ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Western Regional meeting, Berkeley, California, July
19-21, 1965. Additional abstracts appeared in earlier issues and others will appear in
the October issue.)

b. Selection From Multivariate Normal Populations. KHURSHEED Aram and
M. Hasaees Rizvi, Indian University and Ohio State University. (By
title)

Two problems of selection are considered; Problem I concerns selection of ¢ largest
(that is, with largest parameter) of k¥ populations and Problem II concerns selection of a
subset containing the ¢ largest. Procedures R; and R, respectively for Problems I and II
are given. R; selects the ¢ largest populations corresponding to ¢ largest x;’s, z; being a
statistic form <th population =; . R, selects a subset such that ; is retained in the subset
iff d(x; , Tk—e411) = ¢, where ¢ > 0 and z;) denotes the sth smallest z; and d is a metric;
two metrics di(y, z) = 2z — y and d:2(y, z) = 2/y are considered. The probability of a cor-
rect selection is required to be no less than P*, 1/ ¢ < P* < 1, for both the problems.
This P* condition determines the common sample size for R, and the constant e for R; .
Some operating characteristics of these procedures for a “monotone class’’ of populations
are shown. Application of R, and R to multivariate normal populations =::N (ui, 2.:),
i=1,---,k,is given when populations are ranked according to 6; = w:’ D ;! . ; both
cases of known or unknown ), are treated. Parametric subspaces where the P* condition
is satisfied are exhibited. Upper bounds for expected size of the selected subset are ob-
tained when ¢ = 1.

6. A New Proof of Some Results of Rényi. MikL6s Csored, Princeton Uni-
versity.

In his paper, “On the theory of order statistics,”” Acta Math. Acad. Sci. Hungar. ¢ (1953),
191-231, Rényi divides the usual Kolmogorov-Smirnov statistics by F(z), the continuous
distribution function of the population from which one assumes having a random sample,
and derives their limit distributions by reducing the respective Markov processes to addi-
tive Markov processes. In this paper, using the ideas of Doob and Donsker, it is shown
that, in the limit, Rényi’s random variables can be replaced by a specific Brownian move-
ment process, and this way his original theorems are proved.

7. Characterization Theorems of the Weibull and the Weibull-Gamma Dis-
tributions. Satva D. DuBEky, Procter and Gamble Co. (By title)

Let X,, Xz, -+, X. be n independent identically distributed random variables and
let ¥, = min (X,;, X:, ---, X.). Then we obtain the following characterization theorems.
TueorEM 1. If each X; has the Weibull distribution with the parameters a, 8 and v, then Y,
obeys the Weibull law with the parameters a, n™8 and v. Conversely, if Y. has the Weibull
distribution with the parameters u, o and X, then each X obeys the Weibull law with the pa-
rameters u, no and \. COROLLARY 1. Theorem 1 is valid for the exponential distribution also.
TaeoreM 2. If each X: has the Weibull-Gamma (W-G) distribution with the parameters a,
v, 8 and 4, then Y, obeys the W-G law with the paramelers «, v, né and n. Conversely, ¢f ¥
has the W-G distribution with the parameters u, \, 8 and o, then each X; obeys the W-G law
with the parameters u, N\, n~10 and o. COROLLARY 2. Theorem 2 is also valid for the Lomax
(Exponential-Gamma) and the Burr distributions.
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8. An Analysis for Shift in Mean of a Nonstationary Time Series. M. J. HiNica
and J. U. FarLEY, Carnegie Institute of Technology.

Consider a consumer who is switching between Brand X and other brands of some prod-
uct. Let p be the unknown probability of his choosing Brand X instead of some other. Due
to the effects of advertisement it is hypothesized that p is not constant over time, but in-
stead shifts in a stepwise manner from time to time. Let r; be the proportion of choice of
Brand X in m choices made by a consumer during the 7th observation period. Let X; = 2
arc sin r;#, which is approximately normal N (2 are sin p?, 1/m). Observing over n periods
we have X, , :-- , X, where it is assumed that the X; — 2 are sin p;} are jointly normal
with a known covariance matrix. We assume that there is at most one shift over the n
periods and that the shift has probability v of occurring in any of the periods. If the shift
occurred in the period j,

]

pi =6 fori <j

0;forz = j

]

where the 6; are unknown. This has probability v and the probability of a shift sometime
over the whole period is ny < 1. Efficient estimators are given for 6, and 6, for the case
where the shift |6; — 6,] < 1/m. The estimators are linear functions of the statisties Y, X;
and > ¢X;. An approximation to the likelihood-ratio test for a shift over the n periods is
‘developed.

