesis Hoy, : 212 = 0 that the first component of £ is
independent of the others against the alternative H, : p* > 0.
Since likelihood ratio test has some optimum properties and has been found
satisfactory for similar problems in the real case, we find the likelihood ratio
tests of these problems and show that these tests possess certain optimum
properties which are counterparts of the real case. These results will be presented
in Sections 3 and 4. Section 1 deals with some known results of complex matrix
algebra. In Section 2, we will prove some preliminary results which are useful for
complex Gaussian statistical analysis. For an application of these results the
reader is referred to Goodman (1963).

It may be remarked here that the likelihood ratio test is invariant under all
transformations which leave the problem invariant and may be obtained from
the densities of maximal invariant under the null hypothesis and the alternative.

1. Algebraic preliminaries. Our development relies on some results of complex
matrix algebra and we will list them in this section, without any proof, in the
form of lemmas. The materials summarized here can be found, for example,
in MacDuffee (1946). In what follows, we will denote a diagonal matrix with
diagonal elements Ay, -+, A, by LA, <+, ).

Lemma 1.1. If H is a p X p Hermitian matriz, then there exists an unitary
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p X p matriz U such that UYHU = L(\, ---, N\p) Where \; (¢ =1, -+ | p)
are the characteristic roots of H.

LemMma 1.2. A Hermitian matriz is positive definite if all its characteristic roots
are positive.

Lemma 1.3. Every Hermitian positive definite matrizx (semidefinite) H is uniquely
expressible as H = BB* where B is Hermitian positie definite (semidefinite).

Lemma 1.4. For every Hermitian positive definite matrix H, there exists a
complex non-singular matriz B such that BHB* = [ (identity matriz).

2. Some theorems.

THEOREM 2.1. Suppose f(£) = C(det Z)" exp [—tr 2], where 2 s positive
definite Hermatian and C is a positive constant. f(Z) is maximum at = = $ = nl.

Proor. Since Z is positive definite Hermitian, by Lemmas 1.1, 1.2, there
exists an unitary matrix U such that U*SU = L(\, - - -, N\p) with \; > 0. Hence

f(2) = C(det (U*ZU))" exp [—tr {U*ZU}]
= CJI% (i exp [—\i/n])",
which is maximum if \; = n, ¢ = 1, --- | p. Hence f(Z) is maximum at = =

$ =l

THEOREM 2.2. Let £ be a p-variate Gaussian random variable with mean « and
complex positive definite Hermitian covariance matrixz 2. Then 2827t is distributed
as x3p(20*Z7'a), where x3,(B) s @ non-central—chi-square with 2p degrees of
freedoms and non-centrality parameter 3 = E (xg,,(ﬂ)) — 2p.

Proor. Let n = C¢, where €' is a p X p non-singular complex matrix, such
that C=C* = I. It is easy to check that 7 is distributed as a p-variate Gaussian
random variable with mean ca = 8 and covariance matrix I. Writing 4 =
(m, -+ ,mp) withn; = X; 4+ iY,;and 8 = (B, -+, B,) with 8; = Bir + Bir ,
We obtain from (0.1) and above that the 2p random variables X; — Bz, -+ -,

—Bor, Y1— Bur, -+, Y, — Bprare independently and identlcally distributed
normal random varlables Wlth mean 0 and variance 3. Hence Y 2% (X + Y]
= 29"y = 25 E 't is distributed as x3,(\) where A = 2>°r, (B”3 + B) =
28*8 = 22"z 0.

THEOREM 2.3. Constder N independent identically distributed p-variate complex
Gaussian random variables & ,7 = 1, - -+, N as a sample of size N from a popula-
tion with pdf given by (0.1). The maximum likelihood estimates &, £ of a, = re-
spectively are given by

N& = Z{iv=1£i = NE;
NS =2t — B —0* =

Proor. From (0.1), the pdf p(&, ---, &x) of &, -+, &x is _
pla, -+, &) = m P(det 2)7" exp [—tr TN (8 — @) (& — )]
Now

it — ) — )" =2N G —DE -+ NE— ) — o)
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Hence max.sp(&, -+, &v) = maxs7 " (det 2)™" exp [—tr ZA]; and the
maximum likelihood estimate of « is £. Let us assume that A is positive definite
Hermitian which we can do with probability 1. By Lemma 1.3,

maxezp(é, < -, &)
= maxz 7 " (det 2)™" exp [—tr Z'BB*]
= maxz 7 "V (det (BB*))™¥[det (B*=7'B)]" X exp [—tr (B*Z7'B)],
where B is a nonsingular p X p complex matrix such that A = BB * By Theorem
2.1, the maximum likelihood estimate of = is £ = N'BB* = N7'A.
THEOREM 2.4. N’E, A are independent in distribution. N'% has a p-variate com-

plex Gaussian distribution with mean N ‘o and complex covariance =; A is a com-
plex Wishart W,(Z, N, p) with pdf.

