ADMISSIBLE BAYES CHARACTER OF 72, R?-, AND OTHER
FULLY INVARIANT TESTS FOR CLASSICAL MULTIVARIATE
NORMAL PROBLEMS

By J. Kierer! aND R. ScHWARTZ?

Cornell University and General Electric Company

0. Summary. In a variety of standard multivariate normal testing problems,
it is shown that certain procedures, often fully invariant, similar, and/or likeli-
hood ratio, are admissible Bayes procedures. The problems include the multi-
variate general linear hypothesis (where some of the procedures considered
were previously shown to be admissible by other methods), the testing of inde-
pendence of sets of variates (where the likelihood ratio test is shown, for the
first time, to be admissible), tests about only some components of the means,
classification procedures (for any number of populations), Behrens-Fisher
problem, tests about values of or proportionality or equality of covariance ma-
trices, etc. A general technique is developed for obtaining certain Bayes proce-
dures for such problems from the corresponding Bayes procedures relative to a
prior: distributions of a certain type for problems where nuisance parameter
means have been deleted.

1. Notation. Before discussing the contents of this paper, we list the notation
which will be used throughout.

The letters k, m, n, p, ¢, 7, N, with or without subscripts, will denote positive
integers, usually the number of rows or columns of a matrix. S, T, U, V, W, X ,
Y, Z, with or without subscripts or superscripts, will denote random matrices
(or vectors), which in the absence of subscripts always have p rows. S and 7T
will be square. Other Roman capital letters will denote vectors and matrices.
I, denotes the ¢ X ¢ identity, and 0 denotes any matrix of zeros. V will denote
the entire random matrix under observation in any problem, and will always
have N columns (= vector observations), independently distributed, each p-
variate normal. The decomposition of a p X ¢ matrix B into blocks will be
denoted, for example, by B = {B;;, 1 £ ¢ <k, 1 <7 =<k}, where B
is p; X ¢; with D>, Di=p, O ¢; = ¢. A decomposition into blocks of rows
(resp., columns) alone will be denoted by B = {By} (resp., B = {B;}). Other
decompositions will occasionally be denoted by superscripts. However, a nota-
tion like V = (X, Y, U) will sometimes serve better than V = (Vy, V,, V)
to distinguish the roles of different parts of V. Unprimed vectors will denote
column vectors. B' denotes the transpose of B. The determinant of C is denoted
by |C|, and its trace is denoted by tr C. If C is symmetric positive definite,
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748 J. KIEFER AND R. SCHWARTZ

¢* will denote its unique symmetric positive definite square root. The average
of the columns of any matrix X will be denoted by X. The matrices S and T
will be nonnegative definite symmetric, usually obtained in a problem as S =
(X = X) (X — X) or 8 = YY'. Whenever such a matrix is positive definite
on a set of probability one according to each 6 in Q, we shall invert it without
further mention of the exceptional set.

Positive finite constants, depending on the problem but not on the parameter
values, will be denoted by ¢ or ¢, . (A trivial exception to positivity and finite-
ness is the usage in (1.3).) The meaning of any ¢; may change with the problem.

Q = {6} = Hy + H, will denote the parameter space in any problem. Occa-
sionally, to emphasize the symmetry of two hypotheses, we shall write @ =
H, + H,. The parameter 6 will be decomposed into a collection of matrices
(or vectors) £, », p, =, ete., with or without subsecripts; = without subscripts
or superscripts will always be a covariance matrix which is p X p positive defi-
nite. Thus, Greek letters will be used to denote functions of ; in addition, 8,
1, and v will be reserved for other variables in terms of which it is convenient to
write a priori densities, and of which components of § may be functions. (See,
for example, (4.1).) A Greek letter with subscript, or superseript 0 (and perhaps
other subscripts of superscripts) always denotes a specified value.

The use of ) to denote summation (e.g., as 2 ;or 2 i) will always be such
that it cannot be mistaken for a parameter.

All probability laws of observable random variables, or functions thereof
which we shall consider, will have Lebesgue densities on a Euclidean set. The
Lebesgue density function of X when 6 describes the underlying probability
measure will be denoted by fx(z; 6), or perhaps by fx(x; 8(6)) or fx(z; 8) if
this density depends on 6 only through 8(6). We shall write exp a = eetrd =
exp tr A. Densities of particular interest are the multivariate normal density of
a p X n matrix X of independent columns, each with nonsingular covariance
matrix 2, and with EX = &:

(1.1) bon(23 8 2) = a2 etr — 327z — £)(z — 8

and, if n 2 p, the central Wishart density of W = (X — £)(X — £)" in this
setting:

(1.2) Ypm(w; Z) = ¢ 27 w| PP ety — 137,

For (1.2), the domain is {w;;, ¢ = j: w positive definite}.

A priori probability measures or positive constant multiples thereof will be
denoted by II. It is convenient to refrain from giving the explicit values of
positive multiplicative constants and to require only II(2) < o rather than
I(2) = 1, and we shall do so. If I = I, + II, with II, a finite measure on H; ,
every Bayes critical region (for 0-1 loss function) is of the form
(1.3) {o: [ fv(v; 0)IL (d6)/[ fv(v; 0)TTy (d6) > cJuL,

for some ¢(0 = ¢ £ ), where L, is a measurable subset of the set obtained
from the set in braces in (1.3) by replacing > by =. In all our applications
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every L. will have probability 0 for all § in , so that our Bayes procedures will
be essentially unique. (An exception occurs in Corollary 3.2, where a different
argument is used.) Hence, all our Bayes procedures are admissible.

In each example we obtain a family of tests by varying ¢ from 0 to o in (1.3).
When, for example, the tests are similar, this of course yields an admissible simi-
lar test of each possible significance level.

The II; which arise in our examples all have Lebesgue densities on Euclidean
sets, or are measures assigning all mass to a single point 6,, or are products of
these. Sometimes it will be convenient to consider II; or one of its factors to be a
density on a Euclidean set I' which is mapped in a given way into © or one of its
factors. For example, it will be simpler to compute with the Lebesgue density
¢lI, + '™ on Euclidean p-space E” = T' = {n}, than with the induced
measure on the space of positive definite £ = (I, + 72")"". Such Lebesgue
densities (which will be integrable but not necessarily of integral one) will be
denoted by dII;(n)/dn. The integrating Lebesgue measure in such a case will
be denoted by dy.

In each example it is possible to work either with the original V, or else with a
sufficient statistic. Usually the computations are such that there is no particular
gain in using the reduction to the latter form.

Throughout the paper densities will be continuous on the product of sample
and parameter space, both of which will be Euclidean spaces or Borel subsets
thereof. A priori densities will be of the same character. Thus, no measurability
considerations will ever be required, and they will always be omitted.

The reader is referred to the books by Roy (1957) and Anderson (1958) for
descriptions of various multivariate problems and procedures, and to the book by
Lehmann (1959) for general hypothesis testing theory.