9. On the Property (W) of the Class of Statistical Decision Functions. Hiro-
kIcHI Kupo, University of California, Berkeley.

The property (W) is introduced by LeCam [Ann. Math. Statist. 26 (1955)] as an extension
of Wald’s concept of weak compactness in the intrinsic sense and is an essential part of the
assumptions for the general complete class theorems. Several sufficient conditions for the
property (W) and their applications will be discussed. For this purpose, we shall introduce
a geometrical notion of half-closedness of a family of non-negative extended functions.
Roughly speaking, the class of all decision functions has the property (W) if the family
{L(-, a):ae the action space A} is half-closed, where L (6, a) is the loss function. However
this condition is not enough for the property (W) of the closed subset of the class of all
decision functions. For such a subset the following condition will be needed: for any posi-
tive integer n and any 6 there is a compact Cn,g C A4 such that n = infs¢c, o L (06, a).

10. Sequential Procedures for Selecting the Best One of Several Binomial
Populations. Epwarp PAuLsoN, Queens College and Courant Institute
of Mathematical Sciences, New York University.

Single-stage procedures for selecting the binomial population with the greatest prob-
ability of a success were given by Sobel and Huyett [Bell System Tech. J. 36 (1957), 537-
§76]. In this paper corresponding sequential procedures are developed based on taking a
random number of measurements with each population not yet eliminated at every stage
of the experiment. Let p; be the probability for population []; , denote the ordered prob-
abilities by ppy = p12) = -+ = pu , and let [] ;) be the population with probability p
(Z=1,2,---, k). Let Ni; be a double sequence of independent random variables each
having a Poisson distribution with mean = J, and let 8;, and F:, be the number of suc-
cesses and failures when N, measurements are taken from []; at the rth stage of the ex-
periment. Let « = (1 — P)/(k — 1),A = 1 4+.75d)/(1 —.75d), A = log a/logA,
B=JdM—1)— (A\—1)2]/(A\log\), where d and P are specified in advance. A sequential
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procedure satisfying the requirement P[] is selected | pyyj — P = d] = P is obtained
as follows: at the rth stage (r = 1, 2, ---) of the expériment we eliminate any population
I1: 1eft after the first » — 1 stages for which > %=1 (Sis — Fig) < max; [D 5=t (Sis — F8)] +
A + rB, where the maximum is taken over all populations left after the (r — 1) stage.
The experiment terminates when only one population is left, which is selected as the best
one. A similar sequential procedure has been obtained satisfying the requirement P|J]
is selected | puy/pi2) = ¢] = P.

11. Confidence Limits for the Product of N Binomial Parameters. MELVIN D.
SpRINGER and WiLLiAM E. TaHomMpsoN, GM Defense Research Laboratories,
General Motors Corporation.

The fiducial probability density funetion of the product of N binomial parameters is
derived in closed form, from which exact confidence limits are obtained. Examples are given
to illustrate the procedure for determining explicit confidence limits. The procedure per-
mits the tabulation of the fiducial distribution of the product of an arbitrary number of
binomial parameters, and has an immediate application to problems of reliability of serial
systems.

12. An Admissible Test with Monotone Power Function for the Equality of
Two Covariance Matrices. M. S. SrrvasTava, University of Toronto.
(By title)

Samples of sizes N1 (> p + 1) and N:(> p + 1) are drawn from N (u; , Z;) and N (u2 , =;),
respectively, where N (u; , Z;) denotes a p-variate non singular normal distribution with
mean vector u; and covariance matrix =; . On the basis of these data we wish to test the
null hypothesis Hy:=;7! = Z,7! against the one-sided alternative H;:232,7134 = I + g9/,
where 77’ is a p X p symmetric and positive semidefinite matrix of rank =1 (y may be
taken to be a matrix of order p X r) and the square root Z;* is any factorization of Z; . It
has been shown that the test with critical region { (S:, Sz):det (S: + S:)/det S; > R} is
admissible. Also, the power of this test depends on the characteristic roots of =,2,~!, and
is a monotone increasing function of each of the ordered root of =;2.1.

