NOTES

GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM¹

By GLEN BAXTER

Purdue University

Let L_1 be the class of real-valued, integrable functions on the measure space (X, \mathfrak{B}, μ) , and let T be a norm-reducing, positive linear operator from L_1 into L_1 . For any $f \in L_1$, let

(1)
$$z_n(f) = f + Tf + \cdots + T^{n-1}f, \quad z_0(f) = 0,$$

$$M_n(f) = \max_{0 \le k \le n-1} z_k(f), \quad n \ge 1.$$

We use the abbreviation imk for the statement for infinitely many values of k and the abbreviation fmk for the statement for only finitely many values of k. Hopf's maximal ergodic theorem [1] states:

THEOREM 1. For any $f \in L_1$ and any $n \ge 1$,

(2)
$$\int_{\{M_n(f)>0\}} f \, d\mu \ge 0.$$

We give here some generalizations of the maximal ergodic theorem. We state first a result which according to the established nomenclature would be called the limsup ergodic theorem.

Theorem 2. For any $f \in L_1$,

(3)
$$\int_{\{z_k(f)>0 \text{ imk}\}} f \, d\mu \ge 0.$$

As a standard application of the maximal ergodic theorem one shows that the ratios $Q_n(f, p) = z_n(f)/z_n(p)$, where f and p are non-negative functions in L_1 , satisfy

$$\sup_{n} Q_n(f, p) < \infty$$

almost everywhere on the set where p > 0. By an auxiliary argument, one extends (4) to the set where $\sum_{0}^{\infty} T^{k} p > 0$. We give a generalization of (2) which shows directly that (4) holds on the set where $\sum_{0}^{\infty} T^{k} p > 0$. Theorems 1 and 2 correspond in the following to the case t = 1.

Theorem 3. For any $f \in L_1$ and any integers n, t with $n \geq t \geq 1$,

(5)
$$\int_{\{M_n(f)>M_t(f)\}} z_t(f) \ d\mu \ge -\int_{\{M_n(f)=M_t(f)\}} M_t(f) \ d\mu.$$

THEOREM 4. For any $f \in L_1$ and any integer $t \geq 1$,

(6)
$$\int_{\{z_k(f)>M_t(f) \text{ imk}\}} z_t(f) d\mu \ge -\int_{\{z_k(f)>M_t(f) \text{ fmk}\}} M_t(f) d\mu.$$

Received 23 February 1965.

¹ This research was supported in part by the United States Air Force under grant number AF-AFOSR 722-65.

If one applies (5) to the function f - ap, one can deduce that $\mu\{(z_t(p) > 0) \cap (\limsup Q_n = \infty)\} = 0$. Since t is arbitrary, (4) must hold on the set where $z_{\infty}(p) > 0$.

We now sketch a proof of Theorem 4. For the moment t and n are fixed. We suppress dependence of z_k on f and employ the notation $a^+ = \max(a, 0)$. Let $s(0), \dots, s(n)$ be a permutation of $0, \dots, n$ such that $z_{s(0)} \ge \dots \ge z_{s(n)}$ is an ordering of z_0, \dots, z_n . If $z_j = z_k$, j < k, then $s^{-1}(j) < s^{-1}(k)$. Let $A_m = \{x : z_{s(m)} > 0\}$, let $L_{m,t} = \{x : s(i) \ge t \text{ all } 0 \le i \le m\}$, and let $B_m = A_m \cap L_{m,t}$. It follows that $B_0 \supset B_1 \supset \dots \supset B_n$. On B_m

(7)
$$\sum_{j=0}^{m} z_{s(j)}^{+} \leq \sum_{j=0}^{m} (z_{t} + T^{t} z_{s(j)}^{+}).$$

For, at each point $x \in B_m$, one has $z_{s(j)}^+ = z_{s(j)} = z_t + T^t z_{k_j}$ for some set of distinct integers k_j with $0 \le k_0$, \cdots , $k_m \le n - t$. Of course, the particular values of k_j depend on x. In any case, $\sum_{j=0}^m z_{k_j} \le \sum_{j=0}^m z_{s(j)}^+$ for all choices of k_j , so that (7) is established. Next, for any integer h, $0 \le h \le n$, let $C_m = B_m - B_{m+1}$, $0 \le m \le h - 1$, and let $C_h = B_h$. Then, by (7)

(8)
$$\sum_{j=0}^{h} \int_{B_{j}} z_{t} d\mu = \sum_{m=0}^{h} \int_{C_{m}} \sum_{j=0}^{m} z_{t} d\mu$$

$$\geq \sum_{m=0}^{h} \int_{C_{m}} \sum_{j=0}^{m} (z_{s(j)}^{+} - T^{t} z_{s(j)}^{+}) d\mu$$

$$= \sum_{j=0}^{h} \int_{B_{j}} (z_{s(j)}^{+} - T^{t} z_{s(j)}^{+}) d\mu.$$

The last term in (8) would be non-negative if the integration were over X instead of B_i , so we deduce finally

(9)
$$\sum_{j=0}^{h} \int_{B, z_t} d\mu \ge - \sum_{j=0}^{h} \int_{\tilde{B}, z_{s(j)}}^{+} d\mu.$$

On \tilde{B}_j , one has $z_{s(j)}^+ \leq M_t$. For, if $x \in \tilde{A}_j$, then $z_{s(j)}^+ = 0$, while if $x \in \tilde{L}_{j,t}$, then s(i) < t for some integer $0 \leq i \leq j$. This means $M_t \geq z_{s(i)}^+ \geq z_{s(j)}^+$. We rewrite (9) accordingly,

(10)
$$\sum_{j=0}^{h} \int_{B_{j}} z_{t} d\mu \geq -\sum_{j=0}^{h} \int_{\tilde{B}_{j}} M_{t} d\mu.$$

It is noted in passing that Theorem 3 follows from (10) by setting h = 0.

We now let n vary, keeping t fixed. Denoting dependence on n by a superscript, we have first that $B_j^{(n)} \subset B_j^{(n+1)}$. Letting $F_j = \bigcup_{n=0}^{\infty} B_j^{(n)}$, it follows that

But, F_j is the set on which more than j of the sums z_0 , z_1 , \cdots are greater than M_t . Thus, $E = \bigcap_{j=0}^{\infty} F_j = \{z_k > M_t \text{ imk}\}$, and (6) follows by dividing (11) by h and letting h tend to infinity.

Continuous flow analogues of the above inequalities have been found recently by Mr. Kenneth Berk.

REFERENCE

[1] HOPF, E. (1954). The general temporally discrete Markov process. J. Rat. Mech. Anal. 3 13-45.