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For ¢ = 1,---, k — 11let m;"” denote the largest integer <Ny, and let
m™ = N — m"™” — -+ — mi¥) . Define the point 2 by

N, N. : N. .
N =m™ +2 if a™z0, Na=m™ -1 if ' <0,

fori <k — landa™ =1— 2" — ... — 2" . Then
(A.11) |2 — 4| < 2k/N, i=1 -k
Since y™ e Q. , 2™ is in Qe for N > N; = N, . Moreover,
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Hence for N > N,

f(z(N)) — Cn

Y

N7 e + oV
= N maxq | (™) — £/ ™) + o).

Condition (A.10) implies that for N large enough we have f(z™) > cy, that
is, 2V e Ay .
Thus the conditions of Lemma A.1 are satisfied. The proof is complete.
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DISCUSSION OF HOEFFDING’S PAPER

Jerzy NEyMman': Professor Hoeffding is to be heartily congratulated on his
very interesting paper. His results as explicitly formulated are important enough.
It 4s important to know that out of the several tests of the same hypothesis, the
tests whose certain asymptotic properties are identical and which, therefore, were
considered equivalent, one particular test has an asymptotic property, not pre-
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viously considered, that makes it superior to other tests. However, Professor
Hoeffding’s paper goes further than merely proving the superiority of a particular
test. In fact, it is my expectation that Professor Hoeffding’s paper is the first
section of a new and a very important chapter in the theory of statistics.

As is frequently the case in the history of research, Professor Hoeffding’s
present success is due to his seizing upon, and to his making an effective use of, a
novel tool, the theory of “large deviations”. For some time a few statisticians
have been aware of the ‘“probabilities of large deviations”, particularly of the
pioneer work of Harald Cramér [2] and of its extension by Feller [4]. In fact, these
results have already been used in a limited way by Herman Chernoff [1] and a
little earlier by Charles M. Stein ([1], p. 18). However, the favorite tools in the
study of asymptotic properties of tests and of estimtaes remained the various
versions of the classical central limit theorem.

The importance of the present paper of Professor Hoeffding is not limited to the
utilization of the novel tool. Even more important is his initiative to abandon or,
perhaps, to extend the device, which I may call the device of alternatives in-
finitely close to the hypotheses tested, as a tool in deducing optimal asymptotic
tests. This device has a respectable history and I, personally, have an emotional
attachment to it. Yet, Professor Hoeffding’s paper clearly indicates that the po-
tential of the device of infinitely close alternatives as means of deducing optimal
tests is already spent and that it should be replaced by some other more effective
device and “probabilities of large deviations” [5] seems an excellent promise.

My own first use of the device of infinitely close alternatives was made in
1936 when I attempted to formulate the problem of an optimal asymptotic test
[6]. This was done with reference to a particular simple hypothesis relating to a
sequence of independent and identically distributed random variables. “Opti-
mality”’ was understood as the property of maximizing the power function of the
test and here I encountered a difficulty that appeared staggering. If one keeps
the level of significance (or, at least its limit) constant and considers the power
function with respect to a fixed alternative, with the increase of the number n of
observations this power function would tend to unity, except for such tests as
no one would consider decent. The device I adopted consisted in considering a
sequence {h,} of hypotheses alternative to the one tested which, as n — <, ap-
proached the hypotheses tested. The corresponding power function of any given
test criterion may then tend to a limit and the value of this limit was taken as a
criterion of optimality.

To my knowledge, the next use of the same device is due to Churchill Eisenhart
[3] who applied it to the deduction of the asymptotic power of Karl Pearson’s
X" test.

Subsequently, the same device was used by a number of other authors. One of
the most fruitful uses is due to E. J. G. Pitman who introduced the concept of
the relative asymptotic efficiency of tests. As is well known, Pitman’s idea re-
sulted in a series of important studies, particularly of non-parametric tests,
whose mere enumeration would take more space than the present article.
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While the early idea of optimality of an asymptotic test worked for simple
hypotheses, its extension to composite hypotheses required a new effort to pro-
duce a computable family of critical regions similar to the sample space, at least
asymptotically. In a preliminary fashion this was done in 1954 [7] and the theory
of locally asymptotically most powerful tests of composite hypotheses [8] ap-
peared a few years later.

