BERNARD FRIEDMAN’S URN'

By Davip A. FREEDMAN
University of California, Berkeley

1. Introduction. Bernard TFriedman (1949) proposed this urn model. An
urn contains W, white balls and B, black balls at time n. One ball is drawn at
random and then replaced, while « balls of the same color as the ball drawn and
8 balls of the opposite color are added to the urn. Friedman obtained elegant and
almost explicit expressions for the generating functions of the W, . This paper
describes the asymptotic behavior of W, , as n becomes large, under the con-
ditions @ = 0, 8 = 0. It does not seem possible to obtain these results from his.
Many of them were announced in (Freedman, 1963).

Acknowledgment. I would like to thank Professor David Blackwell for help
which borders on collaboration.

Summary. The case 8 = 0 is the famous P6lya (1931) Urn; a discussion of its
elementary properties can be found in (Feller, 1960, Chapter IV) and (Fréchet,
1943). These facts about the Pélya Urn are a classical part of the oral tradition,
although some have yet to appear in print (see Blackwell and Kendall, 1964).
The fractions (W, + B,) W, converge with probability 1 to a limiting random
variable Z, which has a beta distribution with parameters Wo/a, Bo/a. Given Z,
the successive differences W,.1 — W, :n = 0 are conditionally independent and
identically distributed, being a with probability Z and 0 with probability 1 — Z.
Proofs are in Section 2.

If 8 > 0, the situation is radically different. No matter how large « is in com-
parison with g, the fractions (W, + B,)"'W, converge to % with probability 1.
This seemingly paradoxical result can be sharpened in several ways. Abbreviate
p for (a + 8)7'(a — B). If p > 1, it is proved in Section 3 that (W, + B,)™*-
(W, — B,) converges with probability 1 to a nondegenerate limiting random
variable. This result in turn fails for p < 1. If 0 < p = %, the sequence
(W, + B,)""(W, — B,) has plus infinity for superior limit and minus infinity
for inferior limit, with probability 1. If p < 0, the sequence (W, — B,) has plus
anfinity for superior limit and minus infinity for inferior limit, with probability 1.
In both cases, the tail o-field of (W, , B,) :n = 0is trivial.

If p < 1,1t is proved in Section 5 that the distribution of n (W, — B,) con-
verges to normal with mean 0 and variance (a0 — 8)/(1 — 2p). When p = %,
the last fraction is not defined; but the distribution of (n log n) (W, — B,)
converges to normal with mean 0 and variance (o — 8)%. The asymptotic nor-
mality of W,, — B, for p < % was observed by Bernstein (1940). I am grateful to
J. A. McFadden for calling this paper to my attention.
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Consider taking o = 0 and 8 = 1, s0 p < 0. Since (W, 4+ B,) W, converges
to %, therefore W, — B, is asymptotically like the sum of n independent random
variables, each equal to 41 with probability 1 and —1 with probability %. It is
tempting to conclude that the distribution of n“%( W. — B,) converges to normal
with mean 0 and variance 1. From the preceding paragraph, however, the asymp-
totic variance is 3. There is an even more startling difference between the asymp-
totic behavior of (W, — B,): n = 0 and that of a coin-tossing game.
Let X,:n = 1 be independent and =1 with probability % each. Let
S, = X1+ - + X, Sijam = n'S;. Define S;, for 0 £ ¢ < 1 and nt not
integral by linear interpolation. By the celebrated Invariance Principle of
Donsker (1951), the law of {S;, :0 < ¢ = 1} converges in a strong way to the
law of a Brownian motion. However, for p < % suppose we define
Zitam =n " (W; —B;)and {Zn :0 St < 1} by linear interpolation. The law of
{Z:n :0 =t = 1} converges in the sense of the Invariance Principle to the law of a
process {Z;:0 =< t = 1}. Now Z; is normal with mean 0 and variance
(1 —2p)(a — B)% But {Z,:0 <t < 1}, though Gaussian, does not have inde-
pendent increments. On the other hand, { °Z, : 0 < ¢ < 1} is a nonhomogeneous
Brownian motion. If p = %, it is necessary to put Z;m» = (nlogn)*(W; — B,).
In the limit, Z, = #Z, , where Z, is normal with mean 0 and variance (a — 8)°.
These results were obtained independently by K. Ito and myself. Details will be
given in a future joint paper.

D. Ornstein has obtained this very intuitive proof that (W, + B,)” W, con-
verges to % with probability 1 for 8 > 0. Suppose first « > 6. If 0 < 2 = 1 and
Pllim sup (W, + B,)"'W, < 2] = 1, by an easy variation of the Strong Law,
with probability 1, in N trials there will be at most Nx + o(N) drawings of a
white ball; so at least N(1 — x) — o(N) drawings of black. Therefore, with
probability 1, lim sup (W, + B,) "B, is bounded above by

limy.e. {a[N2z 4 o(N)] + BIN(1 — z) — o(N)]}/N(a + B)

or (a + B)7'B + (o — B)z]. Starting with 2z = 1 and iterating,
Pllim sup (W, + B,)™" = 1] = 1 follows. Interchange white and black to com-
plete the proof for « > B. If a < 8, and Pllim sup (W, + B,)"'W, < 2] = 1,
then a similar argument shows P[limsup (W, + B,) "B, £ (a + 8)7"
(e + (B — a)x)] = 1. The argument proceeds as before, except both colors must
be considered simultaneously.