13. Uniform Convergence of Losses in the Fixed and Sequential m Xn Com-
pound Decision Problem. J. VAN RyziN, Argonne National Laboratory.
(By title)

. The notation is that of the author’s abstracts (Ann. Math. Statist. 86, 1847) for the fixed
case and (Ann. Math. Statist. 36, 362-363) for the sequential case. Let Ly (T*, 6) = N1
¥ ,L(T*, 6;) where L(T*, 6;) is the loss of the procedure T* = {¢(zx, {v), k=1, --- , N}
for the fixed case and T* = {t(zz, 1), k = 2,8, ---} or T* = {t(zs, &), k = 1,2, ---}
for the sequential case. Then, for every ¢ > 0, P[(log N)~IN# |[Ly(T*, 0) — ¢x(0)] = ] = 0
uniformly in the sequence 6 for suitably chosen estimates £, , k = 1,2, --- . The estimates
f£i= (u, -+, £m) are taken as £, = g:x in Equation (14), p. 18 of Robbins (Ann. Math.
Statist., 86, 1-20) satisfying suitable integrability conditions in both the fixed and sequen-
tial cases, plus certain non-degeneracy assumptions in the sequential case. In particular,
if m = n = 2, the sequential case results improve on Theorem 1 of Samuel (Ann. Math.
Statist., 36, 1606-1621) by yielding uniformity in 0, a convergence rate of (log N)~' N%,
and extension to arbitrary pairs of distributions (P,, P,), P, ## P,, while requiring a
weakening from convergence with probability one to convergence in probability. Under
this same weakening, if m = n = 2, the fixed case result yields a convergence rate im-
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prbvement for the class of estimates given above on a two-sided version of Theorem 3 of
Hannan and Robbins (Ann. Math. Statist., 26, 37-51).

14. Theory of Modal Unbiased Estimation. M. T. WasaN, Queen’s University,
Kingston, Ontario. (By title)

A modal unbiased estimate of a parameter of a density funetion is defined and for some
important density funetions modual unbiased estimates are constructed. It is shown that
a modal unbiased estimate may not be unique. A method of construction of it is given and
conditions are singled out to show when it does exist. Furthermore it is proved that maxi-
mum likelihood estimate and BAN estimate are asymptotically a modal unbiased estimate.
The relative efficiency of a modal unbiased, a mean unbiased and a median unbiased esti-
mate are discussed. For a given loss function it is proved that for exponential and Weibull
density functions a modal unbiased estimate has uniformly smaller risk than that of a
mean unbiased estimate, for other given convex loss function they are equivalent. It is
shown also that a modal unbiased estimate has mean square error uniformly smaller than
that of median unbiased estimate. The methods are given to find what type of loss function
can be appropriate for an estimate of given function of parameter of a density function. A
method of estimation by confidence set is discussed. It is proved that for Pareto and ex-
ponential density function confidence interval based on the modal unbiased estimate is
shorter in length than that of uniformly minimum variance unbiased estimate of a pa-
rameter for a given probability of confidence.

(Abstracts of papers to be presented at the Annual Meeting, Philadelphia, Pennsylvania,
September 8-11, 1965. Additional abstracts appeared in the August issue and
others will appear in future issues.)

4., Characterization Theorems for Beta and “FMEL’’ Distributions. Satya D.
Dusgy, Procter and Gamble Co. (By title)

Let X,, X,, -+, X, be n independent identically distributed random variables and
let Y» = min(X;, X,, -+, X.). Then we obtain the following characterization theorems.
TrEOREM 1. If each X has a beta distribution with the parameters a and 1, then Y .= obeys
the beta law with the parameters 1 and n. Conversely, if Y. has a beta distribution with the
parameters B and 1, then each X obeys the beta law with the parameters 1 and n—!. COROLLARY
1. Theorem 1 is valid for the uniform distribution in a weak sense when « = 8 = 1. THEOREM
2. If each X has a flexible modified exponential-model Lomax (FMEL) distribution with
the parameters a, b, ¢ and p then Y, obeys the FMEL law with the parameters na, b, nc and p.
Conversely, if Ya has a FMEL distribution with the parameters o, B, v and & then each X;
obeys the FMEL law with the parameters n~a, 8, n~%y and 8. COROLLARY 2. Theorem 2 is valid
Jor the modified exponential-model Lomax distribution also.