2. Introduction. Admissibility of various classical statistical tests has been
proved using (1) Bayes procedures, (2) exponential or other special structure
of @, (3) invariance, and (4) local properties. (Estimation problems do not
concern us here, and the techniques of this paper yield little of interest in such
problems.) Some examples of (1) can be found in Lehmann and Stein (1948),
Karlin (1957), Lehmann (1959), and Ellison (1962). Method (2) has been
used by Birnbaum (1955), Stein (1956b), Nandi (1963), Ghosh (1964), and,
more recently, by Schwartz (1964b). (It is also indicated to be the approach ot
Roy and Mikhail (1960), but the method is inapplicable in at least one of the
cases described in their abstract, that of testing independence; this will be dis-
cussed further in the next paragraph.)’ Aside from the trivial case of compact
groups, only the one-dimensional translation parameter case of (3) has been
studied, in Lehmann and Stein (1953). The most common occurrence of (4)
is with unique uniformly or locally most powerful unbiased tests in cases where
unbiasedness implies similarity on that part of the boundary of H; which is in
H, . (See Lehmann (1959).) Uniformly most powerful tests can be regarded as a
special case of (1). A result like that of Wald (1942) on the analysis of variance
test can be regarded, for example, as an application of (1) to the similar tests
obtained from unbiasedness considerations (4).
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The use of techniques (3), (4), and (2) in standard multivariate normal
problems has been limited. Best invariant procedures under the full linear
group need not be minimax, let alone admissible. Most powerful unbiased tests,
or analogues of Wald’s theorem, fail to exist. While the exponential structure
can be used to prove admissibility of Hotelling’s T’-test (Stein (1956b)) and
of a class of tests of the multivariate general linear hypotheses (Schwartz
(1964b)), this technique (or its generalization to certain nonexponential fami-
lies) cannot be used in the problem of testing independence of sets of variates
when p = 3. This is discussed by Stein (1956b); from a slightly different view-
point, it can be seen, even in the bivariate case, that this method fails because
fr2(7%; p°)/fr2(r*; 0) (where R and p are the sample and population correlation
coefficients) is not unbounded as p — 1. The admissibility of the usual test in
the bivariate case p = 2 is proved in Lehmann (1959) using (4), but this ap-
proach also fails when p > 2.

Our main interest is in those procedures which are invariant under all linear-
affine transformations which leave the problem invariant, and which we shall
call fully invariant. We use the Bayes technique (1) to prove admissibility of
certain fully invariant tests of the general multivariate linear hypothesis and
of the hypothesis of independence ot sets of variates, as well as in other testing
problems. The T°- and R’-tests are special cases. Even in the case of a test
such as Hotelling’s, where admissibility was proved (Stein (1956b)) by method
(2), our result yields additional information on the performance of the test;
for the method of (2) only insures that no other test of the same size is superior
to T? “far” from H,, while our Bayes result, discussed further in Section 4,
reflects the behavior of T” closer to H, .

Nevertheless, the Bayes technique has severe limitations. As always, it may
be hard to guess the II with respect to which a given test is Bayes, or to carry
out a very explicit integration for a given II. Moreover, many natural admissible
tests cannot be proved admissible by this approach for reasons other than that
of lack of integrability for minimum sample sizes which is mentioned later for
certain tests. For example, Birnbaum’s treatment shows that, for the problem
of testing that the mean of a bivariate normal vector, with known covariance
matrix, is 0, any compact convex polygonal acceptance region is admissible;
but analyticity considerations show it cannot be Bayes. Thus, in problems like
that of Section 4, one cannot expect tests such as the familiar one of Roy which is
based on the largest characteristic root of (XX "4+ YY')T'XX’', to be Bayes;
but such tests can be proved admissible by technique (2). (See the references
given earlier.) '

Thus, we shall obtain admissibility of certain isolated but natural (and, often,
well known) tests, rather than any general theorem characterizing Bayes tests.
The tests obtained are often similar and unbiased, and are sometimes most
powerful invariant and classical in origin (e.g., likelihood ratio tests). An ad-
missible test of level o which is similar is of course also admissible with respect
to its power function considered only on H;, among level a tests.

There is no difficulty in constructing many noninvariant Bayes tests. For
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example (in a case of the setting of Section 4), if V = (X, Y) with X p X 1
and Y p X n(n = p), with each column of V having covariance matrix =
and with EX = ¢ EY = 0, for testing Hy : ¢ = 0 one easily shows that the
following critical regions are Bayes: X, > ¢ (where X is 1 X 1), X'X > ¢,
X'X/tr (Y'Y) > ¢, 28 X%/(Y'Y)i > ¢, ete. The disadvantage of using any
of these tests is of course that while each of them is similar for some subhypothe-
sis of Hy, they have less satisfactory power characteristics under H, itself. This
is why it is usually of greatest interest to find fully invariant tests. (In some
examples, such as that of Section 6 (ii), it may be that the group of transforma-
tions which leaves the problem invariant is less relevant than a subgroup which
leaves invariant some natural measure of distance from H, ; that is, it may be
that H; = U,H, is invariant under a group G, but that each H;, is not.)

Such invariant tests often can be obtained, and in some cases have been ob-
tained more than once in the literature since the first work of Jeffreys (1939) in
this direction, as formal (‘“‘generalized”) Bayes procedures with respect to in-
variant II’s of infinite mass. Of course, such a derivation cannot yield admissi-
bility. In estimation problems as simple as that of estimating the mean of a
standard univariate normal distribution with squared error loss, it is not hard
to prove that the best invariant procedure cannot be Bayes. It was Lehmann
and Stein (1948) who first showed that, in invariant testing problems, a dif-
ferent situation sometimes prevailed, and that best invariant procedures were
sometimes genuinely Bayes for noninvariant reasons. An example of Section
7 (iii) gives a generalization of some of their univariate normal results. It will
be seen that the rationale in choosing II in other problems, such as the T? and
R’ generalizations of Sections 4 and 5, is somewhat different; this difference
will be discussed further at the end of Section 3.

One consequence of the Bayesian character of certain invariant tests is that
there is no possibility of proving an inadmissibility result for an essentially
unique best invariant test where each hypothesis consists of a p-dimensional
translation parameter family, analogous to the corresponding sweeping inad-
missibility result of Stein (1956a) (see also Brown (1964)) in estimation prob-
lems. This is already evident in the example, covered by the results of Lehmann
and Stein (1948), pp. 503-504, according to which, if V = (V,, ..., V,)
with n > 1, the V; being independent normal p-vectors with common unknown
mean and with covariance matrix o1, under H; (with ¢ specified), the essen-
tially unique best invariant test, based on >y (Vi — V)'(V, — V), is admis-
sible. '

It will be obvious (and will sometimes be illustrated explicitly) that in many
examples there are many, and often infinitely many, linearly independent II’s
relative to which a given procedure is Bayes. For example, II; will often assign
all measure to a set where =™ = € + 7’ where C can be taken to be an ar-
bitrary fixed positive definite matrix (which we will usually take to be I,) and
n is a p X ¢ random matrix; in some cases (e.g., (7.2)), even ¢ may be varied
for a fixed test. (A brief general discussion of these II’s will be found in the three
paragraphs following (3.8).) The procedure is then Bayes relative to any finite
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(and, often, infinite) convex mixture of those I’s. This variability of the IT
relative to which a given procedure is Bayes lends insight regarding the per-
formance of the procedure. The richness of the family of II’s relative to which,
for example, the T”-test can be seen to be Bayes, may find a use in proving the
minimax character of that test on a surface of constant power, and with compu-
tational ease compared with the calculation of Giri, Kiefer, and Stein (1963)
in a special case. This approach has not yet succeeded.

Thus, no really novel minimax results are contained in this paper. An ad-
missible test like (7.10), which (for appropriate ¢;) has constant power on each
H,, is -automatically minimax (the one-sided analogue being even simpler).
Section 6(ii) gives an example where minimax properties follow from previously
known results.

Regarding minimax properties, we remark that, at least locally, tests based on
traces of appropriate matrices appear to be more satisfactory than those based
on determinants (Section 4 and 6; see Schwartz (1964a)).

The reader will note that, in many respects, the results of Sections 4 and 5 are
more satisfactory than those of some of the examples of Sections 6 and 7 (for
exanmple, 6(ii)) where the group involved is not merely a direct sum of full
linear groups.

It would require too much space to list, in each setting considered herein,
even a few of the tests which can be obtained by the methods of this paper.
We shall therefore list a few such variants only in Sections 4 (multivariate
general linear hypothesis) and 7(i); the applicability of the methods in other
examples will be clear.