The usefulness of this method is felt when dealing with ““live”” problems of ap-
plied character, where as a rule the observable random variables, perhaps vectors,
have non-standard distributions. If a test of some hypothesis is required, and
invariably this would be a composite hypothesis, such test had to be based on a
guess or, alternatively, one could use the test deduced to have at least the local
asymptotic optimality property, even though the latter is limited to a special
family. This special family of comparison tests is determined by convenience in
applying the classical central limit theorem.

While the device of infinitely close alternatives worked in the above fashion in
a number of cases with which I had to deal, a recent experience showed its lack
of sharpness and here Professor Hoeffding’s paper serves as an indication of
where to look for an alternative method.

In a paper, joint with Professor Elizabeth L. Scott, now submitted for publi-
cation, we used the device of infinitely close alternatives to treat a fairly complex
situation of randomized experiments. One randomization considered was ‘“unre-
stricted”: for each of a sequence {U,} of experimental units (e.g. patients in a
clinic) a coin is tossed to decide whether or not this particular unit be subject to
a treatment. The other randomization scheme considered consisted in randomiz-
ing successive pairs of experimental units. A coin is tossed only for each “odd”
unit Ug—y , for & = 1, 2, - - - . If the coin falls heads, Ug-; is subjected to the
treatment but Uy is not, etc. For both these randomization schemes the locally
asymptotically optimal test of class C(a) was deduced. Also, we found the
asymptotic powers of these tests and then asked the question: Suppose that the
same number 2n of experimental units, with identical distributions of the rele-
vant observable variables, are used in a randomized experiment alternatively
with unrestricted randomization and with randomization of pairs; how would
the corresponding asymptotic power functions differ? Naturally, we expected
that the asymptotic power corresponding to randomization of pairs would exceed
that corresponding to the unrestricted randomization. To our surprise and regret
we found this not to be the case: the asymptotic power functions corresponding
to the two cases proved identical! Further ‘analysis of the two test criteria, say
Zy(n) for unrestricted randomization and Z,(n) for randomization of pairs, an
analysis divorced from infinitely close alternatives and referring to a somewhat
simplified situation, showed the following. For a fixed alternative, both criteria
are asymptotically normal with the same means, say £+/n. However, the asymp-
totic variances of the criteria, o,* and oy’, differ. Namely

0'12=0'22+£2y
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so that the randomization of pairs appears more effective than the unrestricted
randomization, as expected. The above finding indicates the mechanism behind
the apparent paradox of the asymptotic power functions of the two criteria being
identical. These two power functions were obtained through the device of infi-
nitely close alternatives, that is through the passage to the limit as # — o in
which ¢ does not remain constant but diminishes O(n*). Under these circum-
stances the difference between o;” and o,” is of the order of 1/n and in the limit
disappears. This is, then, another instance, parallel to that indicated by Pro-
fessor Hoeffding, indicating that the device of infinitely close alternatives, while
having the advantage of being easy to use, has the disadvantage of being not
sufficiently sharp to catch the distinctions that may be important.

The next step, foreshadowed by the important paper of Professor Hoeffding,
is now to devise a method of using the probabilities of large deviations for a
workable deduction of asymptotic tests of composite hypotheses that are, in a
well defined sense, optimal for a fixed alternative. Another outstanding problem
suggested by Professor Hoeffding’s paper is to re-examine the many recent results
indicating the asymptotic equivalence of various tests. When the method of
infinitely close alternatives indicates that a test T, is relatively more efficient
than another test T, this result appears to be worthy of being taken at its face
value. However, when the asymptotic relative efficiency of T compared to T, is
found to be unity, there is room for doubt as to what this may mean for any fixed
alternative, even if the number of observations is large.

Each deviation from the old routine of thought opens new possibilities, fre-
quently in some unanticipated directions. It is possible, therefore, that Professor
Hoeffding’s approach will open the way for the asymptotic treatment of a prob-
lem for which I was not able to deduce a fixed sample optimal test and for which
the method of infinitely close alternatives did not prove effective. Briefly, the
problem is as follows.

Consider two normal populations II; and II, with underlying distributions
N(& , o). Let S, represent a sample of n; independent observations on II; , with
i = 1,2 Here &, &, o', o° are unknown numbers, except that the parameter
point (&, o1°) is likely to be rather different from (&, o»2). (This presumption is
one of the obstacles to the use of the “old” asymptotic approach.) Let z stand
for (n1 4+ ma 4 1)st observation of which it is only known that its distribution is
either N(& , o1°) or N (& , 05°), but nothing else.