Notation. « and B8 are nonnegative real numbers (not necessarily natural).
Abbreviate

(1.1) 6 =oa— 0,
(1.2) o= a-+ 8,

so p = 8/0. The process (W, , B,) :n = 01is a Markov chain on the probability
triple (@, &, P) with pairs of nonnegative real numbers for states, (W,, By)
degenerate with W, + B, > 0, and the following stationary transition mecha-
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nism: from (j, k) move to (j + o, k + B) with probability j/(j+ k)
or to (j + 8, k + a) with probability k/(j + k). The process (Wa,B) i =0
is called a Friedman Urn with parameters o, 8. Abbreviate

(1.3) s = Wo + By

so W, = s + on; and

(1.4) w(j) = 1+ [58/(s + on)],
(1.5) . a(k) = E[(W. — B.)".

Let 5, be the o-field spanned by (W;, B;) :0 < j < n, and 5™ the o-field
spanned by (W;, B;) :j = n + 1. The tail o-field of (W,, B,) :n = 0 is
Us 5™, Plainly, it coincides with the o-field of events measurable on
Wayn — Wy in = 0 and invariant under finite permutations of them.

If z, and y, are real numbers for n = 0, then z,, ~ y, means lim,_., Tn/Yn = 1;
while 2, ~ y, means lim,..« 2,/y, exists, is finite, and not zero. z, = o(y,) means
limy»e @n/yn = 0; while z, = O(y,) means lim SUPn.w |Za|/|ya] < . As usual,
an empty sum is 0 and an empty product is 1. The end of a proof is marked
<>.

2. The Pélya Urn. This section is purely expository. We consider a Friedman
urn process (Wa , B.); n = 0 on the probability triple (2, §, P), with parameter
a > 0 and parameter 8 = 0. Abbreviate X, = W,.; — W, forn = 0.

Lemma 2.1. The process (W, + B,) ‘W, :n = 0 is a martingale, and converges
with probability 1 to a limiting random variable Z.

Proor. The first assertion is easy to verify directly. The second follows from
the first by appealing to the forward martingale convergence theorem ( Doob,
1953, Theorem 4.1(i), p. 319). <>

TueoreMm 2.1. The tail o-field of (W, , B,) :n = 0 is equivalent to the o-field
spanned by Z. Given this o-field, the X, :n = 0 are independent and identically
distributed, being o with probability Z and O with probability 1 — Z.

Proor. It is easy to check inductively that the X, :n = 0 are exchangeable.
This observation goes back to Pélya (1931). See also ( Fréchet, 1943) and
(Feller, 1960). If ¢ - - - ¢ are O or a, it follows that

(21) P(X; =¢,0 <j < klg™)

(o5 )
T\ W = Wo — D kg€l o [ Wars — Wi

forn 2 k — 1. As n tends to o, the left side of (2.1) converges to P(X; = ¢;,
0 <j < k|F™) with probability 1, by the backward martingale convergence
theorem (Doob, 1953, Theorem 4.2, p. 428). The right side of (2.1) converges
to

7771 — )T B
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with probability 1, by Lemma 2.1 and Stirling’s formula. In particular, if A4 is
measurable on a finite number of X,’s, then P(4 [ F*) is equal to a function
of Z with probability 1. By a routine argument, the last statement holds for
any A measurable on (W, , B,) :n 2 0; in particular, for any 4 ¢5®. <>

Pélya (1931, p. 150) proved that the distribution of (W, + B,)” W, con-
verges to beta with parameters Wy/a, By/a. This follows from Lemma 2.1 and
the next theorem.

THEOREM 2.2. The distribution of Z is beta with parameters Wy/a, By/a.

Proor. P(X; = &, 0 = j =< k) is E(Z"*"") by Theorem 2.1 and
ITs = (Wo + @) /(Wo + By + ) by the definition of the urn process. <>

Of course, P(W, — B, = W, — By for infinitely many = | Z) is 0 or 1 accord-
ingas Z # 3or Z = 3. Since P(Z = %) = 0, therefore P(W, — B, = W, — B,
for finitely many n) = 1. However, the expected number of n with W, — B, =
Wo — By is infinite. A related fact is: if 7 is the least n with X, # X,, then
P(r < ©) =1but E(7) < « ifand only if « < Woand & < B,.

Remark 2.1. The second part of Lemma 2.1 is: n7' Y73 X; converges with
probability 1. This holds for any £' exchangeable process, either by the Birkhoff
ergodic theorem (Doob, 1953, Theorem 2.1, p. 465), or by a direct martingale
argument (Logve, 1963, III, p. 400).

