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1. Introduction. For certain distributions the sample midrange, as a measure
of central tendency, is preferable to the sample mean. This holds, for example,
for the rectangular distribution. Rider [2] has shown other distributions where
the midrange is more efficient than the range. One of the authors [1] derived the
asymptotic distribution of the midrange for initial symmetrical distributions of
the exponential type. This asymptotic distribution is unlimited, differentiable,
symmetrical and unimodal. In the following, we will prove that this holds for
any sample size, provided that the initial distribution is unlimited, differentiable,
symmetrical and unimodal.

The usefulness of the midrange is confined to symmetrical distributions. A
distribution is called symmetrical about a value M/2 if

(11) fi(M —=)/2] = fl(M +x)/2], FI(M —=)/2] =1 — F(M + z)/2]

where F(x) and f(xz) are the probability and density functions of the initial

distribution.
For a sample of size n (n = 2), ordered in increasing magnitudes, z; < z, <
«++ Tp_1 £ T, we define the sample range w and the sample midrange v by

(1.2) W= Tp — T1; v=2, + 2.

Some authors use, instead, (x; 4+ x,)/2. The constant factor, %, is here omitted for
reasons of analytical simplicity, but does not affect the results to follow. The
density function 4,(») of the midrange is

ha(v) = (n(n — 1)/2) [5 fl(v — w)/2]

1.3
(1) [Fl(v + w)/2] — Fl(v — w)/2]"f[(v + w)/2] dw.
From (1.1) it follows that
(1.4) halM + v) = ho( M — v).

If the initial distribution is symmetrical about a value M /2, the distribution
of the midrange is symmetrical about M, which is evident.

2. Theorem. If the initial distribution is unlimited, differentiable, symmetrieal
and unimodal, the distribution of the midrange is also unlimited, differentiable,
symmetrical and unimodal.

For the proof, we consider first the case n > 2. Differentiation of the density
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function (1.3) of the midrange leads to
4h,' (v)/n(n — 1)
= [2£/1(v 4+ w)/2(Fl(v + w)/2] — Fl(v — w)/2}" (v — w)/2] dw
4 (n—2) [251(v + w)/2(Fl(v + w)/2] — Fl(v — w)/2}}"™
Afl(w 4 w)/2] = fl(v — w)/21(v — w)/2] du
+ 2510 + w)/24Fl(v + w)/2) — Fl(v — w)/2" £ (v — w)/2] dw

where f," = 9f/dv and fo. = 9f/dw. The partial derivatives of the density func-
tions are linked by three relations which result from the symmetry,

(2.1) £/1(v 4+ w)/2] = f/[(v + w)/2]
(2.2) £ — w)/2) = =fa[(v = w)/2]
(2.3) FUM + w) /2] = —£ (M — w)/2].

Substituting ¥ = M in the expression of k. (v), we see that the first and third
terms are equal in magnitude but opposite in sign by virtue of (2.3). The second
term vanishes due to symmetry. Thus, the distribution of the midrange has a
mode at v = M. We now show that, for every value of v > M, k' (v) < 0.
Suppose ¢’ is a value of » > M. Since the initial distribution is unimodal and
w > 0 we have f[(v/ + w)/2] — flw — w)/2] < 0, so that the second term of
4h,' (v)/n(n — 1) at v = v is always negative. We now show that the sum of
the first and the third terms is also negative at v = v'. At v = ¢', the sum of the
first and the third terms is given by

[2 1100 + w)/2HFIW + w)/2] — FIG — w)/2" 70" — w)/2] dw

F A6+ w)/2(FI + w)/2) — FI& — w)/2
S — w)/2] dw

(2.4) = [P0 + w)/2HFIW + w)/2) — FIO — w)/2"

S = w)/2]dw

— PG+ w)/2UFI + w)/2) = FI — w2
£ 10 = w)/2] dw

=I5, —I1 (say),

where we have used (2.1) and (2.2).
Now,

I = [S{FIW + w)/2] — FI& — w)/2}" A0 — w)/2)f. [0 + w)/2] dw
— —(n—2) [${FI( + w)/2] — FI(' — w)/2}"
AW+ w)/2] + AIG — w) /2B — w) /2 + w)/2] dw
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+ [ {FI + w)/2] — FI(v" — w) /21", [0 — w) /211" + w)/2] dw
= —(n—2) [T{FI(W + w)/2] — FI(s' — w)/2}"°
AL+ w)/2) + (" — w) /2B — w) /20" + w)/2]dw + I,.
Hence,
L—TI=—(n—2) [¢{FI(v+ w)/2] — F[' — w)/2)}"™
A"+ w)/2) 4+ A1 — w) /2B — w) /20 + w)/2] dw.

The right hand side of (2.5) is always negative for n > 2. Thus &,’(+") < 0 for
»' > M. Hence there cannot be any mode to the right of M for n > 2. By sym-
metry there cannot be any mode at the left of M/ which proves that the distribu-
tion of the midrange is unimodal for n > 2. We now cons1der the case n = 2.
Then the density function of the midrange is

(2.6) ha(v) = [ fl(v + w)/2f[(v — w)/2] dw
whence
2k (v) = [ £,/ [(v + w)/2)f[(v — w)/2] dw~+ [7 fl(v + w)/21f, [(v — w) /2] dw.

Substituting v = M in (2.6) and applying (2.3), we obtain hy (M) = 0 which
proves that the distribution has a mode at v = M. If the distribution possesses
a second mode then there exists a value of v, say, »’ such that hy'(v') > 0.
Hence,

2h' (') = [5 £ 100" + w)/2f[(v" — w)/2] dw
+ [T+ w) /28,10 — w)/2] dw
= [T 110" + w)/2f(v — w)/2] dw
— [T+ w) /20100 — w)/2] dw > 0.

(2.5)

Integrating by parts, we obtain

2k’ (v') = —2f'(v'/2) > 0
which is impossible. Hence there cannot be any other mode of the distribution
of midrange for n = 2 and the proof is complete for all values of n.

REFERENCES

[1] GumBEL, E. J. (1944). Ranges and midranges. Ann. Math. Statist. 156 414-422.
[2] RipER, P. R. (1957). The midrange of a sample as an estimator of the population mid-
range. J. Amer. Statist. Assoc. b2 537-542.



