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0. Summary. The analysis of variance of a partially balanced incomplete
block design is investigated in connection with its relationship algebra. This
gives a somewhat clearer insight into the structure of the partition of the total
sum of squares than before. A. T. James [5] dealt with the same problem with the
balanced incomplete block design and this article should be regarded as a gen-
eralization of his work to the partially balanced incomplete block design.

The definitions and necessary notations concerning a partially balanced in-
complete block design (PBIBD) and its association algebra are briefly given in
Section 1. Although the properties of the association algebra have been known in
another expression [4], they are presented in Section 2 in the form fitting to our
discussions on the relationship algebra. In Section 3, the definition and properties
of the relationship algebra of a PBIBD are given and these are believed to be
new. In Section 4, the analysis of variance of a PBIBD is considered and the
partition of the sum of squares due to treatments adjusted pertinent to the
association under consideration is given. Finally, Section 5 is devoted to the
analysis of variance of a PBIBD of triangular type and a numerical illustration.

1. A partially balanced incomplete block design and its association algebra.
For the sake of the reader’s convenience, we give a brief description of a partially
balanced incomplete block design and its association algebra. Reference should
be made to [1], [2], [3] and [7].

Given v treatments ¢;, ¢z, -+, ¢», a relation among them satisfying the
following three conditions is called an association with m associate classes:

(a) any two treatments are either 1st, or 2nd, --- , or mth associates,

(b) each treatment has n; 7th associates, ¢ = 1,2, ---, m, and

(¢) for each pair of treatments which are ¢th associates, there are p} (4, 7, k =
1,2, ---, m) treatments which are jth associates of the one treatment of the
pair and at the same time kth associates of the other.

We have a partially balanced incomplete block design—PBIBD in short—if
there are b blocks each containing k experimental units in such a way that

(1) each block contains k& ( =<v) different treatments,

(2) each treatment occurs in » blocks, and

(3) any two treatments which are ith associates occur together in \; blocks,
i=1,2 --,m.

In a degenerate case when m = 1, a PBIBD reduces to a balanced incomplete
block design. PBIBD with 2 associate classes have been useful in practical
applications.
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1816 JUNJIRO OGAWA AND GORO ISHII

Parameters describing the association are
v, Pk, L k=1,2 -, m
and additional design parameters are
b, r, k, N\, 1=1,2, -+ ,m.

It should be noted that
(1.1) mt ot am=0v—1
and
(1.2) Dix = Di; (éymmetry with respect to the subscripts).

Further it can be shown that

(1.3) 2P = mnj — 8
and
(14) nPi = NP = nipli

where §,; stands for the Kronecker delta.

There are r(k — 1) treatments occurring in the blocks in which a fixed treat-
ment ¢ occurs and they are classified into m associate classes with respect to ¢.
On the other hand, since there are n; ith associates of ¢ occurring in \; blocks, it
follows that
(1.5) M+ e + - - o A N = 7(k — 1).

A treatment may be regarded as the Oth associate of itself. Thus we add the
following notational conventions:

(16) mo =1, N =17, pi = dunj, Do = Do = Ou

Under these notations, we have the following relations

(1.7) Dmon: = v;
(1.8) D o Die = n;;
(1.9) D mon = rk.

Let A be the unit matrix of degree v. This represents the Oth association. Also
let A; be a symmetric matrix of degree v such that its elements af; in the ath
row and in the gth column is 1 if ¢, and ¢ are ith associates and is 0 otherwise.

Ay, Ay, -, A, are called the association matrices. It can be seen that
(1.10) D A =G,

where G, stands for the square matrix of degree v whose elements are all unity.
Hence A, A,, ---, A, are linearly independent with respect to the field of all
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real numbers. Furthermore one can show that
(1.11) A = 2 T pish.

Thus the linear closure of the set Ay, A;, - -, A, with respect to the field of all
real numbers is a linear associative and commutative algebra @, called the asso-
ciative algebra. The abstract counterpart of this matrix algebra @ is denoted by a.