b. Characterization Theorems for Extreme Value and Logistic Distributions.
Satya D. Dusey, Procter and Gamble Co. (By title)

Let X,, Xz, -+, Xx be n independent identically distributed random variables and
let Y, = min(X,, X;, ---, X»). Then we obtain the following characterization theorems.
TrEOREM 1. If each X; has a generalized extreme value (GEV) distribution with the param-
eters, a, p and o, then Y, obeys the GEV law with the parameters na, p and o. Conversely, if
Y. has a GEV distribution with the parameters 8, v and 8, then each X; obeys the GEV law
with the parameters n='8, v and . COROLLARY 1.1. Theorem 1 is valid for the truncated GEV
distribution also. COROLLARY 1.2. Theorem 1 is valid for the extreme value distribution in a
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weak sense. THEOREM 2. If each X; has a GEV-Gamma (GEV-G) distribution with the pa-
rameters p, q, p and o, then Y, obeys the GEV-G law with the parameters np, q, u and o. Con-
versely, if Ya has a GEV-G distribution with the parameters 8, v, 6 and v, then each X; obeys
the GEV-G law with the parameters n™8, v, 8 and v. COROLLARY 2.1. Theorem 2 is also valid
for the truncated GEV-G distribution which includes the standard logistic distribution as a
special case. COROLLARY 2.2. Theorem 2 is valid for the logistic distribution of Gupta and
Shah only in a weak sense.

6. The Moments of a Doubly Non-Central ¢-Distribution. MARAKATHA
KrisuNAN, State University of New York at Buffalo and Indian Statistical
Institute, Madras.

If X is normally distributed with mean & and variance 1, and Y? is independently dis-
tributed as non-central x? with » degrees of freedom and non-central parameter A, then
the ratio X»t/Y follows a doubly non-central ¢-distribution with » degrees of freedom and
non-central parameters & and A. Robbins [Ann. Math. Statist. 19 (1948) 406—410] and Pat-
naik [Sankhya 16 (1955) 343-372] have considered this distribution in certain situations,
although tables of its probability integral do not exist. Approximations to the doubly
non-central ¢-distribution require its moments. This paper gives analytic expressions for
the moments and recurrence relations for the first four raw moments of the doubly non-
central ¢-distribution.

7. A New Method of Estimating Treatment Effects or Treatment Differences in
Balanced Incomplete Block Designs. Paur S. Levy, Harvard Medical
School and Peter Bent Brigham Hospital. (By title)

Graybill and Deal [Biometrics 16 (1959) 543-550] have introduced an estimator
fiw (= (1t + Watss)/ (1 + 1b2)) of a treatment effect, 7, , in a BIBD. This estimator is, in
effect, a weighted combination of the intra-block estimator, ¢; , and the inter-block esti-
mator, #; , with weights 1, and 1 chosen in inverse proportion to the estimated variances
of ¢; and t; . Because of the mutual independence of ¢; , #. , %: and s , and because %, and
s involve mean squares, the method of Meier [Biometrics 9 (1953) 59-73] can be used to
obtain an approximate expression for the variance of fi, . If block effects were assumed to
be nonexistent, and the design analysed as a one way ANOVA model, the estimator, #; ,
of 7; 80 obtained can be expressed as (fit; + fatei)/ (f1 + f2) where f; and f: are constants.
A method introduced by this author [Ann. Math. Statist. 835 (1964) 1394-1395] is proposed
to construct an estimator £ of ; which is a linear combination of ,, and ; . This estimator
has the property of being close to £, when block effects are large and to #; when block effects
are small, Treatment differences, 7; — 7; can be handled analogously.

8. Bayesian Comparison of Means of a Mixed Model with Application to Re-
gression Analysis. GEORGE C. T1a0, University of Wisconsin.