Moreover, there are many testing setups for normal and other exponential
tamilies which we shall omit entirely because of the space they would occupy,
but in which our methods can be applied. A few of the problems we shall exclude
are those concerned with hypothesized nonzero values of all or some of the
canonical correlations, correlations, partial correlations, or eigenvalues of
a covariance matrix; equality of such parameters of two covariance matrices;
hypothesized values of certain parameters of both the mean and covariance
matrix, or equality of such parameters of two mean vectors and covariance
matrices; the hypotheses which arise in principal component and factor analysis.

In addition, there are multivariate analogues of many of the examples of
Lehmann and Stein (1948), which we shall omit.

Our examples will be ones in which both means and covariance matrices are
unknown. Where some of these are known (for example, if = and » are known
in Section 4), the problems are easier to solve and sometimes (as in the cases of
Sections 4 and 6 if T is known) have well known solutions.

3. Preliminary results. We summarize here the integration results which will
be used repeatedly.
From (1.1) we have, if n and zare p X m and ¢is p X p and positive definite,

(3.1) fno etr { —3ltny’ — 22n']} dn = c[t| ™" etr 3¢7'2.

If v is a p-vector, an obvious diagonalization yields the well known relation
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(3.2) I, + ] =1+ .
Defining, for & real,

(3.3) b= e (1 +9"7)"" d,
we clearly have

(3.4) by < 0o h > p.

With n = (m, me, ..., 7a) p X m, write @; = I, + 211 mn’ and let Q;
be the positive definite symmetric square root of ;. Using the change of vari-
ables z; = Q7 n; and (3.2)—(3.3), we have, for j > 1 and h real,

fm |Qi[_h/2 dy; = lef—l + 0 M dn;
(3.5) = Qi "V |1, + 22/ de;

= DalQya|

Hence,

(3.6) Jomo [, + a0 dyp =TTt breiva s

which with (3.4) yields

(3.7) Jamo [Ip + '[P dn < 0o h>m+p — 1.
We shall use the well known fact that, with n p X k,

(3.8) I — o' (Ip 4+ 90) 0l = I, + o[

This follows, for example, from a direct computation upon writing 4 = A,LA,
where A ; is orthogonal j X 7 and, according to whether p < k or p = k, we
have L = (D,, 0) or L' = (D, 0) with D; diagonal 7 X j. This diagonaliza-
tion also demonstrates the positive definiteness of the matrix whose determinant
is on the left side in (3.8); we shall use this fact below.

A main idea in our construction of appropriate II’s is the frequent represen-
tation of covariance matrices (I, + n1’)™" where n is p X ¢ for an appropriate
g. Thus, we assign all measure to a set where [, — 2 is positive definite. The
form I, + nn’ and certain other forms used in the II’s were suggested by their
appearance in the linear functionals used in approach (2) of Section 2 for the
problem of testing the general linear hypothesis. (See Stein (1956) and Schwartz
(1964a) and (1964b).)

The representation (I, + 71’ )™ suggests a formal structure for the a priori
densities dIl;(n)/dn which by (3.7) will in fact be integrable. It also yields in-
tegrals (and hence Bayes procedures) of simple functional form.

A second idea (which depends on the above-mentioned property of the set
where II is supported) is the elimination of means which are nuisance parame-
ters by means of Lemma 3.1 below. Another, more obvious, idea, is the treat-
ment of certain nuisance components of the p-vectors of means (for example,
in Section 6) by letting II assign all measure to a set where these components are
independent of the others and have a single distribution under each H; .
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We shall now formalize a technique for proving that, in some cases, a proce-
dure A which is Bayes for a problem P = {H,, H;, V} remains Bayes when the
problem is altered to P* by the addition of certain nuisance parameters and cor-
responding observables. Suppose, for a problem P, that A is Bayes (i.e., satis-
fies (3.1)) for given IIy, II;, and c. Suppose P is now altered to P* = {H,*,
H,*, V* as follows: V* = (V, Uy, Us, ..., Un) where U; is ¢; X 1 with
m and ¢; arbitrary positive integers; the U; are independent of V and each
other, U; being normal with mean vector »; and nonsingular covariance matrix
=@, The = might be related to some of the parameters of V or to each other
(for example, several might be equal). However, we assume that, for each 9
in a subset of H; to which II; assigns all measure, there is a corresponding set in
H* for which the domain of (v, ... ,vw)is E*'"% and for which =% which
in this instance we shall write as = ? for clarity, can be written as

(3.9) 3D = 3@ D - (Cm + D¢ D)—l

where C is symmetric positive definite (and does not depend on ), and D" ?
is symmetric nonnegative definite. (If = is unrelated to 9, it can of course be
treated trivially by letting each II} assign all measure to any specified value of
(22, »,).) It D% ? is of rank r;, ;, we can then write

(3.10) DD = AGD PG D

where A is ¢; X r;, ;. (Actually, certain restrictions on the »; can be imposed,
as will become evident in the course of the proof of Lemma 3.1.) The possible
distributions of V under H.* are the same as under H; . As mentioned at the end
of Section 1, the H; and H,* are assumed to be Euclidean Borel sets.

LemMA 3.1. If A is Bayes relative to II for problem P, then A* is Bayes relative to
some II* for problem P*, where

(3.11) A, ur, us,y ..., Um) = A(D).

Proor. Write 8 = (2%, 2@, ..., =2™) and » = (v, ..., vm). Let the
conditional a prior: distribution of the »;, given 6 (the parameter of V) and g,
be as follows: the »; are conditionally independent and, under H.* (that is, if
0 ¢ H;), with a priori probability one,

(3.12) (S DY, = p D 6D
“ 9isr; ; X 1 and is normal with mean vector 0 and covariance matrix
(In; — A©?"(C? 4 DO ") 7AS M) = (BH?)™ (say).

Denote this conditional distribution of » by Ifss. The (marginal) joint dis-
tribution of  and B under H,* (that is, under ¢II,;*) is given as follows: 6 has
(marginal) distribution II, and, given 6, the conditional distribution of 8 is any
probability measure II; ¢ assigning measure one to a specified value (or set of
values) of 8 which is possible for this value of  (that is, which is consistent
with any relation which may exist between 8 and ). There is no measurability

where vy

i
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difficulty in this construction, since the H;* are Euclidean Borel sets. We must
only verify that B ? is positive definite. Letting C* denote the symmetric
positive definite square root of C? and 7 = C*A“ ?, we can write B ? as
L., — n'(I; + 1m')™'n and recall the second sentence following (3.8).

From (3.8) itself we then have |[B®?| = |I,, + n7'|™ = [C?||2“ 7).
Hence, if »; satisfies (3.12) under H,*, we have, omitting most supersecripts in
the exponential after the second expression,

fo,(u; 95, 2 M), (v P50, (B )T
= o2 [ HBC P etr —H{ (=" ") (u — v)(u — vy)
(3.13) + B(t‘. J?,y(i. :'),y(i. J)’}
= ¢|C? etr —4{CPuu'} etr —3{Du’ — 2Ayu’ + Ayy'A’S
+v' — A (C + D)7 sy}
= ¢5|CP etr —3{CPuu’} etr —3(y — Au)(y — A'w)".
(C)]

From this we conclude that if, under H,*, v; is the function of v given in

(3.12), then

IE""]' ij(u; vi, E(I'j))(brl'j('y(l'j); 0’ (B(l.f))_l) d’y(l’j)

(3.14) a = " ~ = C4 .
.[E’"o.i ij(u; Vi, 2(0']))‘1"0.,‘(7(0']); 0, (B(O'J)) 1) d'Y(O'J)

Hence,

(3 15) folv""Um(ul y * 0y Um 5 Y, ﬁ)nfﬂ-ﬂ (dV) —

S for oy o U 5 v, B)IG0.s (dv)

Thus, writing 6* = (8, », 8), we have

(8.16) [ Foe(vy ury oy U ; OVIL*(AO*) /[ fro(v, wr s ..., Um ; 6%)TL*(d6¥)
= aslf fv(v; O)IL(d6)/[ fv(v, 6)TL(dB)],

so that a proper choice of ¢* in IT* = ¢*II;* + II,* yields the conclusion of the
lemma.