The problem is a classification problem. It is required to find an optimal rule
to decide whether z belongs to II; or I, .'I tried the following fixed sample size
approach. Let X stand for the totality of the observable variables (S;, S;, z)
and ¥ for the corresponding sample space. Further, let ¥; and ¥, = ¥ — ¥; be
measurable subsets of X. The decision rule will be to assert z belongs to II; if
X & %, . The conditions to which I tried to subject ¥; and ¥, are as follows:

(i) Symmetry of errors of misclassification.

PiXeXy|welly} = P{X e% | xeTly

(1) =1—PXe¥|zelly
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or
(2) UP{ X e¥|zell} + P X eXy|xell)] = 3

for all & , &, o1” and o,". This symmetry condition, in Formula (2) is, in effect,
the condition that the subset X, be similar to the sample space ¥ with respect to
the density corresponding to the left hand side of (2), with unspecified param-
eters & , & , o1 and oo’, and of “‘size” one-half.
Let ® denote the family of all subsets X, satisfying the symmetry condition.
(ii) Optimality condition. In order that X" e & be called optimal, it must
satisfy the condition

(3) PiXeX |well) = P{X e¥|xelly)

for all X, ¢ &.

My specific question is: can one think of a plausible rewording of the above
fixed sample size problem so it could be treated asymptotically from the point of
view that Professor Hoeffding was so successful in initiating?

Naturally, there is nothing sacred in the assumption of normality of the two
populations II; and II, . It is the similarity of the subset ¥, indicated in (2) that
is important.
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HermaN CHERNOFF: Professor Hoeffding has contributed a remarkably fresh
insight into the applicability of the theory of the probability of large deviations
to hypothesis testing. Using a single crude approximation, powerful conclusions
are simply derived for the multinomial distribution. This approach promises
to extend to other families of distributions. I shall take the liberty of paraphrasing
the Hoeffding development, and by dropping details required for rigor, try to
expose the simple underlying approach.

The function I(zx, p) is a special case of the Kullback Leibler Information
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number and some slight additional insight may be gained by keeping this in
mind. In general, consider the problem of testing a simple hypothesis H;:f = f;(z)
versus a simple alternative Hy:f(x) = f.(x) on the basis of N independent ob-
servations X3, X5, -+, X, , with density f(z), with respect to a measure u. If
w; and w, are a prior: probabilities for H; and H, the a posteriori probabilities
w* and w,™ satisfy

w* - w [TR(X) w
where Sy = 2 log [fi(X:)/fo(X:)]. If H, is true Sy is approximately NI(f; , f2)
where

I(fi, f2) = [ fi(z) log [fi(z)/fo(2)] du(z)

is the natural generalization of the formula used in the multinomial case. Thus I
measures the exponential rate at which w," — 0 when f = f; . That is to say I is a
measure of the ability to discriminate against f, when f; is the true density and
hence I may be regarded as an asymmetric measure of distance between f; and f; .

That I is asymmetric is easy to see but the example of p° = (1, 0) and p' =
(.9, .1) is informative. Here I (p°, p') < o while I(p', p”) = . The statistical
explanation for this case is the following. If p' is the true distribution, a finite
number of observations will yield an observation in the second cell completely
disproving p°. If p” is the true distribution, the fact that no observations occur in
the second cell will build up evidence against p' in a more gradual fashion. In
general points on the boundary of the p simplex are infinitely far from interior
points but not vice versa.

Keeping this distance interpretation in mind the results described by Hoeffding
flow from the crude probabilistic approximation

P{Z(N) e A |p} = exp {—NI(A(N), p) + 0 (log N)}

where I(A™, p) is the shortest distance from A" to p, and the analytic proper-
ties of I. Disregarding fine details such as the remainder term and the distinction
between A and A, the above approximation states that the probability of
falling in A when p° is the true probability is not substantially increased by
adjoining to A all points which are at least as distant to p° as I(4, p’). Sta-
tistically speaking, the size ay of the test “reject Ho:p = p’ when Z ¢ A7
is not much increased by increasing the critical region to reject when I(Z“, p")
> I(A, p°). The latter test is at least as powerful since its critical region contains
more points. Furthermore the latter test is simply the likelihood-ratio test. The
ratio in the power functions of the two tests for an alternative p > p° is deter-
mined by dy the difference in distances to p from the two acceptance regions.