In this paper, a Bayesian approach is adopted to analyse the two way mixed model,
vii=m+ta;+ej,i=1--- ,mj=1,-.-, k where u,’s are location parameters, a;’s
the random effects and ¢;;’s the errors. Under the usual assumption of normality, inde-
pendence and a ‘“‘non-informative’ prior distribution, the joint posterior distribution of
the parameters in the model is obtained. Special attention is then given to the problem of
comparing two means. It is shown that the criterion for comparison follows a modified
Student-¢ distribution. This allows the investigator to extract more ‘‘information’’ from
the data than what is usually possible in the sampling theory framework. A procedure
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with similar properties for an overall comparison of more than two means is also derived.
The corresponding criterion here follows a modified F distribution. An asymptotic method
which yields excellent approximations to the modified ¢ and F distributions is developed.
Finally the analysis is extended to regression models with variance-components appearing
in the error term.

Abstracts of papers not connected with any meeting of the Institute.

1. Stochastic Approximation and Nonlinear Regression-I. A. ALBERT and
L. A. GARDNER, Jr., ARCON Inc. and Lincoln Laboratory, M.I.T.

Let y1, ¥2, --+ be an observable time series with uniformly bounded variances and
8yn = Frn(6). The unknown parameter 6 is an interior point of a prescribed interval Q (finite
or infinite) on which each F, is a given differentiable function with sgn F.'(z) = sa for all
z & Q. For each n let an(2:, -+ , z.) be defined and positive over the n-fold product space
Qn of Q. For points in Q. set Tn(z1, -+ , Tn) = Tn + $2Gn (X1, -+ , Tu) - [Yn — Fn(x,)], and
let [T']g denote the truncation of T in the interval Q. We consider rapidly computable itera-
tive schemes (a must in real-time estimation problems) of the form ¢, 41 = [Ta(t1, -« , ta)lg
arbitrarily initialized by # £ Q. The variety of choices available for {a,} which yield prob-
ability one convergence of {¢.} to 6 is evident from the following conditions, formulated
in terms of vy, = infg |F.'(z)|, A\ = supg | Fa'(z)|, a» = infg, an(@1, -+, 2x) and
@n = 8UPg, @n (1, -+ + , Za): (1) im 8Up An@s < 1, (2) X v¥n@s = ®, and (3) X @ < o or,
if {y.} is an independent process, (3’) > @.* < «. We apply our general result to gain
functions such that a@. = ay»/T»? and G» < bya/T»?% for some 0 < a < b < », where
Tn?2 = 92 + -+ + va2. Then (1) holds if lim sup An/y» < ® and v.2/Tx2 — 0, and (2) and
(38’) if Tw?2 — . (3) is satisfied whenever v, increases as some power of n (e.g. polynomial
regression). When v, increases so rapidly that ~v,%/I'»? does not approach 0, strong con-
sistency is retained if we replace a. by a./n. In practice we use gains which are computed
recursively. The two most important ones are deterministic weights v./T'»* and random
weights |Fa’ (ta)|/ 208 Fi' (t).

2. Stochastic Approximation and Nonlinear Regression-II. A. ALBERT and
L. A. GARDNER, JR., ARCON Inc. and Lincoln Laboratory, M.I.T.

Let y1, ¥2, -+ - be independent random variables with 8y, = F.(6), where 6 is an un-
known interior point of an interval Q (finite or infinite) on which each F., is a given differ-
entiable function with sgn F.'(z) = s, for all 2 ¢ Q. Let A\» = supg |F.'(z)|,
va = infg |Fa'(z)| and T'n? = 412 + -+ + ya2. Let an (21, -+ , z») be defined at every point
in the n-fold product space Q. of @, and suppose infg, @n(%1, -+, Tn) = @ya/Ta?

and supg, @n(T1, -+, Tn) = byn/Ts? for some 0 < a S b < . For points in Q.
define T'n(®1, *** 5, n) = Zn + Sa@n(T1, *+- , ZTn)[Yyn — Fa(z.)] and let [T]q be the trunca-
tion of 7 in the interval Q. Let ¢ be arbitrary in Q, and recursively define
thyr = [Tn(tr, -+, ta)]g for all n = 1. The following conditions ensure e, = &(t» — 0)2? — 0