A degenerate case of the above setup occurs when V and 6 are absent; that is,
when, onthebasisof U; Us, ..., Un, it is desired to test some hypothesis con-
cerning the = (and/or a linear space of linear combinations of the »; which, un-
der both H,;*, has only 0 in common with the space spanned by = ? A% 26+ 2
In that case let H;** be any subhypothesis of H.* which consists of the (riq +
... + 7in)-dimensional Euclidean space of (v, ..., v ™), the values of
the = and other linear combinations of the »; being specified so that (», 8) is
completely determined by the v ?. Then II* (formerly IIf55) has a continu-
ous positive Lebesgue density on each H;**, and every procedure has continuous
power function on each H,;**. Hence, even though the Bayes procedure in this
case is not essentially unique, we conclude:
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COROLLARY 3.2. For testing between the H.* based on Uy, Uz, ..., Un, for
each a(0 £ a < 1) the randomized test which accepts H,* with probability o for
every sample value, is an admissible Bayes procedure.

Lehmann and Stein (1948) also gave examples where the randomized test
of Corollary 3.2 is Bayes.

We remark, incidentally, that the method used by Lehmann and Stein to
handle means which are nuisance parameters (other than the use of a II; concen-
trated at a single point), and which differs from that of Lemma 3.1, is (roughly)
to let the means have normal a priori densities under H, (say), with means
equal to those under H, , and with variances equal to the difference between by-
pothesized variances under H; and H, . When one or more variances are nuisance
parameters, as under H, in Student’s problem when mean and variance are both
specified under H, (that is, the problem of Section 6(vi) below, modified to
specify = also, under H,), their a prior: density again reflects the difference be-
tween variances under Hy and H; . We are usually unable to make use of these
techniques, but the test derived in (7.8) is an exception, which uses a direct
multivariate analogue of the above technique for means. Lehmann and Stein
generally consider simple alternatives and thereby often obtain uniformly most
powerful tests against composite alternatives; these are stronger conclusions
than ours, which are often obtained in settings where no such uniformly most
powerful tests exist.

4. Multivariate general linear hypothesis. In the usual formulation, V =
(Vi, ..., Vy)withcovV, = Zand EV = ¢L, Ho being ¢K = £PK (specified,
and which by a translation can be taken tobe 0), with L and K known matrices.
This can be transformed into the canonical form wherein V = (X, Y, U). with
EX = gp X r), EY = O(p X n), EU = »(p X h), where, under @, £ and
v have E*” and E™ as their domains, and all columns of V are again independent
with common unknown covariance matrix Z; Hyis £ = 0. We treat the problem
in this canonical form.

According to Lemma 3.1, results for the general case follow from those for
the case h = 0, which we hereafter treat. In part (v) below we shall discuss the
case n < p; until that part, we suppose n = p.

(i) Let both II; and TI, assign all their measure to 6’s for which =™ = I, + m
for some (p X r)n. Also, under H, all measure is assigned to &s of the form
£ = Zq (where 2" = I, + n1'). The IIs can be considered as absoutely con-
tinuous measures on the space E* of 7’s, and are given by

- dlli(n)/ dn = [T, + mn'[""""" etr 3{n' (Lo + n2') 7'},
dno('fl)/ d'q = le + "”,I_(r+")/2.

The integrability of these densities follows from (3.7) (since » = p) and the
boundedness of the nonnegative definite matrix in braces (which, according to
the comment two sentences below (3.8), yields a positive definite matrix when
subtracted from I,). We then have
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[ fxv(, y; 001 (d8)/[ fx,v(z, y; 0)Io (df)

[+ |7 etr (=3(T, +m) (e + )
= +n2’ — (I, 4 1) 'y} (d)
(42) T + 00| etr (=3I, + m') (22’ + yy') }To (dn)

etr {3(zz’ + yy')~ zz'}) [ etr {—3(zz’ —I—yy)
= (n — (a2 +yy)x)(n—(m + yy')'2)'} dny

[etr {—3(xz’ + yy')m'} &

= etr {(z2’ + yy') 22’}.

(As stated in Section 1, we shall not require, here and in other examples, a dis-
cussion of the exceptional set where XX’ + YY’ is not invertible.) Since
tr (XX’ + YY')7'XX’ = ¢ with probability zero for each 8, we conclude that,
for each ¢ = 0, the critical region

(4.3) tr (XX' 4+ YY)7'XX = ¢

is an admissible Bayes procedure. It is fully invariant, similar, and (as a conse-
quence of the results of Das Gupta, Anderson, and Mudholkar (1964)) un-
biased.

We now give an indication of some of the many modifications in the II; which,
as described in Section 2, still yield (4.3), and also list a few modifications which
yield other tests. It will be obvious that some of these modifications can be com-
bined. Again, Lemma 3.1 applies in all cases.

(ii) In place of I, 1n (4.1) we can put any positive definite symmetric p X p
matrix B and write 2 = B + 47’ , and in place of £ = 29 we can put £ = b=y
for any nonzero scalar b, multiplying the exponent in (4.1) by b°. We still obtain
(4.3). This means that, for each such B and b, there is a II relative to which
(4.3) is Bayes, and such that II assigns all probability to a set of (Z, £) for which
= is smaller than B™" in the sense that B~ — 2 is nonnegative definite, and for
which tr =&’ < pb’. Thus, the test (4.3) has good performance “near” H,, in
agreement with the local minimax character and in contrast with the ‘“distant”
goodness (obtained by method (2) of Section 2), both in Schwartz (1964a).
We note that, for fixed b, the II,’s corresponding to different B’s assign all measure
to disjoint sets of (£, Z).

(iii) Letting =" = I, 4+ ny as before, suppose we now let ¢ = =8 under
H,, where 8 is r X r. Let k be a fixed number satisfying 0 < k < 1. Under
H, the conditional density of 8, given 7, is ¢, ,(8; 0, [k, — %' (I, + yn’)9]).
The marginal density of  under H, is

(4.4) ally + |, — o' (I, + o) a7,

which is again integrable, since the second determinant of (4.4) is bounded
away from zero. II, is again given by the second line of (4.1). The product of
fx,r with the density of 8 and » under H, is then
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(4.5) csetr {—3(xa’ + yy')} etr {—3(yy' + (1 — K)az")nn'}
- etr {—3k7(8 — ka'n)(8 — ka'n)}.

The integration of the last factor of (4.5) with respect to 8 yields a constant,
and comparing the integration with respect to n of the middle factor with the
corresponding integration (with ¥ = 0) under II, , we obtain the critical region

(4.6) YY' + XX'|/|YY + 1 - kB)XX |z ¢

as an admissible Bayes test for 0 < k < 1. For k£ = 1, one obtains the likelihood
ratio test

(4.7) [YY' + XX'|/|YY| = ¢,

but one change is needed in the previous derivation: the integrability of (4.4),
which by (3.8) equals ¢;|I, + nn'|™"* when &k = 1, is now assured, according
to (3.7), if and only if » > p + r — 1. Thus, only under this restriction does
our method show that the test (4.7) is admissible Bayes, although the admissi-
bility without this restriction can be proved by method (2) of Section 2. (See
Schwartz (1964b).) It is not known whether or not (4.7) is Bayes when n <
p + r, except when r = 1, when the treatment of part (i) applies.