ReMark 2.2, Of course, Theorem 2.2 is a special case of de Finetti’s (1931)
theorem: if X, :n = 0is an exchangeable process of 0’s and 1’s, there is a random
variable Z such that, given Z, the X, :n = 0 are conditionally independent and
identically distributed, being equal to 1 with probability Z and 0 with proba-
bility 1 — Z. Conversely, however, Remark 2.1 and the technique used to prove
Theorem 2.2 give an immediate proof of de Finetti’s theorem. Almost the same
argument proves the generalization of de Finetti’s theorem for an exchangeable
process of random variables with finite range. An easy martingale passage to the
limit gives the theorem for random variables whose range is compact metric.
Standard functional analysis then gives the most general results known (Hewitt
and Savage, 1955). For a different treatment, see (Freedman, 1962). Of course,
de Finetti’s theorem for 0 — 1 valued processes is equivalent to the Hausdorff
moment problem.

Remark 2.3. Even the first part of Lemma 2.1 has a natural generalization.
To begin with, (W, + B,) "W, is P(X,11 = 1| Xy --- X,). If now X, :n = 0
is an arbitrary exchangeable process of 0’s and 1’s, with Z = limg. ') 00e X,
then P(Xn11=1|Xo -+ X,) = E(Z|X, --- X,) is clearly a martingale con-
verging to Z. More abstractly, if X,, :n = —1,0, 1, --- is a completely general
exchangeable process and & is a bounded, measurable function, then

Eh(Xpyi:iZ 1) [ Xo -+ Xa]l = EW(X_s:42 1) [ X -+ X,
is a martingale.

3. The case p > 1. Let (W,, B,): n
(2, &, P), with parameters « > 0 and 8

0 be a Friedman urn defined on

>
= 0. Throughout this section, unless
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specifically noted otherwise, we make the

AssumprioN. (a0 — B)/(a + B8) > 1.

This section is therefore a legitimate generalization of Section 2.

Lemma 3.1. For each nonnegative inleger k, limg..n *E[(W, — B,)¥ =
w(k), with0 < u(k) < . Ifk is even, then u(k) > 0.

Proor. The result is trivial for ¥ = 0, and u(0) = 1. An inductive proof will
be given for even k. Recall notations (1.1) to (1.5). Now

E{(Wai1 — Bp1)™ | 5,
= [Wa/(s+ ou)](Wa — B, + 8)"* + [B,/(s + on)|(W, — B, — 8)****
(8.1) = [Wa/(s + on)]D 5 (58 (W, — B,)*H
+ [Bo/(s + on)| 2 (K (—8) (W, — B,)¥
= a,(2K + 2)(W, — B,)*™"
+ Z;‘;l [(2122)5% + [(%ﬁf)/(s + an)]62j+l](Wn — Bn)2K+2—2f + 62K+2’
so
(32) (2K 4 2) = a,(2K + 2)a.(2K + 2) + b.(2K + 2),
with
(3.3) ba(2K + 2)
= 2 ICES + G/ (s + on)]8 el (2K + 2 — 2) + o™

Suppose the theorem is true for even k < 2K. Then 0 < b,(2K + 2) = O(2*™),
and by Lemma 6.4,

limy e 2, (2K -+ 2)H:'=0 a,(2K + 2)7!
= 202K + 2) + 2 70b;2K + 2)[[i o0 a0 (2K + 2)7,

which is positive and finite. By Lemma 6.3, [[rm0 a.(2K + 2) ~ n®*?? and
the theorem holds for k¥ = 2K + 2. By induction, it holds for even k.
Next,

(34) E{(Wn+l - Bn—H) Ign} = an(l>(Wn - Bn))
SO
(3.5) Topa(1) = an(1)z,(1) = xo(l)HLO a,(1).

Since []i—oa, (1) ~ n* by Lemma 6.3, the theorem holds when & = 1. The
proof for odd & can be completed by induction. <>

TaEOREM 3.1. If 0 < r < oo, then lim, . n "(W, — B,) = Z with probabilily
1 and in rth mean.

Proor. Define

(3.6) Zn = (W, — B)]i=0 a(1)™



BERNARD FRIEDMAN’S URN 961

Equation (3.4) implies Z,:n = 0 is a martingale. Lemma 3.1 implies
sup. E(Z,') < =, 50 Z, converges to a finite limit with probability 1 by (Doob,
1953, Theorem 4.1 (iii), p. 319). Since [[’=% a.(1) ~ 7” by Lemma 6.3,
limg,en (W, — B,) = Z exists and is finite with probability 1. Lemma 3.1
implies sup, n*E[(W, — B,)*] < « for each natural number k, makéng
n*(Wn. — B,)" :0 <n < « uniformly integrable for each finite, positive r. < >

CoroLLARY 3.1. With probability 1, if 8 > 0 then limy.e (W, + B,) "W, = &.

A related fact was observed by Professor Jerome Sacks. Let = be the least n
with Wy — Wy = Wiy — W,. If 8 > 0, for any o (the assumption p > 1 is
temporarily dropped), E(r) < .

CoroLLARY 3.2. For each nonnegative integer k, the kth moment of Z is u(k).

CoroLLARY 3.3. With positive probability, W, — B, = Wy — By for finitely
many n.