2. Properties of the association algebra. Let

pgk pﬁk cct PB’;c \
pgk pik te p;';c
(21) Cr = . ’ k=0’1)'”7m7
0 1 m
pmk Pme **° Dmk

then it can be shown that the mappings
(22) Ak'——)@k, k=0,1,~',m,

generate the regular representation (o) of the association algebra «. The ab-
stract algebra « is completely reducible in the field of all rational numbers [9],
and hence it is completely reducible in any number field. On the other hand,
Schur’s lemma ([9] Lemma (3.1.A), p. 81) shows us that any irreducible
representation of a commutative algebra in an algebraically closed field must be
linear. From the general theory of algebra [9], one knows that any representation
of a completely reducible algebra decomposes into irreducible representations,
each of which is equivalent to one of the irreducible constituents of the regular
representation of the algebra. Since a is the abstract counterpart of the matrix
algebra @ generated by symmetric matrices and is of rank m 4+ 1, the regular
representation («) decomposes into m -+ 1 inequivalent and linear representa-
tions in the field of all real numbers.
On account of the fact that

(23) A,‘G,‘. = G’,Ai = niG—” s 7 = O’ 1’ <o, my

one can choose a non-singular real matrix C of degree m + 1, being of the form

Coo Cu1 °°° Com
(2'4) C = 01:0 Cun *°° Cmm
Cmd Cml T Cmm,|
with ¢p = ¢ = +++ = ¢ = 1 in such a way that
Z0u 0
—1 R1u
(2.5) Ce, C = . » 2w = Mu,u =01, ,m

0 Zmu
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One can construct m + 1 mutually orthogonal idempotent matrices belonging
to @ as follows:

(2.6) AL = (D0 cuA)/(Dote0 Cuttur), w=201"--,m,
with respective ranks ag, oy, -+, am . It is noticed that Ae* = v7'G,, o = 1,
and ZZLEO Au# = Iv .

The ranks ag, a1, -+, as of the orthogonal idempotents are determined by

the linear equations
a + o + -+ om =,
(27) any + aizn + 0+ omem = 0,

lim + 0121m + e + AUmlmm = 0.

As an example, the association algebra of the association of triangular type
is explained below.

The number of treatments is v = n(n — 1)/2, where n is a positive integer.
We take an n X n square, and fill the n(n — 1)/2 positions above the main
diagonal by different v = n(n — 1)/2 treatments, taken in order (see Figure 1).
The positions in the main diagonal are left blank, while the positions below the
main diagonal are filled so that the scheme is symmetrical with respect to the
main diagonal. The two treatments in the same column are 1st associates, whereas
two treatments which do not oceur in the same column are 2nd associates. Hence

(2.8) nm = 2n — 4, ng = (n— 2)(n — 3)/2.
The regular representation of the association algebra in this case is given by
A — 0 =1,

0 1 0
A>®=|2n—4 n—2 4 ,
0 n—3 2n—38

(2.9) 0 0
Ag——) Py = 0 n—3
(n—2)(n—3)/2 (n—3)(n—4)/2
1
2n — 8 .
(n—4)(n — 5)/2

1 2 3 4

1 5 6 7

2 5 8 9

3 6 8 10
4 7 9 10

Fig.1l.n = 5,v = 10
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Transforming by the non-singular matrix

1 1 1
C= 2n — 4 n—4 —4,
—(n—-2)(n—-—38) n—3 —2
one gets
2n — 4 0 0
Ce,Ch = 0 n—4 0],
0 0 —2
(n—2)(n — 3)/2 0 0
Ce, C = 0 —(n—3) 0.
0 0 1
Therefore

D= 2n—4) 1+ n—4)-(n—4) + (—4)-[—(n — 3)] = n(n — 2),
Z%=002t22t =—(n-=2)(n—3)+ (n—-3)(=2) + (—-2):1

= —(n—1)(n— 2).
Hence one obtains the three mutually orthogonal idempotent matrices
A = [2/n(n — 1)] [A, + A+ A,
(2.10) A = [1/n(n — 2)] [(2n — 4) Ay + (n — 4)A; — 4A,],

AF = [1/(n — 1)(n = 2)][(n — 2)(n — 3)Ay — (n — 3)A; + 24,

with respective ranks ap = tr A* = 1, 00 = tr A¥ = n — 1, ap = tr A* =
n(n — 3)/2.

3. The relationship algebra of a partially balanced incomplete block design.
We now define the so called relationship matrices of a PBIBD. There
are w = bk = vr experimental units altogether and they are numbered from one
through w in any way once and for all.