(2.1) p(A) = [det (4)]"™7"/I(2) exp [—tr Z7'4],

where 1(2) = «** P2 T(N — o) (det (2))"
Proor. Let U = (U,;) be a N X N unitary matrix such that the first row is

(N7%, ..., N7'. Consider the transformation from (&, ---, &) to
(m, -+, nn) given by

m=DN %E,

o = D11 Uasti, «=2 ---,N.
Now 7, for each a, is being a complex valued linear function of £, , & = 1, -+ - , N;

has complex Gaussian distribution. This follows from the definition of complex
Gaussian distribution and the fact that the Jacobian of any nonsingular com-
plex transformation: ¢ — B¢ is det (BB*). It is easy to check that

E(n,) =0, a=2 -+ N;
E(m) = Na;

cov (nam;") = 0, if 7 5= j;

= I, if1=7;

and
L —-DE - = 2™

Furthermore, it is easy to see that uncorrelatedness in the complex case also
implies independence. Thus N ' A are independent in distribution. By Theorem
5.1, Goodman (1963), it follows that A has complex Wishart distribution with
pdf given by (2.1). The mean and complex covariance matrix of N % are Nia,
and 2 respectively. Hence the theorem.

REMARK.

p(e, -+, &) = 7 "(det =)™ exp [—tr {274 + NE — a)(F — a)*}].
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It thus follows from Neyman’s criterion for sufficient statistic that (%, A) is
sufficient for (e, =), (see Halmos and Savage (1949)).

3. Likelihood ratio test of Hy against H;. Let &, - -+, &y be a sample of N
observations from p(¢ | @, 2). We want to test the hypothesis Hy; : « = 0 against
the alternative H : "= 'a > 0 on the basis of these observations. The likelihood
ratio test consists in rejecting Ho, if

A= maXm, p(gl y Ty EN)/maXH()l p(El y Tty EN)

is greater than some predetermined constant depending on the size of the test.
Applying Theorem 2.1, we obtain,

(3.1) N = (1 + NE*ATE)".

Thus, the likelihood ratio test of Hy against the alternative H, is given by
T} = NE*AT'E > k, where k is a constant and is determined in such a way that
the test has size a. To determine the constant &k we now need the distribution of
T.% under Hy, . Since we also need the distribution of 7.2 under H; for later de-
velopments, we may, as well, find it, the distribution under Hy; will follow from
it immediately.

THEOREM 3.1. T, under Hy is distributed as the ratio x3,(2Na*= ")/ XoN—p) »
where x5,(2N o*27'a) is a non-central chi-square with 2p degrees of freedom and
noncentrality parameter 2N, o2, Xow—p) 18 @ central chi-square with 2(N — p)
degrees of freedom and is independent of x3p(2Na*=7'a) in distribution.

Proor. It may be checked that T, is a maximal invariant in the space of
sufficient statistic (£, A) under the full linear group G of p X p non-singular
complex matrices under multiplication which keep the problem of testing Hg
against H; invariant in the usual fashion. The maximal invariant in the parametric
space of (o, 2) under this group is1° = Na*='a. Thus the distribution of 7' de-
pends on the parameters a and Z, only through »*. Hence we may without any
loss of generality assume = = I and redefine « such that Na*a = 5’

Let ¥ = N* and Q be an unitary matrix with first row Y,*/(Y*Y)}, - .. ,
Y,/ (Y*Y)! and other rows are defined arbitrary. Writing U = QY and
B = QAQ", we obtain 7' = U*B™'U = U,U,*/(Bu — BBz Bi;) where B is
partitioned as B = <§% gz> with By, a (p — 1) X (p — 1) lower righthand
submatrix of B. Furthermore, let A be similarly partioned into submatrices A;
and £ = (&, -+, &)’ Now,

AL = (b + AnALE) " An(fn + AnAbLE) + &% (An — ApdnAD)E .

Hence A is Hermitian positive definite iff. A5 and Ay — A124% Ao are Hermitian
positive definite. From (2.1), taking £ = I (the identity matrix), the joint
pdf of Az, Apand H = (An — Apdndy) is

Iy ' (det An)V " '(det H)Y "' exp [—tr {H + Apdn Al + Al
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where I, is the value of I(Z) with £ = I. Thus it follows that H is independent
of As and Az, and is distributed as W.(1, N — p + 1, 1).

The conditional distribution of B, given Q, is that of Y ~x_ V.V.* where,
conditionally V, = @, are independent and each has complex p-variate Gaussian
distribution with mean 0 and covariance matrix I. Hence By — BiBa Bi: is
conditionally distributed as D ~=P*™ W,W,, where, conditionally W, are in-
dependent and each has single variate complex Gaussian distribution with mean
0 and variance 1. By Theorem 2.2 and the fact that sum of independent chi-
squares is a chi-square, it follows that 2(By, — BB Bi:) is conditionally
Xow—p - Since this distribution does not depend on Q, 2(By — BB Bi) is
unconditionally x3_p . The quantity 2Y*Y, by Theorem 2.2, is x3,(2Na*="a).
Hence the theorem.