Of course, W, — B, = Wy — B, for infinitely many n with positive probability
implies P(Z = 0) > 0. We do not know whether the first statement, or even the
second, is true. In fact, we know almost nothing about the distribution of Z.
We do not know whether Z spans the tail o-field of (W, , B,) :n = 0; nor do we
have any information about the conditional distribution of (W, , B,) :n = 0
given Z. Equation (3.2) is, of course, useless for evaluating the even moments of
Z. More information can be obtained by choosing coefficients ¢, , so that
Do cun(W, — B,)*isa martingale. Similar remarks apply for odd moments.

Savkevitch (1940) proved that, for W, = By, the limiting distribution of
n *(W, — B,) is not normal. Combining this with Theorem 3.1: if W, = B,
then Z is symmetric about 0 but is not normal because E(Z*) < 3[E(Z*)].

4. The case p = 3. Let (W,, B,): n = 0 be a Friedman urn defined on
(, 5, P) with parameters o, 8 > 0. Throughout this section, unless specifically
noted otherwise, we make the

AssumpTION. (a — B)/(a + B) = 1.

We use notations (1.1) to (1.5).

LemMa 4.1. If Wo = By, then E[(W, — B,)™ "] = 0 for each natural num-
ber k. If Wy # By, then E[(W, — B,)*7"] ~ n"_*(log n)*7!, for each natural
number k.

Proor. If W, = By, then W, — B, has a symmetric distribution. This proves
the first claim. The second requires an induction. It is true for ¥ = 1 by Equa-
tion (3.5) and Lemma 6.3. Suppose it is true for 1 < k < K. The argument for
Equation (3.1) implies .

(41)  2an(2K + 1) = a.(2K + 1)2,(2K + 1) + b,(2K + 1),
with
(42) bu(2K+1) = D25 [5)8 + [/ (s 4+ on) 18z, (2K + 1 — 25).

By inductive assumption, b,(2K + 1) ~ n**(log n)*". Apply Lemma
6.5a. <>
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LemMma 4.2. For each nonnegative integer k,
limae ( log n) "E[(W. — B,)™] = u(2k)
18 finite, with u(0) = 1 and
(4.3) u(2k +2) = &1/ (k + 1] )u(2k).

Proor. This is trivial when & = 0. Suppose it true for 0 < k£ < K. It is then
true when k¥ = K + 1 by Equations (3.2), (3.3), and Lemma 6.5. <>

THEOREM 4.1. As n tends to o, the distribution of (n log n) (W, — B,)
converges to normal with mean 0 and variance (a — B)°.

Proor. The moments of a normal distribution determine it uniquely, as is
well known. Equation (4.3) implies /.c(2k) is the 2kth moment of a normal dis-
tribution with mean 0 and variance (a — 8)°. Lemma 4.1 implies E[(W,
B.)*7 = ol(n log n)*], while Lemma 4.2 implies E[(W, — B.)%*] ~ u
(2k)(n log n)*. Now use the moment convergence criterion of Fréchet and
Shohat (Loéve, 1963, Theorem C, p. 185).

TurorEM 4.2. If € > 0, then P{|W, — B.| = Olni(log n)"} = 1.

Proor. Consider the martingale Z, :n = 0 deﬁned by Equation (3.6). By
(Doob, 1953, Theorem 1.1 (iii), p. 295), Z%¥ :n = 0 is an expectation-increasing
martingale. Let

B; = [maxogns: [Za] 2 (log 30)*"].
By Kolmogorov’s inequality (Doob, 1953, Theorem 3.2, p. 314),
P(B:) = E(Z)/(log %i)"*™:.

In particular, P(B,i+1) = 0(:*¢) by Lemma 4.2.

Now [|Z,| = (log n)** for infinitely many n] D {W, — B, = O}(log n)"™]}.
And [|Z,| = (log n)** for infinitely many n] C [A for infinitely many jl,
where A; = [|Z,| = (log n)*** for some n with 27 < n < 2°"] C By If k& >
(2¢)7", then Y P(4,) < «, so P[A; for infinitely many j] = 0 by the Borel-
Cantelli lemma. <>

COROLLARY 4.1. With probability 1, limp.e (W, + B,) ‘W, = 4

TuEOREM 4.3. With probability 1,

lim SUppaew 7 H(Wa — B,) =
and
lim infpon (W, — B,) = —

Proor. When n increases by 1, there is a change of § in (W, — B,). Hence,
with Z, defined by (3.6),

|Zns1 = Zal S 8[1 + [Wa — Bul/(s + on)l/[]IP=0 ax(1)].

Now [} a,(1) ~ n’ and IWn — Ba| £ Wa+ B, = s+ on,s0ess.sup | Znt1 —
Z.| £ 0(n”*) = 0(1). By (Doob, 1953, Theorem 1 (iv), p. 320), Z, con-
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verges to a finite limit almost everywhere on [lim sup Z, < «]. Consequently,
(nlog n) (W, — B,) = o(Z,) converges to 0 almost everywhere on [lim sup Z,

< «],and
P(lim sup Z, < ©) = limeolimae P[|W, — B.| < e(n log ) =0

by Theorem 4.1. Similarly, P(lim inf Zn> —0) = 0. <>

Since W, — B, changes by & at each move, W, — B, occupies each of its
possible positions, namely (Wo — Bo) plus an integer times §, infinitely often
with probability 1. See Theorem 5.5 for further results. Thus n (W, — B.)
converges with probability 0 and (n log n)} (W, — B,) converges with proba-
bility 0.