(iv) Without giving any details, we list a few of the many other examples of
a priori distributions with respect to which the Bayes procedure can be com-
puted and is fully invariant:

(a) For 0 < k; < 1 and k, > 0, modify (iii) by letting ¢ = Zq(k.I, + B)
under H, , the conditional density of the r X r matrix 8, given », being

g(n) etr {—3k'88" — o' (I, + 11') "n(kel, + B8) (kal. + 8)]},
where
g(n) = k'L — o' (L, + m) 7" etr (3 (I, + n0)7n
A=L + (k'L — o' (Ip + 20) ') 0 (L + nn') )
the marginal density of » under H; is now cs|I, + 2’ |7t /g(n). The Bayes
critical region is
(4.8) etr {2k2(YY 4+ (1 — k) XX')7XX'}
JYY + XX Y 4+ (1 - XX z e
For k; = 1 we have the same modification as in (iii), so that in that case the
approach only proves that (4.8) is Bayesifn > p +r — 1. |
(b) If r = p, alter dIL,(n)/dn(i = 0, 1) in (4.1) by multiplying it by |nn
where p — r — 1 < t < n — p + 1; these inequalities, needed for integrability
of the altered dII;(4)/dn, come from an obvious modification of (3.7) and corre-
sponding considerations near |7n’| = 0. The integrand in both the numerator
and denominator of the third expression of (4.2) is multiplied by |7|""*. Using

a result of Constantine (1963) (p..1279), the resulting fully invariant critical
region can be written as

’lt/2
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(4.9) Fi((r 4 8)/2,r/2, (XX + YY)'XX) = ¢,

where ,F; is the hypergeometric function of matrix argument (which is a poly-
nomial multiplied by an exponential if ¢/2 is an integer; see Herz (1955)).

(¢) If (i) is modified only by putting £ = Z4B with a corresponding change
in dI;(n)/dy in (4.1), where B is a fixed r X r matrix, we obtain

(4.10) tr (XX’ + YY)'XB'BX' = ¢,

which is not fully invariant (unless B is orthogonal). However, if we instead put
¢ = ZnBe where B is again fixed and (4.1) is altered under H; by letting the
r X r orthogonal matrix e be uniformly distributed over the orthogonal group
and independent of 5, we obtain, according to James (1964) (formulas (25) and
(30)), integrating first over n and then over e, the fully invariant test

(4.11) oFo(3B'B, X'(XX' + YY)7'X) = ¢,

where oFy is the hypergeometric function of two matrix arguments.

(v) We now consider the case n < p. If n < p < n + r, the test (4.3) (for
example) is a nontrivial fully invariant test, but the Bayes approach of (i)
fails; the admissibility in this case is still obtained by the method of Schwartz
(1964b). When n 4+ r < p, the only fully invariant tests are the trivial fully
randomized ones (which will be seen below to be inadmissible). However, there
are reasonable admissible tests which are not fully invariant. For example, let
W = AV for any fixed nonsingular p X p matrix 4, and let W' = (W, , Wiy)
be a decomposition of W with Wy having n» rows. We now let both II, assign
all their measure to those @ for which W, and W, are independent and the
columns of W, have any specified distribution (for example, W, can have
density ¢pn,r+n(.; 0, Ip_,) under both H;). The parameters of the distribution
of Wy have a priori densities on E™ given by (4.1) with p replaced by n. The
derivation proceeds as before to show that the test (4.3), with (X, Y) replaced
by W, is admissible Bayes. Lemma 3.1 again extends this result to the case
where h > 0.

We remark that, when, n < p < n + r (which is only possible when r > 1),
the test (4.3) can be shown from the results of Das Gupta, Anderson, and Mud-
holkar (1964) to have nontrivial mimimum power on the set Hys =
{tr =7 = ('}, so that the trivial randomized test of the same size cannot be
maximin on any fully invariant set contained in Hy, for some ¢’ > 0. However,
when n + r < p the trivial randomized, test is maximin on such a set (although
inadmissible if n > 0, as is shown by comparison with the test based on W) ;
this follows from the fact that the maximal invariant under the group of lower
triangular matrices does not depend on the last row of X (see Giri, Kiefer, and
Stein (1963) for this type of computation).

The fully invariant tests for the problem of this section are well known to
depend only on the nonzero latent roots ¢; (say) of (XX’ + YY')7'XX’. The
test (4.3), based on ;¢ , has received much less attention than the likelihood
ratio test (4.7) (based on J]; (1 — :)™), Roy’s test (based on max; i), or
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Hotelling’s T’-test (based on Y, t;/(1 — t;)). All of these tests of course reduce
to Hotelling’s T"-test when r = 1, to the (univariate) analysis of variance F-
test when p = 1, and to Student’s two-tailed ¢-test when p = r = 1. The test
(4.3) was suggested by Pillai (1955), who has studied the distribution of the
statistic under H,, and it has also been studied by Schwartz (1964a), who
proved its admissibility and certain other optimum properties.

5. Independence of sets of variates. Here V = (¥, U) where under @ the
columns of V are independent with common unknown nonsingular covariance
matrix 2, Yis p X n with EY = 0,and U is p X h with EU = » (unknown).
Let V' = (Vip, Vi, ..., Vi) where V(; has p; rows and > % p: = p. Under
H, the V; are independent, so that

s O 0 e 0
{0 = 0 o
2 = . 0
0 0 0 2w

where Z.; is p; X p:. The problem in this form usually arises (by means of an
orthogonal transformation on the right) from that of observing V.= (V1, Vs,

., V) where Viisp X h,n = (m — 1)h, EV; = v for all 7, and V has in-
dependent columns, each with covariance matrix Z. In any event, we can con-
sider the case » = 0 and then obtain the general result from Lemma 3.1. We
shall also assume n = p; the results when n < p are parallel to those discussed
for the case n + r < p in the previous section, in the existence of admissible
tests which are better than the trivial randomized test, which are based (for
example) on only some of the rows of ¥, and which (like all tests) have trivial
minimax properties.

We let IT assign all measure to = s of the form I, + nm under H; , where
nisp X 1, and to =705 of the form

I, + 7010 o 0
0 I, + 19n@ :
: 0 : 0
0 s 0 I + nwnwm
under H,, where n; is p; X 1. We set
(5.1) dily(n)/dn = |I, + nn'[ ",

dlly(n)/dn = [Lizo [T + neomeol ™"

According to (3.7), the densities (5.1) are integrable on E” provided n > p. We
obtain, under H,,

(5.2) fv(y, 2) dls(n)/dn = cretr {—3yy'} exp { =312 i 1ywymnol,
and, under H, ,

(5.3) Fr(y; 2) dli(n)/dn = coetr { —3yy'} exp { —3n'yy'n}.
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Hence, from (3.1), we obtain that, for ¢ = 1 and n > p,
(5.4) L YaYOl/IYY ]z e
is an admissible Bayes critical region.
The derivation of the test (5.4) required n > p, and thus that approach does
not handle the “minimum sample size”. In the special case k = 2, p, = 1, a

slightly different trick, used by Lehmann and Stein (1948), will work even when
n = p. Let II assign all measure to 2™’s of the form

1 'n/
I, + under H;,
nom

where nis (p — 1) X 1, and to =™ s of the form

1—-b 0
I, + , under H,,

0 Ly
where 5 againis (p — 1) X 1and0 £ b £ 1.

We set
d My(n) (1 n/)_”lz
— =1 ' ,
dn » n oM
d To(n) _ (1 - b 0)‘?’2
a0 ’
which are integrable on E”~". Consider the particular Bayes test which rejects if
(5.5) J ¥(ys 2)Ma(dn)/[ f+(y; 2)Me(dn) = 1.
Carrying out the integrations according to (3.1) yields the rejection region
(5.6) exp (Y0 Yo (Yo Vo) Yo Yu)/exp (3bY0Yw) = L.
Taking logarithms of both sides, we finally get the rejection region
(5.7) YoV (YoYe) YolYu/YoYon 2 b,

which in this special case is equivalent to (5.4).

As in Section 4, an infinite-dimensional set of II’s will yield (5.4), and other
fully invariant tests can be obtained. (See also the second paragraph of Section
7(1).) The test (5.4) is the likelihood ratio test. For k = 2, p1 = 1, it is the R*-
(multiple correlation coefficient-) test, which when p = 2 reduces to the classical
two-sided test based on the sample correlation coefficient.

