SOME BOUNDS FOR EXPECTED VALUES OF ORDER STATISTICS
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1. Summary. Let the function F(z) be a distribution function for a con-
tinuous symmetric distribution, and let X(; represent the sth order statistics
from a sample of size n. It is shown in this paper that for 2 = (n + 1)/2

E(Xw) 2 G(#/(n+ 1)) if F is unimodal
and
E(Xw) £ G@E/(n+ 1)) if F is U-shaped,

where x = G(u) is the inverse function of #(x) = u. The definitions of unimodal
and U-shaped distributions are given in Section 3.

The above inequalities are of interest, since it is known (Blom (1958), Chapters
5and 6) that for sufficiently large n the bound G(¢/(n + 1)) approaches E(X ;).

2. Introduction. Studies of bounds for E(X () in terms of ¢ and » have ap-
peared in the literature, for instance, Plackett (1947), Moriguti (1951, 1953)
and Hartley and David (1954). Blom (1958) has remarked that if G(u) is con-
vex and continuous then by Jensen’s inequality E(X) = G(7/(n + 1)). An
example is provided by the negative exponential distribution. If, however, G(u)
is concave and continuous then E(X«)) < G(7/(n + 1)). An example of this
case is the distribution with probability density function [(m -+ 1)/a]-
[+ (z/a)]",0 < m =1, —a = z < 0. For the rectangular distribution, G(u)
is both convex and concave and we have E(X;) = G(z/(n + 1)).

3. The bounds.
DeriniTioNs. Following Gnedenko and Kolmogorov (1949, p. 157), F is de-

fined to be unimodal if there exists at least one real number ¢ such that F(z) is
convex for < ¢ and concave for z > ¢. On the basis of this definition we general-
ize somewhat the concept of U-shaped distribution (Kendall and Stuart, 1958,
p. 10). F is defined to be U-shaped if there exists at least one real number ¢ such
that F(z) is concave for z < ¢ and convex for z > c.

The convexity and concavity properties in the above definitions are under-
stood to be restricted to the range of the distribution which may be a finite, semi-
finite or infinite interval. Furthermore, if F () is strictly increasing over the range
of the distribution, the definition of a unimodal [U-shaped] distribution is equiva-
lent to the following: F is unimodal [U-shaped] if there exists at least one real
number ¢ such that G(u) is concave [convex] for + < ¢ and convex [concave] for
x > c. This is because, for example, for any ; < ¢, 22 < cand 0 £ a < 1,
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aF (z) + (1 — a)F(z:) 2 F(ax, + (1 — a)x) if and only if G(aF(2:)
+ (1 — a)F(x2)) = axy + (1 — a)xs.

Tae RESULT. Let F(z) be symmetric, continuous and strictly increasing. Then
fori = (n'+1)/2,

(A) E(Xw) 2 G@E/(n + 1)) if F 1is unimodal.

Proor. Without loss of generality we let G(3) = 0. Forz = (n + 1)/2, it is
trivial that the equality in (A) holds. Hence we assume that ¢ > (n + 1)/2. Let
h(u) = n(23)u"(1 — w)"". Then we have

E(Xw) = [3Gu)h(u) du.
Alsolet C; = [} [h(u) — h(1 — u)] du. By straightforward calculations it can be
seen that [A(u) — A(1 — u)] > Ofor 3 < u < land that 0 < C; < 1.

The conditions imposed on F(z) imply that G(%) is continuous and convex for
% = u = 1. Hence by Jensen’s inequality (Natanson, 1957, p. 46) we have

E(X@)/Ci = [3G(u){lh(u) — h(1 — )]/C4} du
= G(f}wflh(u) — h(1 — w)]/Ci} du).

But [juflh(u) — k(1 — w)]/Cs} du = § + (1/C:){[i/(n + 1)] — 3}. Then we
have
E(Xw) 2 CG{5 + (1/C)HI(H/(n + 1)) — 31}
CG{3 + (1/CHGE/ (n+ 1)) — 31} + (1 = Co)G(3) 2 Gl/(n + 1)]
since G(u) is convex for $ < w < 1l and G(%) = 0.

Similar considerations show that for 7 = (n + 1)/2

(A" E(Xw) < G(t/(n+ 1)) if F is U-shaped.

By symmetry we of course have, for 1 < (n + 1)/2, E(Xw) < G(i/(n + 1))
if F is unimodal and E(X ) = G(i/(n + 1)) if F is U-shaped.

ExamprLEs. The normal, the logistic, the Student, the Laplace and the Cauchy
distributions satisfy (A). For the distribution with probability density function

{P(m + $)/[arPT(m + D1 — (&°/a”))", —a=z=a,

(A) is satisfied if m = 0 while (A") is satisfied when —1 < m < 0. When m = 0,
both (A) and (A’) must be satisfied so that (X)) = G@G/(n + 1)). Actually
in this case the distribution is the uniform distribution.
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