Let I be a countable set, {p(4,7) : i &I, j & I} a stochastic matrix, {p(n;4,7) :
i1, j eI} the nth power of this matrix. Let I(n, i) = {j:jel, p(n;d,5) > 0}
Let % be the space of sequences of elements of I; define £, for n = 0 as the func-
tion on ¥ sending a sequence into its nth term. Let T map ¥ into itself so that
sn oT = En+l .

Let @™ be the o-field spanned by & : j = n; the tail o-field Q" of Xis N =0 a™
Plainly, 7 @ = @, For i ¢ I, let P; be the unique probability on (¥, Q@)
making {£& :n = 0} a Markov chain with initial state ¢ and stationary transi-
tion probabilities {p(7, 7) :s¢ 1, jeI}.

The state ¢ € I is called merging if two independent Markov chains with the
state space I, stationary transition mechanism p(-, -), and initial state ¢, meet
infinitely often with probability 1.

LEmma 4.3. Let the state i € I be merging. Suppose j and k are in I(n, 1) for some
n. Then two independent Markov chains with the state space I, stationary transition
mechanism p( -, - ), and initial states j and k respectively, meet infinitely often with
probabdlity 1.

Proor. Clear. <>

Lemma 4.4. Suppose i eI is merging, and j & I(n, ), k e I(n, ©), for some n.
Then P; = P on ™.

Proor. (After Doeblin, 1938.) Let {X, : n = 0} and {Y, :n 2 0} be inde-
pendent Markov chains with the state space I, stationary transition mechanism
p(-, +), and initial states j # k respectively. Let

X, = X, provided X, = Y, forl =m=n

= Y, otherwise.

Then {X, :n = 0} is distributed like {X, :n = 0};sofor A e @, by Lemma
4.3,
P;j(A) = Prob. {[X, :n = 0] ¢ A}
= Prob. {[X, :n = 0] ¢ A}
= Prob. {[YV, :n = 0] ¢ A}

P.(4). <>
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Lemma 4.5. If < & I ds merging, then P; takes only the values 0 and 1 on @,
Proow, Letj, e I(v,¢) and k, e I(v,7) for 1 < » < n. If A ¢ @, then
Pi(A|& =4,1Sv=n)=P;(TT"4) = P, (T "4)

P(A |t =k ,1 v <n),

I

Il

where the first and third equality result from the Markov property, and the
second is implied by Lemma 4.4. Under P, , the set A is independent of all sets
of the form [¢, = j,, 1 < » < n), so of all @"” sets, and in particular of itself. <>

LemMma 4.6. Let (W, , B,) :n = 0 and (W,*, B,*) :n = 0 be independent
Friedman urns on (2, §, P), with common parameters o = 38 > 0, and W, = W™,
By = By*. Then W, = W, for infinitely many n, with probability 1.

Proor. Let &, be the o-field spanned by W,, B;, W,*, B;*:1 = j < n
Z, = (W, — B,) — (W.,* — B,/ 1)< a.(1). By Equation (3.4), {Z.,
0 =< n < »} is a martingale. We claim that with probability 1:

d

, an
i

(4.4) lim SUPpow Zn = ©,
(4.5) liminf,.e Z, = — ®.

Suppose by way of contradiction that (4.4) fails. As in the proof of Theorem 4.3,
this entails: [(W, — By) — (W™ — B,™)] (nlog n)™* converges to 0 with posi-
tive probability. This contradicts Theorem 4.1. Since (W, — B,) — w.* — B,
changes by 0 or +46 as n increases by 1, the result follows. <>

TuEOREM 4.4. The tail o-field of (W, — B,) :n = 0 s trivial.

Proor. Apply Lemmas 4.5 and 4.6. <>

In particular, (W, — B,)(n log n)™* cannot converge in probability. However,
we do not have a guess as to the true asymptotic order of magnitude of W, — B, .

5. The case p < . Let (W, , B,):n = 0 be a Friedman urn on (@, ¥, P) with
parameters « = 0, 8 > 0. Throughout this section, unless specifically stated
otherwise, we make the

AssumpTION. (a0 — 8)/(a + B) < .

If p = 0, then W, = W, + nea; the only interest, therefore, is in p # 0.

The proofs of Lemmas 5.1, 5.2, and Theorems 5.1, 5.2, 5.3, 5.4, and Corollary
5.1 are omitted. They parallel the arguments for the corresponding results in
Section 4, appealing to Lemma 6.6 instead of Lemma 6.5. We use notations (1.1)
to (1.5).

LemMa 5.1. For natural number k: If Wo = By, then E[(W, — B,)"""] = 0.
If Wo 5 Bobut (s + 8) /o is a negative integer, then E[(W, — B,)*™'] = O(n*"™").
I J; Wo 5 By and (s + 8)/a is not a negative integer, then E[(W, — B,)*7'] ~
n +p——1‘

LemMma 5.2. For each nonnegative integer I,

limpaw 7 “E[(W, — Bo)™] = u(2k)
1s finite, with u(0) = 1 and

w(2k +2) = (1 — 20)7[1/(k + 1)]1(*57)u(2k).
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THEOREM 5.1. As n tends to «, the distribution of n (W, — B,) converges to
normal with mean 0 and variance (1 — 2p) " (a — B)".

