A NOTE ON INCOMPLETE BLOCK DESIGNS WITH $b = v^1$

By M. BHASKAR RAO

University of Bombay

Let N be the incidence matrix of a binary design with b = v, where b is the number of blocks and v is the number of treatments. Let each treatment be replicated r times and let the jth block size be k_j ($j = 1, 2, \dots, v$). Damaraju Raghavarao stated a theorem in [2] that in a SUB (Symmetrical Unequal Block) arrangement with two unequal block sizes k_1 and k_2 and b = v, r lies in the open interval (k_1 , k_2). In this note we will show that such arrangement does not exist.

THEOREM. If A is a non-singular matrix of order v such that (i) AE = cE, (ii) AA'E = dE where c and d are scalars and E is the vector with v elements all unity, then A'E = (d/c)E.

The proof is obvious and is omitted.

We know that in a SUB arrangement [2], with b = v,

$$NE = rE,$$

 $NN'E = [r + (v - 1)\lambda]E$

where λ is the number of times any two treatments occur in the blocks. By the above theorem we get

$$N'E = [(r + (v - 1)\lambda)/r]E$$

which shows that all block sizes are equal, hence $k_j = r$ $(j = 1, 2, \dots, v)$. Therefore, N is a balanced incomplete block design. Thus we have, in a SUB arrangement with different block sizes, b > v.

Now we can define symmetrical balanced incomplete block design in the following way. It is a design in which v objects are arranged in v sets of k distinct objects such that between any two sets there are $\lambda(\langle k \rangle)$ objects in common.

Acknowledgment. I am thankful to Professor M. C. Chakrabarti for his guidance in preparing this note.

REFERENCES

- [1] CHAKRABARTI, M. C. (1962). Mathematics of Design and Analysis of Experiments. Asia Publishing House, Bombay.
- [2] RAGHAVARAO, DAMARAJU (1962). Symmetric unequal block arrangements with two unequal block sizes. Ann. Math. Statist. 33 620-33.

Received 15 March 1965; revised 24 June 1965.

¹ This work was financially supported by the Government of India Research Training Scholarship.