(p aninteger): (1) lim sup An/ys < ©, (2) Ta2— o, (3) ya2/T'x2— 0 and (4) the 2pth moment
of y» — F,(6) is uniformly bounded. (The theorem remains true when (3) fails provided
@, is replaced by a./n.) Under the same conditions e, = O(1/T,’?) whena > }. If (3) is
strengthened to ) va*/Tst < o, then e, is at most the order of (log I'?/T'x?)? when a =
%, and 1/7,**? when a < 4. In applications the regression functions are usually defined only
over a finite or perhaps semi-infinite interval J. The procedure with @ = J is called ‘‘trun-
cated.” The procedure with F, linearly extended from J to @ = (—», ») is called ‘““un-
truncated.”
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3. Stochastic Approximation and Nonlinear Regression-III. A. ALBERT and
L. A. GaArDNER, JR.,, ARCON Inc. and Lincoln Laboratory, M.I.T.
(Preliminary Report)

Let %1, ¥z, --- be independent random variables with common variance ¢ and Eyn =
F.(6), where 6 is an unknown interior point of an interval J = [4, B] (finite or infinite) on
which each F, is a given differentiable function with sgn F.'(z) = 8. for all x& J. Let \s
= supy |Fa'(x)|, ya = infy |Fn'(z)| and Ta? = v, + .-+ + ys%. Assume (1) lim sup An/va
< ®, (2) Ta? = ®, (3) O vn'/Tnt < w, and (4) the functions ka(z) = Fu'(z)/yn (n = 1,
2, --+) have a common modulus of continuity on J, and converge as n — « to h(z) at each
z ¢ J. Extend F, by linearity from J to the entire real line, and define R(z) = (% |h(¢)| d¢
for —o < z < ®».Let M = R~ be the inverse function and define F.(y) = Fa(M (y)) for
—w < y< . Let ; be arbitrary and Zas1 = #n + 8n a@n [yn — Fa(fn)] where a. is either the
deterministic gain yn/Ta? or the random gain |Fa(%)/2 ¢ Fi2(%). The ta = M (f.)’s are
called “untruncated transformed’’ 6-estimates. If (5) y» — Fn(6) has a uniformly bounded
moment of order exceeding 2, then [D 1 Fi2(0)](t- — 6) is asymptotically N (0, o*). When
at least one of A4, B is finite, the estimate ¢, obtained by first truncating the right side of
the equation for #,.1 from above by R (B) and below by 0 {called ““truncated transformed’’)
has the same limiting distribution provided (5’) T'n"yn — » forsome 0 S » < » and y» —
F.(6) has a uniformly bounded moment of integer order =4 -+ 2». In either case, we can
replace 6 by & in the norming sequence. These iterations performed in the transformed
parameter space are asymptotically efficient when and only when each y. is N (Fx(6), o*).
If the deterministic gains are used in either the ‘“untruncated’ or “truncated’’ iteration
but without transforming, i.e. M (y) = y, then the variance of the limiting distribution is
increased by the factor h2(0)/(2 |h(0)] — 1). With the random gains the variance is un-
altered provided sup; [k(z)|? < 2 inf; |k(z)].

4. A Method of Sample Selection with Unequal Probabilities without Replace-
ment. J. DurBiN, London School of Economics and Political Sciences.

Choose the first sample unit with selection probabilities p;, --- , p¥ where >opi =1
Suppose the ith unit is chosen. Choose the second unit with selection probabilities p; =
A, {1 — 2p:)~1+ (1 — 2p;)1} (j =), whereX is such that )« p;’ = 1.Since 2 -
pA@d —2p) 1+ (1 — 2p;)™Y} =1+ 2¥, pe(1 — 2px)~1 it follows that A is independent
of i. The probability p.p;’ of getting the ith unit first and the jth unit second is conse-
quently equal to the probability of getting the jth unit first and the sth unit second. The
total probability of selecting the ith and jth units is therefore 2xpip;{ (1 — 2p:)~' + (1 —
2p;)~1} and the total probability of selecting the sth unit is 2p; . These results are useful
for estimating variances in stratified multi-stage samples in the manner described by Yates
and Grundy and by Durbin, J. Roy. Statist. Soc. Ser. B. 16 (1953) 253-261 and 262-269. For
samples of size three take the third set of selection probabilities proportional to p:'{ (1 —
2p;)1 4+ (1 — 2pi’)"1} (k> 4, 7) and so on for larger sample sizes.