TuEOREM 5.2. If € > 0, then P{|W, — B,| = O[n*(logn)‘]} = 1for0 < p < &.

CoroLLarY 5.1. With probability 1, lim,.. (W, + B,) ‘W, = 1 when
0<p<i.

We guess, but cannot prove, that

(5.1) P{lim sup,.. [(W. — B,)/(2n loglog n)}] = ¢} = 1
and
(5.2) P{lim inf,. [(W, — B,)/(2nloglogn)}] = —é} = 1,

where 6° = (1 — 2p) (a — B)’, for any p < L.
TaEOREM 5.3. If 0 < p < %, then

Pllim supsswn (W, — B,) = «]
= Plliminfy.en *(W, — B,) = — ] = 1.

THEOREM 5.4. If 0 < p < 3, the tail o-field of (W, , B,): n = 0 s travial.

LeEmMmaA 5.3. Let (2, §, P) be a probability triple, @, :n = 0 a nondecreasing
sequence of sub-o-fields of F, A, € @, for n = 0. The set of w € Q@ which are members
of an infinite number of the A,’s differs by a P-null set from the set where
> P(An| Q) diverges.

Proor. This is an obvious modification of Levy’s conditional form of the
Borel-Cantelli lemmas (Doob, 1953, Corollary 2, p. 324). <>

THEOREM 5.5. If0 < p =< %, then
P{lim inf,.. [|[W, — B,|/(2n log log n)}] = a — 8} = 1.

If v us the least n > 0 with W, — B, = W, — By, then E(7) = o, although
P(r < ©) =1 by Theorems 4.3 and 5.3.

Proor. Realize the process (W, , B,):n = 0 on a probability triple-(Q, ¥, P)
which supports a sequence U, :n = 0 of independent random variables having
common distribution uniform over [0, 1], independent of (W,, B,): n = 0.
We will define a new process T, : n = 0 on (2, F, P) with the properties:

(5.3) To = [Wo — Bl;

(5.4) Tw = [Wa — Bal;

(5.5) {T, :n = 0} isdistributed like { Ty + X; + - -+ + X, :n = 0}, where the
X/’s are independent and =6 with probability % each.

Let |[Wo — Bo| have remainder & on division by é, and put & = & — & . Let R,
be the indicator function of the event

[Un £ (s +on)/(s + on + W, — Ba|)].
Define Ty by (5.3). For n = 1, we define T, inductively. If |W, — B,| = 4,

then Tpyy = T — don W,y — Buy| = (W, — B, — 8, while Ty = T, +
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0R, — 8(1 — R,) on W,y — By = |W,. — B.| + 5. Suppose 3 = 0. If
IW,. — Bnl = 50 y then T,,+1 = Tn — éon an-H — Bn+1| = 61 and Tn.,.1 = Tn +
0R, — 8(1 — Rn) on [Way1 — Bu| = & + 8. If |[W, — B,| = &, then Tpyy =
Tn — 6 on an+1 - Bn+1| = 50 and Tn+1 = Tn + BR,‘ - 6(1 - Rn) on
[Wasr — Baya| = 8 + 8. If & = 0, and [W, — B,| = 0, then Tpys = T, +
01y, <51 — 8liy,>y . Plainly, (5.4) is satisfied. The conditional distribution of
Twnigiven W, Bj:1 <j<nandU;:0 <j<n— 1lis: Tpyy = T = & with
probability 3 each. Hence {7, :n = 0} is a Markov chain with the transition
rule just given, and therefore satisfies (5.5). The waiting time for {T, :n = 0}
to achieve a value less than 7)) is known to have infinite mean (Feller, 1960, p.
256). This proves: if [Wo — Bi| = 3, the mean waiting time for [W, — B,| to
reach [Wo — Bo| — 4 in infinite. Now the last result follows; for there is positive
probability that [Wy — By = |W, — By + 4, and then the previous remark
applies. The Law of Iterated Logarithm (Feller, 1960, pp. 191 ff) implies:

P(lim $ups.« [T,/ (2n loglog n)}] = 8) = 1,

which proves the first result. <>

Theorems 4.3 and 5.3 prove that W, — B, enters each of its possible states
infinitely often with probability 1. Theorem 5.5 proves that the return times are
stochastically larger than the return times for a coin-tossing game, and in par-
ticular have infinite mean. Is the mean waiting time for |W, — B,| to exceed
|Wo — Byl finite?

THEOREM 5.6. If p < 0, then

(i) P{lim Sup,.« [[W,. — B.|/(2nloglogn)}] < |8} = 1, and

(ii) Wo — B, — (Wo — By) visits each multiple of 6 infinitely often with prob-
ability 1.

Proor. Realize (W, , B,):n = Oon a triple (2, 5, P) which supports a sequence
{Un :n =z 0} of independent random variables having common distribution uni-
form over [0, 1], independent of (W, , B,):n = 0.

