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GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM!
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Let L, be the class of real-valued, integrable functions on the measure space
(X, ®, u), and let T be a norm-reducing, positive linear operator from L, into
L, . Forany f e L, let

(1) ) =f+Tf+ - + T, 2
M.(f) = maXo<k <n—1 z(f), n

We use the abbreviation imk for the statement for infinitely many values of k
and the abbreviation fmk for the statement for only finitely many values of k.
Hopf’s maximal ergodic theorem [1] states:

TraEOREM 1. For any f € Ly and any n = 1,

(2) Jotanso fdu = 0.

We give here some generalizations of the maximal ergodic theorem. We state
first a result which according to the established nomenclature would be called
the limsup ergodic theorem.

TaEOREM 2. For any f € Ly,

(3) f(zk(f)>0 imigf du = 0.

As a standard application of the maximal ergodic theorem one shows that
the ratios Q.(f, p) = z.(f)/2.(p), where f and p are non-negative functions in
L, , satisfy

(4) sup, @.(f, p) < =

almost everywhere on the set where p > 0. By an auxiliary argument, one
extends (4) to the set where Y o T%p > 0. We give a generalization of (2)
which shows directly that (4) holds on the set where o T%p > 0. Theorems 1
and 2 correspond in the following to the case ¢ = 1.

TuEOREM 3. For any f € Ly and any integers n, t withn = ¢t = 1,

0,

v

(5) Jisasaeim 2e(f) du Z = [ iatnpr=s, o Me(f) dp.
THEOREM 4. For any f € L, and any integer t = 1,
(6) St i 2e(f) A Z = [aensseen tmiy Mo(f) dis.
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If one applies (5) to the function f — ap, one can deduce that u{(z:(p) > 0) n
(lim sup @, = )} = 0. Since ¢ is arbitrary, (4) must hold on the set where
25(p) > 0.

We now sketch a proof of Theorem 4. For the moment ¢ and n are fixed.
We suppress dependence of z on f and employ the notation a* = max(a, 0).
Let s(0), - - -, s(n) be a permutation of 0, - - - , n such that z,y = -+ = 2y(m 18
an orderingof zo, -+, 2,. If 2; = 2, j < k, then s '(j) < s7'(k). Let Am =
{Z :2my > O}, let L, = {x :8(d) = tall0 =7 < m},andlet B, = Am 0 Lp,¢ .
It follows that Bp D By D -+ D B,.On B,

(7) Dreziy S 2oz + T'20p).
For, at each point z ¢ B,,, one has zi(5 = 2z = 2. + T'z; for some set of
distinct integers k; with 0 < ko, -+, kn =< n — {. Of course, the particular

values of k; depend on z. In any case, 2 7o a; = > oz, for all choices of
k;, so that (7) is established. Next, for any integer b, 0 = h = n, let C, =
B, — Bnu,0=<m=h—1,and let C4 = By, . Then, by (7)

Z’}ao fs,zt du = :»=o fc,,, Z;Lo 2t dlt
(8) 2 Dho [on 2 ro(Zi — T'2) du
= Db [ (E — T'%) dp.

The last term in (8) would be non-negative if the integration were over X
instead of B;, so we deduce finally

(9) Z’}=0 fszt dp = — Z’J!=0 fﬁjz:.(f) dp.

On B;, one has 2/;, < M.. For, if z ¢ A;, then z;j, = 0, while if z ¢ L.,
then s(i) < ¢ for some integer 0 < ¢ < j. This means M, = ziy = 25 . We
rewrite (9) accordingly,

(10) Z?=0 fszt du = — Z}}-o fi;,-M; du.

It is noted in passing that Theorem 3 follows from (10) by setting & = 0.
We now let n vary, keeping ¢ fixed. Denoting dependence on n by a superseript,
we have first that B < B;"™. Letting F; = Uj—B;™, it follows that

(11) Dh fp,-zt du = — D i fi'r,-M; du.
But, F; is the set on which more than j of the sums 20, 21, - - - are greater than
M,. Thus, E = \7=oF; = {zx > M, imk}, and (6) follows by dividing (11)
by h and letting & tend to infinity.

Continuous flow analogues of the above inequalities have been found recently

by Mr. Kenneth Berk.
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