(1) Identity relation: corresponding to this relation, we take I = I, , i.e.,
the unit matrix of degree w.

(2) Universal relation: corresponding to this relation, we take G = G,
i.e., the matrix of degree w whose elements are all unity.

(3) Block relation: let the incidence matrix of blocks be

W= [lang -],
where
n = (a, Maz, "+ » Maw) With nay = 1, if the fth unit belongs to the ath block,
= 0, otherwise,

then the block relation is represented by a w X w matrix

(3.1) B = ww
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(4) Treatment relation: let the incidence matrix of treatments be

® =[Gl - G,
where
G = (Faty Cazy oy Caw) With fap = 1, if the ath treatment
occurs at the fth unit,
=0, otherwise,

then the treatment relation is represented by the following m -+ 1 matrices
degree w:

(3.2) T="Te T, -, Tn
where

(3.3) T. = ||t},] = ®A®', w=201 -, m
One can see immediately that

(34) >m 0Ty =

also

(3.5) G' = wG, BG = GB = kG, B = kB

and

(3.6) GT. = T.G = .G, =01 ,m

Let N = ||n..]| be the incidence matrix of the design, then, since N = &' @
and

(3.7) NN = D> "o NA,

it follows that

(3.8) NN' = 3 00 puA,

where

(39) po = S Momihi = 7k, pu = S Tozui, w=12 - ,m.
(3.8) is the spectral decomposition of the matrix NN’ and p,, % = 0,1, ---, m

are the characteristic roots of the matrlx with respective multlphcmes ay ,
u=201, , M.

The des1gn 1s said to be regular, if all the p,’s are positive. We shall be con-
cerned with regular PBIBD’s. It can be shown that

(3.10) TBT = ®NN'®' = > 7 (\T.,
(3.11) T.BT, = 2 o (Do Mpeipiw) T
and

(3.12) = > o PhoT
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Hence in the regular case, the linear closure with respect to the field of all real
numbers of the set of the following 4m + 3 linearly independent matrices

(3.13) I, G, B, T,, T.B, BT,,BT.B, u« = 1,2,---, m,

is a linear associative algebra ®, which is called the relationship algebra of the
PBIBD.

The relationship algebra ® contains a commutative subalgebra 3 generated
by T,,u = 0,1, ---, m, which is isomorphic to the association algebra G.

As a special case, one gets the relationship algebra of a balanced incomplete
block design—BIBD in short—as the linear closure [I, G, B, T, TB, BT, BTB|.
This algebra was investigated by A. T. James [5] in detail. H. B. Mann [6] ex-
ploited a more general algebra which is associated with the analysis of variance
of testing linear hypotheses. The relationship algebra & of a PBIBD is located
inbetween the James algebra and the Mann algebra in its generality, so to speak.

The relationship algebra & of a PBIBD is generated by symmetric relation-
ship matrices, it is completely reducible. Hence all irreducible representations
of ® should be obtained by reducing its regular representation.

[G], the totality of the multiples of G, is a one-dimensional two-sided ideal of
® and G’ = wG, BG = GB = kG, T.G = GT, = rn,G. Hence we obtain a
linear representation ®¢" induced by [G] as follows:

(3.14) ®Re”:1—>1,G—>w,B—k T,—rn,.

Next we consider the factor algebra ®&/[G], i.e., consider the algebra ® mod G.
To this end, it is convenient to change the basis of ® into [I, G, B, T.*, T.*B,

BT.*, BT.™B, u = 1, 2, ---, m). Since

(3.15) T." = 27Ty,

it follows that

(3.16) T.* T, = ®A,*®'®A,*d = r®A,* A" @'
= 7( D70 Cuiui)duuTu”

and

(3.17) T.*BT.,* = ®A,*®'Www'®A,*®d’ = ®A,*"NN'A,*®’
= (2T 2uihi) PAAL D = pu( D Te0 Cuitui) BunTu™
The following m subalgebras '
(3.18) [T.*,BT.*, T.*B, BT,*B] mod G, w=1,2 - ,m

are two-sided ideals of ® annihilating each other and also they are annihilated
by G. In fact, for instance