6. Some Aspects of Simultaneous Equations Estimation Theory with Complex
Observations. D. G. Kasg, Northern Michigan University.

Let By: + Tz, = u; be a simultaneous equations model, where B is a G X G Hermitian
positive definite matrix, T' a @ X K matrix of rank G(<K), y:, z: , and u. are complex col-
umn vectors of G, K, and G elements respectively. The error vector u; has mean zero and a
Hermitian positive definite matrix as its covariance matrix or u has a G variate complex
normal distribution. Then several results in the real simultaneous equations estimation
theory may be generalized with minor changes to the complex case represented by the
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above model. Assuming a sample of N observations on y; and z; is available, (i.e.,t =1,
2, --+, N) we obtain the estimates of the parameters of the above model, under certain
conditions, using the usual methods such as indirect least squares etc. We also consider the
estimation of the parameters of the first equation of the above model by using two stage
and three stage least squares and generalize our results to & class estimators.

6. A Continued-Fraction Algorithm for the Automatic Computation of Markov
Transition Functions. Davip G. Kenparr, Churchill College, Cambridge.

Continued-fraction algorithms for the exponential function are adapted to permit the
computation of the transition functions p;;(¢) for a Markov process with bounded infinitesi-
mal generator & by the iterative evaluation of the convergents to a continued fraction in-
volving Q. Analytical error estimates lead one to anticipate high accuracy with a small
number of iterations, and preliminary numerical studies have now confirmed this expecta-
tion. The program will be made generally available after further testing.

7. Efficiency of Des Raj’s Estimator. PrRamMop K. PaTHAK, Indian Statistical
Institute.

Consider a population I = (U, ---, Uj, ---, Ux) of N element. Let Y; and P; re-
spectively be the value of a Y-characteristic and the probability of selection associated with
the jth population unit U; . It is shown that under sampling with unequal probabilities
without replacement the variance of Des Raj’s estimator [J. Amer. Statzst Assoc. b1 (1956)
269—289] of the population total ¥ = > ¥, is given by (3)n~? Z, jrm1 (YPj0 — YPj)2e
P;'PiM1 + X 12 Qjjr ()}, where n is the sample size and Q,;- (k) denotes the probability
of non-inclusion of U; and U in the first (¢ — 1) sample units. A simple upper bound to
the above variance is obtained on observing that Q;;:(¥) < (1 — P; — P;)*1. Des Raj’s
estimator is then compared with other estimators. It is found that in many situations com-
monly met in practice Des Raj’s estimator has smaller variance than the estimators con-
sidered by Sampford [Biomeirika 49 (1962) 27—40], J. Rao, Hartley and Cochran [J. Roy.
Statist. Soc. Ser. B 24 (1962) 482—491], Hartley and J. Rao [Ann. Math. Statist. 38 (1962) 350~
374], Stevens [J. R. Statist. Soc. Ser. B 20 (1958) 394-397] and Héjek [Ann. Math. Statist.
86 (1964) 1491-1523].