The technique of Section 6(ii) below can be applied to yield tests concerning
the independence of subsets of the components which involve a total of fewer
than p of the components.

6. Other problems of testing means.
(i) Generalized Behrens-Fisher problem.Let V = (V®, V® ... V®) where
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VvV is p X (mn;). Under Q the n; submatrices Vl(i),'Vz(i), e, V) of V@ each
of size p X m, are identically distributed, with EV . = t* and with each column
of VO having covariance matrix =@ The problem is to test Hy: £ = ® =
<o+ = £9 One of the ways of treating this problem is to reduce it to that of
Section 4 by considering II’s which assign all measure to a set where a;2® =
a:2® = ... = q,29 where the positive numbers a; (or, equivalently, their
ratios) are specified, and where also 2@ = ... = 3® = [ £ = ... =
£® = 0. Writing

S = 20, > Ha(v,® — VWY - 7Y,
(6.1) V = (Xina) " D" na Ve,

T = Z?_l niai(V(‘) - V)(V(z) - V),,

U= (Xina)'?,
and reducing the problem to the canonical form of Section 4, we can then use
all of the results of Section 4 with XX’, YY’, r, and n replaced, respectively, by

T, S, (¢ — 1)m, and m2_,% (n; — 1). Thus, for example, if m Y ,* (n; — 1) = p,
the critical region

(6.2) tr(S+T)'T=c¢

is an admissible Bayes procedure. In the case k = ¢ = 2, m = p = 1, we obtain
Student’s test if we set all a; equal, and Welch’s (simplest) test if a; is propor-
tional to 1/n:n; — 1). These choices thus yield corresponding generalizations
for general m and p. (However, these admissibility results have limited interest
because of the lack of similarity.)

Admissible tests of equality of a subset of the components of the ¢ can be
obtained, in the manner of (ii) below, by basing a test such as (6.2) only on
these components.

(ii) Tests concerning a subset of components of £. If in the first paragraph of
Section 4 we began with the more general form EV = Li£L., with Ki(K, = 0
under H, , we would have in the canonical form, in place of (X, ¥'), a random
matrix with an expectation matrix some of whose elements (or linear combina-
tions thereof) are 0 under 2, and some additional ones of which are 0 under H, .
Bayes procedures for this problem can be found using modifications of the
methods of Section 4.

Since the tests obtained in the most general case are less simple than those
obtained in other cases, we shall for the sake of brevity mention here only the
following special case: V = (X, Y, U) with the assumptions of Section 4 except
that £ = (£ , £ , 0), where £ is p; X 7 and p1 + p2 < p (here p; may be
0). Write V.= (Viy, Vi, Vis), in the same way. Under Ho, £z = 0. Here
we shall give an example of a reasonable class of admissible tests which are simi-
lar but not fully invariant exeept when p; = 0 (i.e., under

ABC G
X —>{0DE | X +1{0
00F 0



ADMISSIBLE BAYES CHARACTER OF INVARIANT TESTS 763

where |A||D||F| # 0), but which are intuitively appealing and, as described in
the next paragraph, have further justification. Let II assign all measure to the
set where the submatrices Vi, Vo), and V3 are independent, and where the
columns of V) and V3 have zero means and identity covariance matrices. All
results of Section 4 then apply, with p., Xo, Yo, £@ , v, 22 replacing p,
X, Y, 2.

We remark that any minimax or local minimax property (on a set described
in terms of £ and 2) of a test of Section 4 also holds (in terms of £z and =z)
for the corresponding test based on V) in our present setting; this follows from
the validity of such a minimax property on the subset of @ where V5 and V'
have zero means and identity covariance matrices and are independent of Vg ,
together with the fact that the power of the test on Q depends only on &g and
25 . We note that a property described in terms of &g and = (unlike one de-
scribed in terms of the eigenvalues of (22 — 23523 Z2) fmte is not fully
invariant except when p; = 0, which is why corresponding minimax procedures
which are fully invariant need not exist even in the case py = 0, p. = p; = 1.
The rationale behind consideration of a smaller group (with C = 0, E = 0, with
respect to which appropriate tests based on V, are invariant) was discussed in
Section 2. Cochran and Bliss, Stein, and Olkin and Shrikhande have considered
some of the problems of this subsection.

(iii) Testing equality of components; Scheffé tests. As another example of the
general problem outlined in the first paragraph of (ii) above, suppose £ =
(£ €y E@» ** » £ » Ewsy » 0) Where £ is po X m for 1 < 4 < k. Under
Hy, tqy = &g = -+ = kg . By letting IT assign all measure to the set where the
k + 2 submatrices of V (corresponding to the above subdivision of ¢) are in-
dependent, with the last two having 0 means and identity covariance matrices,
and with 2y = 2p = -+ = Zy (unknown), the treatment of this problem can
be reduced to that of the Behrens-Fisher problem of (i) above. The resulting
tests are of course not invariant under such transformations as X — Xy
+ Y2 A9X (1 £ 7 = k), where 49 is py X o and the transformation is
nonsingular; these leave the problem invariant.

Somewhat different tests can be obtained in this last problem by the following
device: For simplicity, suppose k = 2, and dispose of the last two submatrices
of V as above. (The test will again not be fully invariant.) The first two sub-
matrices V¢ and V) are, however, independent with probability zero under II;
and II assigns all measure to the set where 2y = Zp = I,; — 212 and £q) = — £
(which last includes éq = £ = 0 under I). Write Vi = Vi — Vi and
Viy = Vo + Vi . Then II assigns all measure to the set where the parameters
of V¥ = (V) , Vi) are as follows: £5, arbitrary under H; and 0 under H, ;
£ = 0, 25 = 2I,, 2% = 0, =} arbitrary positive definite under both H; .
We can now use the techniques of Section 4, just as in part (ii) above. We con-
clude, for example, that if n = p, the critical region

(63) tr[(Yoy — Yo )(Yoy — YY) + (X — X)Xy — X»)'T"
(X — X)X — X)) Z ¢
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is an admissible similar Bayes procedure. When p, = r = 1, this is Scheffé’s test
for the Behrens-Fisher problem (in canonical form); however, in that context
it is usually assumed that Z;; = 0, which is not (and cannot be) assumed in the
above development.

(iv) Tests concerning a subset of components of = '£. This problem, most re-
cently considered by Giri, (1964), (1965), arises from discriminant analysis.
The example of (ii) above is modified by setting (7'¢)" = I = (I'y, I'y , 0),
with Ty = 0 under H,. This problem can be treated by modifications of the
methods used above. For example, as in (ii) we can obtain tests by letting IT
assign all measure to the set where V , is independent of both V) and Vs . As
in the case of (ii), one can obtain many reasonable tests which are not fully

invariant (i.e., under
A00 G
X —|BCO | X + (0)
DEF 0
where |A||C]|F| # 0).

(v) Classification. Suppose V. = (V®, V®, V) where V¥ =
(V@ - V,(,.’;.)), each V. being p X r, the columns of V being independent
with common unknown covariance matrix 2, and EV,”? = Em(p X r). It is
desired to test Hy : £® = £® against H, : £9 = 5(2); that is, a sample of size
m; from population (7 = 1, 2, 3) is to be used to classify “population 3” as
either “population 1’’ or “population 2. Let m = my; + ms + m;. As an ex-
ample, we shall prove the admissibility of the likelihood ratio criterion, analogous

to (4.7). Write (m — 2)7% 8P for the usual best unbiased estimator of =
under H;, and write

Y(J? = (mj + ms)—é(mjf](i) + mavra)),
Z(J') = mg_j-['/@—j)’
U(J') = (Y(J') Z(J')) EU(J’) — V(j).