We will construct a new process {T, :n = 0} on (Q, &, P) satisfying:

(5.6) To = |Wo — B + [d];

(5.8) {T» — To:n = 0} is distributed like {|X; + - -+ + Xul:n = 0},
where the X/’s are independent and =4 with probability % each.

Let [Wo — Bo| have remainder & on division by |6], and put 8, = || — &, . Let
R, be the indicator function of the event

[Un = (s + on)/(s + on + [W, — B.])].
Define Ty by (5.6). For n = 1, define 7T, inductively. If T, = T,, then

Tur = To + |8 For T, > Ty, proceed thus. If |[W, — B.| = |5|, then
Tﬂ+l = T,, + ,5' on IW,H.] ot Bn+ll = IW,, el B,,I + I&[, while Tn+1 = Tn

+ [0|R. — [8|(1 — Rn) on [Wayy — Bayi| = |W, — B,| — |8]. Suppose 8 = 0.



BERNARD FRIEDMAN’S URN 967

If IW,, - B”I = 50, then Tn+1 = Tn + |3l on an-H - Bn+ll = 50 + l&l, and
,Tn+1 = Tn + I6IR,, - lal(l — Rn) on IW,..,.] it Bn+ll = 6. If IWn - B”I = 61,
then T”_H = Tn + ’5, on an-H il Bn+l! = 61 + ]6| and Tn+1 = Tn + I6|R,.
- |8|(l — R,,) on an+1 — Bn+1| = §.If 8 = O, and an - Bn! = 0, then

Toyn = Ta + 81w, <51 — 0|1 1w,>h -

Plainly, T, satisfies (5.7) and is of the form W, — Bo| + k|§| with k = 1.
The conditional distribution of T, given W;, B;: 1 £ j £ n and
Uij:0=sj=n—1is:if T, = |[Wo — Bo| + [§], then T,y = T, + |5|, while if
T. > |Wo — Bo| + |8 then Ty = T, =+ |8 with probability % each. Hence
{T» :n = 0} is a Markov chain with the transition rule just given, and (5.8)
holds.
In particular (Feller, 1960, pp. 191 ff), for each ¢ > 0, with probability 1,

T, < (|3] + €)(2n log log n)}

for all large n. This proves result (i).

Moreover, T, = T for infinitely many n with probability 1 (Feller, 1960, p.
288). Hence |W, — B,| £ |Wo, — Bo| + [§] for infinitely many n with proba-
bility 1.

Let d be a natural number. Let 7o = 0 and 714, be the least n > 7, + 3d with
IW,,, - Bnl _S_ |W0 - Bol + I&l Let Qr = {AA cFand A n [1'/, = j]eﬁj}. Let
Ak+1 = [W,‘.H = Wj+af01‘1'/¢ §j< Tk—l"d; Wj+1= W,+ﬁf01‘7’k+d§]
< 7 + 3d]. Then Ay € @; and there is an € > 0 with P(Ai1 | Q) = ¢ all k.
Apply Lemma 5.3. <>

We do not know whether the mean return times are finite.

CoRrOLLARY 5.2. If p < 0, then (W,, + B,)™'W, converges to % with probability 1.

LemMa 5.4. Let (Wa, Bo):n = 0 and (W,*, B,*):n =0 be two independent
Friedman urns on (Q, &, P) with common parameters 0 < a < B and Wy = Wo*,
By = B,*. Then W, = W,.* for infinitely many n with probability 1.

PROOF. W,y1 — Wi,y is either W, — W,* or W, — W,* + |8 or W, — W,*
— 18]. Given W;, W;*:1 < j < n, the last two values are taken with con-
ditional probabilities

[B./(s + on)]-[W.*/(s + on)] and [Wa/(s + on)]-[B.*/(s + on)]
respectively, whose ratio is
(Bu/Bu*) /(Wa/ W ).

If W, > W.,*, then B, < B,*, and this ratio is less than 1; if W, < W,*, then
B, > B," and this ratio is greater than 1. It is therefore possible to define a
process T, :n = O on (2, F, P) such that

(i) To = Wo — W,* = 0;
(ii) Thyr = Tw,or Tw — 18], or T, + [8];
(ili) Tpyr = T.if and only if Wy — Wiy = W, — W5
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(IV) P(T,H.l: T,.:I:]B]IWI Wn,W1*"' W:, Tl Tn, Tn+l¢ Tn) = %)
V) |T.] =2 W, — W,,*I.}

We omit the construction of T, ; see the proofs of Theorems 5.5 and 5.6. From
(i),

(5.9) P(Toupr 5= To | Wy oo W , Wi* - W5, Ty -+ T,)
= (B.W,* + W,.B,*)/(s + on)™.

Let us pause for a moment to study the function f(x, y) = 2(1 — y)
+y(1 —2z)on0 = z,y < 1. Since 9f/oz = 1 — 2y,
[z, y) 2 f(0,y) = v, for y <3,
=% for y =3
zf(l,y) =1—y, for y> 4

In particular, f(x, y) = min [, y, 1 — y]. Apply this inequality to the right side
of (5.9); it is bounded below by

min [z, Wa/(s + on), 1 — (Wa/(s + on))].