THEOREM 3.2. On the basis of observations &, - -+, Ex from the p-variate com-
plex Gaussian distribution with mean o and complex covariance matrixz Z; of all
level By tests of Ho against the alternative H,, which are invariant under the
group G of transformations, the test based on T, is uniformly most powerful in-
variant.

The proof of this theorem follows from Theorem 3.1 and the fact that we need
only consider test functions based on the sufficient statistic (£, 4).

TureorEM 3.3 Of all level B, tests of Ho against Hy with power functions depend-
ing on 1’ the test based on T. is uniformly most powerful.

Proor. As remarked in the preceding theorem, we may consider tests which
are functions of (£, A) only. Let ¢(£, A) be any level « test of Hy against H;
with power function depending on 7 only. So Eg,¢(E, A) = E.z¢(E A) =
Ey-1a,-15-100(5, A) = Eo3p(gE, gAg™) for ge Q. Thus,

(3.2) E.xl6(% A) — ¢(gE gAg™)] = 0

identically in o, =. Now, writing = 'a = 0 = 0 + 0, ,E = & + ij, A = Ar + i4;
and 7' = (I — 6) where 8 = 6, we obtain,

Ntrz 't — a)(t — a)*

= tr N27{(&& + §7) + (37 — 7)) + aa™ — 20,3 — 20,57}
Hence,
exp [~tr Z7{A + N(E — a)(E — a)"]

= exp [—tr {A + N(&& + §7) + N0*=6}] exp [tr {8(Ar + Ni¥ + Ngj)
1 (A + Ng& — Nzg') + 20.N& + 26,N7}].
Let
g(E, A) = [¢(E A) — ¢(gE, gAg™)]
-(det (4))"" " exp [—tr (A + Naz' + Nyj')]
=h(%, 7, Ar, A1) + tho(Z, 7, Ar, A1),
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where h; , he are respectively the real and imaginary parts of g. Now from (3.2)
we obtain,

(3.3) [ hi(%, §, Ar, Ar) exp [tr 8{(4r + NiZ + Ngj)
+ #(Ar + Ngi' — Nig') + 20:NzZ + 20,Nj'})dArdA;dEdj = O,
ji=12.

For each j, this is the Laplace transform of h; with respect to the variables
Ar + Niz' + Ngj, A, + Ng& — Nzj', Nz and N§. Since this is zero, we get
hi = 0, (j = 1, 2), except fora set of measure zero. Hence (%, 4) = ¢ (g, gAg™),
geG a.e., ie. ¢ is almost invariant under G. It may be checked that a right
invariant measure in G is dg/[det (gg*)]*"*. Hence from Lehmann (1959), p. 226,
¢ is invariant under G.

4. Likelihood ratio test of Hy, against H,. On the basis of &, ---, &v the
likelihood ratio for testing Ho. against H, is
N = maxgy, p(ér, -+, &v)/maxg, p(&, -+, &)
= maxs,,—0 (det (2))™ exp [—tr T74]/max (det(Z))™" exp [—tr Z'4]
= [(An — ApdnAL)/Au]" (By Theorem 2.1),
= (1 — R,

where R = ApAss Aly/An . Hence the likelihood ratio test of He, against H, ,
at significance level By, is defined by the critical region R, = %, where k is a
constant and is chosen so that the probability of R,* = & under the null hypothesis
is equal to 8. It is clear that the transformations (e, 2, £, A) — (a + ¢, 2,
£+ ¢, A), with ¢ a complex number, leave this problem invariant. The action of
these transformations is to reduce the problem to that where & = 0 (known)
and A = > ¥, £¢&” is sufficient, where N has been reduced by one from what it
was originally. We therefore treat this latter formulation and consideré; , - - -, &y
to have zero mean.

Let Gy be the group of p X p nonsingular complex matrices whose first column
and first row contain only zeroes except for the first element. It is easily seen
that this group, operating as (4, =) — (gdg*, g=¢%), leaves the problem in-
variant and a maximal invariant in the space of 4 under G; is R.’. From Goodman
(1963), the probability density function of R, under H, is given by

(41) p(R}) = {T(N — 1)/T(p — 1)T(N — p)}(1 — ¥
(REHL = ROVPTF(N — 1, N —1;p — 1; RYY);

where F(,;;) denotes the hypergeometric series.

The development now parallels that of Section 3. Proceeding along the same
line and using (4.1), we may get the following:

THEOREM 4.1. The test based on R, is uniformly most powerful invariant for
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testing Ho, against He among the class of level By tests, which are invariant with

respect lo G.
TaEOREM 4.2. Of all level By tests of Hoe against Ha with power function depend-
ing on p’, the test based on R, is uniformly most powerful.
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