Let Q' be any orthogonal mr X mr matrix such that VY = (w? U 9y where
WP isp X (m — 2)r. We now consider our problem in terms of W, U?, Under
H; the U corresponds to the nuisance parameter »*? which we dispose of in
the manner of (3.13) with P = I, (again writing 2™ = I, + ) with np X 1);
although Lemma 3.1 does not apply directly (because the nuisance variable
U differs under the two hypotheses), we conclude from (3.13) that an admis-
sible Bayes procedure for our problem car be obtained in the form: select H; or
H; according to whether

etr {—3uu™"} [ fwr (0?5 (I, + m')™) dilLi(n)
etr { —3u®u®} [o fwer (W®; (Ip + nn')™") dlla(n)

Under both H; and H, , we let dILi(n)/dn = I, + n'|"™ " which according
to (3.7) is integrable provided (m — 2)r > p. Using (3.1) and the fact that

> or <ec

(6.5)
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W(i)w())’ — S(i) and U(I)U(l)' + W(I)W(l)' — Dv(2)U(2)’ + W(2)W(2)” we obtain
(6.6) ISP/I8P] > or <e¢

as an admissible Bayes rule for classifying population 3 as being the same as 1
or 2 (respectively), provides (m — 2)r > p. This procedure is fully invariant,
under all transformations of the form V,> — AV,” + B with 4 (nonsingular)
and B independent of ¢ and j. It is the likelihood ratio criterion (Anderson
(1958), pp. 140-141).

This test enjoys a kind of similarity, in that it has constant power on the set
where Z7'(£® — £2)(¢® — £®)’ has specified eigenvalues; in particular, the
power of the test is constant over the set where ¢ = £?.

Other admissible procedures can be obtained by modifications of the type
considered earlier. In addition, admissible procedures can be obtained for classi-
fication into one of k(>2) populations: since the left side of (6.6) is propor-
tional to the ratio of two a posterior: probabilities, the analogue of (6.6) is, in
an obvious notation, to choose the classification j which minimizes ¢;|S?|.

The test (6.6) is of course also admissible for the problem where H; and H, are
enlarged so as not to assume =¥ = =@, H,being ¢¥ = ¥, 29 = 3, However,
certain additional tests which may seem more appropriate can be obtained simi-
larly in this case. For example, a fully invariant test can be obtained by putting
=D = (I, 4 nins )™ under H; with n; p X 1, and with

dl(n)/dn = |I, + nand | VL, 4 e -0,

there are integrable if (m; — 1)r > p for ¢ = 1, 2. Writing T® = yOyw’
— m; VPV an analysis similar to that used to obtain (6.6) yield the procedure

(6.7) [S® — TOT®)/I8® — TP|T®| > or <e.

A classification problem with known covariance matrices was considered by
Ellison (1962). See also Das Gupta (1965).

(vi) Testing between two possible values of the mean. In Section 4, suppose (in
the canonical form) that Ho is ¢ = £, while H, is £ = £, Letting Ve =
(X — g"’), Y, Z), we can use any of the IIy’s of Section 4 on V” under the present
H; . For example, comparing the denominator of the second expression of (4.2)
for ¢ = 0, 1 when z is replaced by z — £, we obtain

(6.8) etr {3t — XX — £NX — €)' + YY"
KX _ E(OI))(X _ E(O]))’ + Yy’lr/2 g ¢

as an admissible Bayes critical region. Other forms can be obtained similarly.

Modifications in these H; can be made along the lines of problem formulations
considered earlier in this section; for example, the hypotheses can specify values
of only a subset of the elements of £, and the subset can differ under the two H; .

(vii) Lekmann-Stein examples. Many of the considerations of Lehmann and
Stein (1948) have obvious multivariate analogues, but of course one no longer
obtains uniformly most powerful one-sided tests (as in equation (6.9) of Leh-
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mann and Stein). For example, in the setting of Section 4 with A = 0, to test
H,: E = 0 against H; : £ = £, 2= 2(0) (s1mp1e alternative), write V* = Oty
and £* = 3O~ *2(0) to reduce H, to H*: == I, . In this form the problem
is considered on pages 509-510 of Lehmann and Stein.

7. Tests concerning the covariance matrix.

(i) Equality of covariance matrices. This usually arises from V* =
(V*O ) y*@ .. V*®Y) where the columns of each V*? are identically dis-
tributed. (The reduced form obtained below also applies if several V** are as-
sumed to have equal =’s or, equivalently, if V* has identically distributed
p X d; submatrices with d; no longer necessarily 1.) After an orthogonal trans-
formation on the right of each V*?, the problem is reduced to one where, under
Q,V=FYV® ... v® W) with EV?® = 0, EV,"V,"" = 2 (unknown),
EW = » with all elements unknown and unrelated. Here V' is p X n;. Hyis
3® = 3% = ... = 2® (the common value being unspecified). As in previous
sections, we may suppose W absent, since Lemma 3.1 then handles the case
where W is present; in the application of Lemma 3.1 in parts (i) and (ii) of this
section, a given column.of W will sometimes have a covariance matrix of different
form under H, and H; , but the C? of (3.9) can always be taken to be a scalar
multiple of I, . Let ¢:(0 < ¢ < k) be positive integers. Let II, assign all measure
to the set where 2® = ... = 3® = (I, + »1')™ where nis p X ¢, and let
I, assign all measure where =P = (I, 4+ 9m)™" where »; is p X q;. Further-
more, put N = Y % n;and

(7-1) dHO(ﬂ)/dn = 'Ip + ﬂﬂll—le
dly(n)/dn = Tliza 1L, + nand ™"
According to (3.7),if gg = N — pand ¢: < n; — pfor 1 < 7 < k, the densities

of (7.1) are integrable. In this case an integration of the type we have performed
repeatedly yields, writing 8 = v@y @’

(7.2) (2261 821/ 151 1891 2 ¢

as an admissible Bayes procedure, which issimilar and fully invariant if D _f ¢; =
@0 . Such a test can be obtained for the simplest choice ¢; = 1 (with ¢ = k)
provided n; > p for 1 < ¢ < k. The likelihood ratio test (resp., Barlett’s modifi-
cation thereof) can be obtained in this way for some sets of values n;, by setting
gi = a(n; + 1) (resp., ¢; = cm;) and g = >.iq:, where ¢; < 1; the obvious
choice ¢; = 1 does not make (7.1) integrable. This dependence on divisibility
properties of the n, can be overcome for sufficiently large n; by using the analogue
of modification (iv) (b) of Section 4, which we shall now describe.

Take all ¢; = p, and multiply dIT;(n) (resp., dlly(n)) in (7.1) by TIi [na|*"
(resp., by [nn/|®?) withp — 1 < t; + ¢ < ni — p + 1 (resp, p — 1 < ty
4+ g < N — p + 1) for integrability. There exist such ¢; provided min; n; >
2(p — 1), so that slightly larger sample sizes are needed than for small ¢; in
(7.1). We obtain the test of (7.2) with ¢, replaced by ¢; + t; for 0 < 7 < k.
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Setting ¢; + t; = c1(n; + 1) (resp., = ;) for 1 < ¢ < k and Q + t =
Dh (g + b)), where ¢, is slightly larger than (p — 1)/min;n; (resp.,
(p — 1)/min (n; + 1)), we obtain the likelihood ratio test (resp., Bartlett’s
modification), provided min;n; > 2(p — 1). The use of this modification was
pointed out to us by Professor Olkin (to whom we are also indebted for other help-
ful comments) in the equivalent form of replacing |nn'|*/|T + an'|™? by the
density [A|“?*P/II 4+ A" on the positive definite matrices A = =™ — I,
This technique can also be applied in Section 5 where, however, it only exhibits
a wider variety of a prior: densities relative to which (5.4) is Bayes, 'and requires
somewhat larger sample sizes. As we have seen in Section 4(iv)(b), the use of
such densities there leads to a different test from that obtained for ¢ = 0. Modi-
fications of (7.2) and other forms of tests can be obtained by using other forms
of II, as in previous sections; in particular, EW can be treated in the manner of
(iii) below instead of by means of Lemma, 3.1.