8. Limit Theorems Involving Capacities. SipNEY C. PorT, RAND Corporation.

In an irreducible, transient Markov chain let V5(T5) be the time of first (last) visit to a
finite nonempty set B. If the chain has an invariant measure x (z), then let Ep(n) = Y .-
x(z)P:(Vs < n). We show [Ep(n) — Ep(n — 1) — C(B)] | 0 and Ep(n) — nC(B) 1,
where C(B) = Y e x(z)P:(Vp = ). Also if Ba(z, ¥) = D juns1 P:(X; = y), then if
Y wRa(0,0) < o we have E;(Vp| Vs < ©) P;(Vp < w) < o, E.Tp < » and limu-s
[Ep(n) — nC(B)] < «, while if X, Rs(0,0) =  we have E,w E.(Vg|Vp < »)P,-
(V< w) = w, E,Tp = » and liMms+., [Eg(n) — nC(B)] = =. If the chain satisfies condi-
tion (A):liMaew Y 1o R (®, ¥)/ D 10 R;(0,0) = A(z, y) exists for all z, y, then (1) > 7o-
P.,(j < Vi < w)~Q(z; B) X7 B;(0,0), (2) 370 P+(Ts > j) ~ D(z; B) 2 7= R;(0,
0) and (3) Ep(n) — nC(B) ~ L(B) Z}'_'JR; (0, 0), and the constant @, D, and L are ex-
plicitly determined. E 5 (n) is shown to be the mean, EN,(B), of the number of distinct par-
ticles which enter the set B by time 7 in certain system of infinitely many particles. We
prove that P(Na(B)/n— C(B)) = 1. When J_ R,(0,0) = «, Condition A is shown to hold
for all irreducible, transient (a) Random Walk on the integer lattice points in E¢, (here
A(z,y) = 1) (b) Discrete Time Birth and Death Processes (here A (z, y) = »(y)),and (c)
Discrete Time Renewal Processes. For certain Random Walks stronger results (like P, (n
< Vp < w) ~ Q(z; B)R.(0, 0)) are shown to be true.
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9. Asymptotic Efficiency of Some Nonparametric Tests of Dispersion. Hans
K. Ury, California State Department of Public Health, Berkeley.

In a recent paper (Ann. Math. Statist. 34 973-983), Moses showed that no rank test (i.e.,
a test invariant under strictly increasing transformation of the scale) can hope to be a
satisfactory test against dispersion alternatives unless some sort of strong restriction (such
as known median difference) is placed on the class of admissible distribution pairs. He also
considered some ‘‘rank-like’’ tests which consist of applying a rank test to some index of
dispersion computed within small subgroups; these will be of exact size and should prove
to be robust. For a particular case, Wilcoxon’s test applied to variances-within-triads, the
ARE against normal alternatives wasshownto be 0.5. In the present paper, the ARE against
normal alternatives is computed for different subgroupsizes when Wilcoxon’s test is applied
(a) to subgroup ranges and (b) to subgroup variances, and (¢) when the Fisher-Ya.es-
Hoeffding-Terry test is applied to subgroup variances. For (a), the maximum of 0.69 is
reached for subgroups of size 8; for (b) and (c), the ARE tends to 3/x and 1, respectively,
with increasing subgroup size. The question of decreasing ‘‘efficiency’’ because of an in-
sufficient number of subgroups is considered in a numerical example. Finally, some analo-
gous sign tests are briefly investigated.

10. The Voting Paradox—A Summary of Related Research. ZarmaN USISKIN,
Niles Townshin High School West, Skokie, Illinois.

At the time of the publication of my paper (Max-min probabilites in the voting paradox:
Ann. Math. Statist. 36 857-862), I was aware of very little related research. I wish to thank
Harry H. Ku, H. A. David, and Thomas Cover for calling my attention to some of the ref-
erences listed here. Steinhaus and Trybula [On a paradox in applied probabilities, Bull. Acad
Polon. Sci. T (1959) 67-69] seem to have been the first to consider the problem of independ-
ence, though the paradox itself dates back at least to Condorcet [Essai sur I’Application de
UAnalyse a la Probabilite des Decisions Rendues a la Pluralite des Voiz, De 1’Imprimerie
royale, (1785)] and Black [The Theory of Committees and Elections, Cambridge Univ. Press,
(1958)] discusses the dependent case n = 3. Trybula [On the paradox of three random vari-
ables, Zastos. Mat. 6 (1961) 321-332] obtains the bound for the independent case n = 3.
David discusses both cases [The Method of Paired Comparisons, C. Griffin & Co., Ltd.,
(1963)]. Chang, translated by Xu, [The maximum and minimum probabilities of cyclic
stochastic inequalities, Chinese Math. 2 (1¢63) 279-283] states but does not prove Theorem
2 of my paper, proves Theorem 3 and proves one of the bounds given in Section 4 of the same
paper. My paper goes beyond Chang’s in obtaining the bounds explicitly, showing that they
are achievable and by what distributions, and in giving sharper lower bounds for the bounds.