The sum over n of these quantities is plainly + « with probability 1, s0 Thiy 5= T,
for infinitely many n with probability 1 by Lemma 5.3. Let 7 be the kth n with
Twr # Tw,and Xy = T,y — T, . Then X, : k = 0 are independent, ==|6| with
probability 3 each. Now {X; + --- + X,:n = 0} is a subsequence of
{T.:n =z 0}, so T, = 0 for infinitely many n with probability 1. But
Wo — W.*| = T <>

TuEOREM 5.7. If p < 0, the tail o-field of (W, , B,):n = 0 és trivial.

Proor. Apply Lemmas 4.5 and 5.4. <>

These results exhibit a substantial difference between urn processes with p >
and p < 3. What is the intuitive meaning of the 1? Is there a qualitative difference
between urns with p > 0 and p < 0?

Let (W, , B,):n = 0 be a Friedman urn on (2, &, P), with parameters a = 0
and 8 = 1. Blackwell asked whether the distribution D of W, — W,_, :n = 1is
singular with respect to the distribution F of a sequence of independent random
variables, taking the values 0 and 1 with probability % each. Using the results of
this section, it is not hard to see that the answer is yes.

Restrict D and F to the tail o-field. Since both are then trivial, they must be
singular or equal. The latter possibility is ruled out by Theorem 5.1, the central
limit theorem of De Moivre, and the standard martingale argument of Lemma
5.5 below.

Lemma 5.5. Let Py and P, be probabilities on a o-field = of subsets of a set ¥. Let
2" 2 1 be sub-o-fields of = which shrink to the o-field ™. If P is a probability
on 2, let P™ be its restriction to 2™, 1 < n < w. I f P = P, then
le(") - Pz(n)H —0asn — o,

Proor. Let P = 1(P, + P;). Then
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1P = P = [2 [[dP\"/dP®™] — [dP," /dP™]| dP.
Since dP,™/dP™ is the P-conditional expectation of dP;/dP given ™, it con-
verges in £'(P)-norm to the P-conditional expectation of dP;/dP given 2. The
latter function, being dP;"”/dP*, is equal to 1 with P-probability 1. <>
We still do not know, for example, whether the distribution of W, — W,_; :
n 2 1 is equivalent to the distribution of W, — W, :n = 1if Wy = By = 1.
6. Some difference equations. In this section, we solve the difference equations

that appear in Section 3, 4, 5 and estimate the order of magnitude of the solutions.
Let z, , a, , b, be real numbers for n = 0 with

(6.1) Tntl = Auln + by .
Lemma 6.1. If x, , @, , b, are real numbers satisfying (6.1) for n = 0, then
Toyr = %0 | [ as + 2550 b; [[mji @ + bn
= (ID<va) (@ + 23t [Ti0a™),

the second form being valid when a, = 0 for 0 < v < n.
Proor. Direct verification. <> .
Lemma 6.2. If A and B are real numbers, then T(A + n)/T'(B + n) ~ n*™®
Proor. Use Stirling’s formula. < >
Suppose b > 0, ¢ > 0, a is real and

(6.2) t =14 [a/(b+ )] for nzo.

Lemma 6.3. If {a.} is defined by (6.2), with b > 0, ¢ > 0, and (a + b)/c not
a negative integer, then

I~ a ~ [T(b/c)/T((a + b)/c)In*"".
Proor. Since
0, = [[(b/c)/T((a + b)/c)]
AT[((a + b)/c) + n + 1]/T[(b/c) + n + 1]},

Lemma 6.2 applies. <>

Lemma 6.4. If {a.} is defined by (6.2) with a > 0; and b, = O(n*) with
d < c¢’'a — 1; and {z,} satisfies (6.1); then limusw 2. [Dwa™ = z
+ D 0ab; I 0 a7, the series converging absolutely.

Proor. Lemmas 6.1 and 6.3. <>

Lemma 6.5. If {a,} is defined by (6.2) with a > 0; and b, ~ B(n logn)? with
B#0andd = ¢'a — 1; and {z,} satisfies (6.1): then z, ~ (d + 1)7'B
(nlogn)**,

Proor. We can replace 2, , an , by bY Zupi , Gurr , bais if necessary, replacing b
by b + ck, and therefore assume without loss of generality that (a + b)/¢c > 0
and a, > 0 for all n. Now

2 31 [(log )51 =~ [t [(log x)%/x] du
= (logn)™/(d+1) for d> —1,
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the first relation holding because z — (log x)%/z is ultimately decreasing. Apply
Lemmas 6.1 and 6.3. <>
Lemma 6.5a. If {a,} is defined by (6.2) with ¢"a > }; and b, =~ Bn**(logn)*”
with B % 0andd = ¢ ‘a — %; and {z,) satisfies (6.1); thenw, =~ d ' B, (logn)®.
Proor. As in Lemma 6.5. <>
LemMa 6.6. If {a.} is defined by (6.2); and b, ~ Bn’ with B = 0 and
d > ¢'a — 1; and {z,} satisfies (6.1) then z, =~ [B/(d — (a/c) + 1.
Proor. As in Lemma 6.5, using the observation D ;- j° & 2/ (C + 1),
forC > —1. <>
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