As a one-sided variant of the above, suppose H; is altered to state that =®
— 3O 4 nonnegative definite for 1 < ¢ < k, and not zero for all . In that
case ()T — (z9)! is nonnegative definite, so that a possible choice of
dIi(n)/dn is IIIIc I, + Zi mm'l—n;ﬂ where 7, is p X ¢, and (Ew)—l =1,
+ D .inm under II, . Using (3.5), a modification of the argument which led
to (3.7) shows that this is integrable if D> fn, = p + ¢;for 1 < { < k, and,

with the II, of (7.1), produces the admissible Bayes critical region

(7.3) 1226 81/ TToe | 200 891% 2

which is fully invariant if )} ¢; = go . The technique of the previous paragraph
can also be used to obtain (7.3) with nonintegral ¢; . Among possible alternative
forms is one obtained from (7.4) below.

The technique of Section 6(ii) can be applied to yield corresponding tests
about a subset of the components.

(ii) Proportionality of covariance matrices. Suppose the setup of (i) is changed
fori =0,1to H;: auZ® = ap2® = ... = aikE("? , Where only the positive
values a;; are known. In this problem each H; is acted upon transitively by the
full linear group of nonsingular p X p matrices, as well as by the group of non-
singular lower triangular matrices. Hence, every procedure invariant under
either group has constant power under each H;, so that for each group there is
a best invariant procedure of any specified size. Now, it can be checked directly,
using the Neyman-Pearson lemma, that the essentially unique best triangular
invariant test is not invariant under the full linear group (Lehmann (1959),
p. 338 treats special cases of this fact), so that no fully invariant procedure can
even be minimax, let alone admissible. Thus, we cannot hope to find any fully
invariant admissible procedures for this problem. Whether the best triangular
invariant procedure is admissible is unknown; we have been unsuccessful in
showing that it is Bayes. Instead one can use our previous methods to find ad-
missible procedures of simple structure which, however, are not triangular
invariant.
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As an example of the latter approach, we can, under H;, let a2 = (I, +
7n’) ™" and use the I, of (7.1) with ) replacmg o - This yields

(74)  etr {D_% a0sSP}| 0% @0s8 |70 Jetr { 3% 01,8 N2k a8 > ¢

" as an admissible Bayes test provided g < N — pforj = 0, 1.
For a two-sided version of the above, suppose H, is altered to read: b= =
bie2® = -+ = bu=® for either h = 1 or 2, where the b,; are specified positive

constants. Lettlng I, = Iy + cdlye where Iy, is obtained from the one-sided
II; by replacing a;; by bs; , we obtain

(7.5) etr { D iey aeeSP}| D2 ks aoiS®|100/
Dot cnetr { Dty DS P} Dby b8P e > 1

as an admissible Bayes test if gy < N — p for h = 0, 1, 2.

Nonintegral ¢’s can be obtained in (7.4) and (7.5) as in the paragraph follow-
ing (7.2).

The technique of Section 6(ii) can be applied to yield corresponding tests
concerning only a subset of the components.

(ili) Testing that covariance matrices have specified values. With the V* of
(i), suppose =, 267, - -+, 2§® are specified positive definite matrices. We now
consider H, : E(’) = E”’(l = ¢ £ k). For the sake of brevity we shall detail
only the case k£ = 1, the modifications required when £ > 1 being straightfor-
ward. Thus, we consider V = (V;, Vo, ---, V,, W), the vectors V; and W
having common covariance matrix 2, with EV; = 0 and EW = ». Hy is 2 =
2y (specified), and we shall consider various possible alternatives.

First suppose we also have specified two positive definite matrices =, and
2oy such that 2o — Zo, and 2oy — Zp are both positive definite, and suppose
that H, is that 2 is one of the pair =, , Zoy (or else that H; is: either Zo, — =
or Z — Zyy is nonnegative definite). In this case we can imitate Lehmann (1959),
p. 332, as follows: Set 0 < ¢; < 1, let » be a fixed vector, and let II,, II,, ,
I, and II; = ¢, + (1 — ¢)Is be probability measures such that

(7.6) {2 = 24 =1, dllo(v)/dv = ¢p(v; vo, Zov — Zo);
(7 7) Hla{z = EQL} = 1, dnla(V)/dV = qu,l(v; Y, Zoy - EOL);
T M2 = S, v = w} = 1.

Then, writing S = Y7 V,V)/ and G = Sqg(W — n)(W — »)’, we obtain
the admissible Bayes critical region '

C1 izoz,r"/z IEOU}—% etr {-—-%ZS}{ - %G} + (1 - Cl) |ZOL|—(n+l)/2
-etr {—1Zw S — 1G}

>¢
120" |Z00| * etr {—12'S — 3G} =

(7.8)

or, for arbitrary nonnegative c; and ¢; (not both zero),

(7.9) csetr {(Zp" — Zo2)8} + cretr {(Z0" — Zg0) 8} =
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If either ¢ = 0 or ¢, = 0 (i.e,, ¢ = 1 or 0), we obtain a one-sided test. If
there are positive numbers a, < 1 < ay such that 2y, = a3 and Zy =
ayZy , the test (7.9) simplifies to

(7.10) tr2 'S =¢ or =g,

where ¢; and ¢ are arbitrary (¢s = « or ¢s = 0 yielding one-sided tests); this
is in the form which is familiar when p = 1. The test (7.10) is thus also admis-
sible for Hy : = = 3, against H, : £ = aZ, for some a # 1. It is thus also ad-
missible for Hy : = = Z, against H; : £ # =, . Recalling Corollary 3.2, we note
that we have made only the minimal assumption n = 1 here.

The techniques used earlier may also be applied to obtain other tests for the
present problem. For example, to test Hy: = = 2, against H; : 3, — 2 is
nonnegative definite, we can treat » by Lemma 3.1 and, in terms of V;, ---,
Va, let 27" = 23" + 99" under H,, with n p X 1 and dIi(n)/dn = |Z5" +
7’| ~™2. This is integrable if » > p, and in that case yields the admissible Bayes
critical region

(7.11) |S] £ e

The technique of Section 6(ii) can be applied to yield tests concerning the
values of covariance matrices of subsets of the components.

(iv) Testing symmetry or sphericity of the covariance matrix. Suppose V =
(Y, W) where under Q the independent columns of V have common covariance
matrix =, where EY = 0 (p X n), and where EW = » (unknown). Here
P 2 3. Hy is the hypothesis of “symmetry”, that = is of the form A, + 8J,
for some (unknown) A > 0 and 8, where J, is a p X p matrix of 1’s. It will be
seen that II assigns all measure where 8 = 0 and hence that W can be handled
by using Lemma 3.1, so we treat the case where W is absent. Let 2™ = I, 4+ o7’
under H, , with p p X 1, and let 2" = (1 + ay’)I, + by’J, under H,, where
nis 1 X 1and a = 0, b = 0, with not both of a, b equal to zero. Moreover,
for ¢ > 0 let

(7.12) dlly(n)/dn = |(1 + an®)I, + by’ T[],

dlly(n)/dn = |I, + »'| "2

These are integrable if np — ¢ > 1 and n > p. It is easy to verify that II; gives
measure 0 to H, . Using (3.1) and writing S = Y'Y’ as before, we obtain

(7.13) I8]/latr 8 + b2 2 8] = ¢

as an admissible Bayes test. If ¢ = 2p — 1, we obtain a scale-invariant test.
This is of course really a test of the hypothesis that Hy holds with correlation
—b/la + (p — 1)b] between any two different components of V; .

When 8 and b = 0 in the above development, (7.13) becomes the likelihood
ratio test of ‘“‘sphericity”’. The ratio of the denominator of (7.13) with & = 0 to
the same expression with b > 0 gives an admissible test of sphericity assuming
symmetry.
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