While this reasoning combined with an analytic study of I(z, p°), z € A4, for the
chi-square test represents a heuristic outline of the proof of Hoeffding’s result it
requires care and modification to be done rigorously. Unfortunately the basic
approximation does not seem refined enough to prove the conjecture that the
L.R. test is more powerful than the x* test when ay — 0 slowly.
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An obvious generalization that suggests itself but is not explicitly mentioned
in the paper is the efficiency of the likelihood ratio test for composite hypotheses
versus composite hypotheses. For testing Ho:p € Ay vs. Hi:p € Ay, the likelihood
ratio test consists of rejecting H, when

I(ZV, o) — I(Z", Ay) = c.

A suggestion that a theory of large deviations could be fruitful for the dis-
crimination problem posed by Neyman in his discussion may derive from the
following remark concerning a much simpler problem. It is desired to find a
linear function of an observation X to discriminate between the two specified
alternatives. Normal multivariate populations 9U(% , Zo), 9(%& , Z1). The linear
function ¢’X has the alternative normal distribution 9U(y, , oo’) and 9(u; , o1°)
where u; = d't;, 0 = aZa ,i=1,2.

Since a normally distributed variable with a small variance may be regarded
as the average of many observations, the theory of large deviations for sums of
random variables may be applied if |& — & is “large” compared to Z, and Z; .
From this theory it follows that if one desires to minimize the sum of the two
error probabilities, then a should be selected to minimize |u; — ol /o1 + o0 .

Finally the problem of further generalization is of interest. What is the natural
extension of the basic approximation to problems other than those involving the
multinomial distribution? For what families of distributions classified by a
parameter 6, can we write an expression of the form

P{be A} ~ exp {—NI(4, 0) + O (log N)}

where 6 is an estimate of 6, and I is either the Kullback-Liebler Information or
some other appropriate measure of distance?

D. G. CuapmaN: For many tests knowledge of the asymptotic distribution of
the test statistic when the null hypothesis is true has served as a useful practical
tool in application but for such tests study of the power is difficult. For if the se-
quence of tests is consistent for fixed alternatives and fixed test size, the asymp-
totic power of the sequence is one. As Hoeffding points out, to obtain a meaning-
ful comparison it is customary to consider either a sequence of alternatives tend-
ing to the null hypothesis or a sequence of tests of size tending to zero. The
former approach leads to Pitman’s asymptotic relative efficiency which has opera-
tional meaning but unfortunately primarily for alternatives ‘“close” to the null
hypothesis and these may not be of practical importance. The alternative ap-
proach has however been limited by an inadequtae theory of probabilities of
large deviations. In the absence of such a theory, Bahadur’s stochastic compari-
son of tests [2] may be thought of as representing an approximation to this
method. While Bahadur’s “asymptotic slope” yields a ‘“‘functional on the family
of power functions associated with the sequence of statistics” which may be
easily evaluated for alternatives of interest, it is not clear what operational
meaning this functional has, though some useful properties were noted by
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Bahadur. It is therefore of interest to ask what relationship Bahadur’s stochastic
comparison has to the results obtained by Hoeffding based on the exact study of
the probability of large deviations.

For simplicity we consider only the case of the simple hypothesis of the form
pL= Py, Px = Di- It is straight forward to verify that

7.0 = [Xia (e — Np)Y/Npd 1.7 = 2 i nslog (ne/Nps)J
are standard sequences as defined by Bahadur with ¢ = 1 in both cases and

B @) = 2t (ps — )/ BP0 = 2 2iapilog (pi/pd).

The stochastic comparison of the x* test based on the statistic [T,™]* and the
likelihood test based on [T,®J* reduces to a comparison of [b® (p)]* and [p® (p)]™
It is easily seen that we may have inequality in either direction. For example,
for py = 1, p; = 0,7 > 0, it is observed that BT = P (p)T according as
p’ S 0.2847.

Slightly more generally if p° = 1/k, p: = (1/k) + 6:, where D 5y 8: = 0,

B @) = 2iasl  BP@F =2 2ial(1/k) + 8] log (1 + k8.).

If the latter function is expanded in a Taylor series retaining the first three terms,
it follows that to this approximation

e () = B (p) — i [(K8)/3] + 2ia [(K'8:4)/12],

The sum of the last two terms may be either negative or positive. It appears
therefore that there is little, if any, relationship between the general results
proven by Hoeffding for multinomial tests and the stochastic comparison ap-
proach. v

It should be noted that the stochastic comparison of tests was anticipated by
Anderson and Goodman [1] and applied to comparison of the likelihood ratio
test to a x” test, specifically dealing with Markov chains.
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