Tu*BTw*B = Tu*BTw*B = Pu(Z:‘LO cuizui)auwTu*B-

If p. = O, then BT,* = T,*B = BT,*B = 0 and consequently the subalgebra
reduces to [T.*]. Thus in the regular case, there are m inequivalent irreducible
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representations of the 2nd degree, each of which being induced by a left-sided ideal
of the above two-sided ideals.
Now by direct calculations, one obtains

T.IT.*, BT.*, T.”B, BT."B]

T2ui Pu Rui 0 0
_r*prr*Ti*per*pl® 0 O O
= [Tu , BT. ) T. B’ BT. B] 0 0 T2ui Pu Rui ’

0 0 0 0 |
(319)  B[T.", BT.*, T.*B, BT.*B]

0
= [T.*,BT.*, T.”B, BT.*B] (1)

_o OO

0
0
ol -
k

SO O

0

Thus the m irreducible representations of the 2nd degree are given by

1 0 0 0
o, b Lo i
(3.20) Ry :

0 O
R G—-)”O 0

T2ui Pu Zui

T,‘—) 0 0

b

Other irreducible representations of ® are obtained by considering the factor
algebra

®/[G]/[T.*, BT.*, T.*B, BT.B, v = 1, 2, ---, m]/[G].

They are given by

(3.21) ®"”:1—>516—>50B—>0Ti—0 ¢=12 --,m,
and
(3.22) &Y 1—-1,6—-0,B—-kT;—0 =12 ---,m.

Since 1* + 1* + 1* + m2® = 4m + 3 there can be no other irreducible representa-
tions of ®.
We shall show that

(323) R~ (w—0>b—0v+ DR + (b — ) + ®Re® + 2 au®?,

i.e., ® is equivalent to the right hand side if the design is regular and therefore
v» < b. If v > b, then NN’ must be singular and hence at least one of the p,’s
should vanish.

Let

® ~ 7R + 1Y + ¥e®Ra” + Dm0 Bu®i®
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then one gets the following equations:

trI=w=1v+m+ 70+2Zr=lﬁu,

(324) trG=w= wWYe,

trB=w= kyi+ kye+ k2 ia1Bu,

tI’T,=0= Tni‘Yg-I—TZZ‘:]Bu, (z=1,2,,m)
From the first three equations of (3.24), one gets y¢ = 1,vo = w — b — Q2 _%_1Bu.
Comparing the last m equations of (3.24) with those of (2.7), one gets 8, = au,
u = 1,2 ..., m. Consequently it follows that vy = w — b — v + 1.

Let

(3.25) T.* = oA =12 -,m

then it is clear that
(3.26) T.* T.* = ré.,T.*.
Now let us consider the following m matrices:
(3.27) V. = (T.* — k'BT*)(T.* — k'T.*B), u=1,2 ---,m.

One can show that V,V, = 6uur(r — p,/k)V. and tr V, = r(r — pu/k)oy .
Thus the m matrices

(3.28) V.* = [k/r(rk — p)|(T.* — E7'BT*)(T.* — k7'T,*B)

are mutually orthogonal idempotent matrices of respective ranks a,, u =
1, 2, ---, m. Hence the following expression

321 =w'G+ (B—w'G)+ D2r V. + T —-K'B—- D" V.5

is a decomposition of the unit I of ® into mutually orthogonal idempotents, and
this will be shown to be useful in the analysis of variance of the design.

4. The analysis of variance of a PBIBD. We are concerned with the linear
model which is often called the intra-block model, i.e.,

X=7vj+ @+ W3 + e

where X' = (21, -+, Zu) stands for the observations of size w, v is the gen-
eral mean, j, = (17 1; R} 1)77, = (717 yT’o) and gl = (ﬁl) T Bb) are
treatment and block effects being subjected to the restrictions D uey 74 =
®_1B. = 0, respectively, and finally ¢’ = (e1, ---, e,) is the error vector
being distributed as N (0, o'I).
We have the adjusted normal Equation [2]

[r(1 — KA — (M/E)AL — +++ — (An/k)Anlt = Q

or
(4.1) ZZLI [(rk — Pu)/k]Au#t = Q,
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wheret’ = (&, -+, t,) is the best linear estimate of =’ and Q" = (Q,, --- , Q,)
is the treatment sum adjusted by blocks.
Let the linearly independent column vectors of A,* be

as:'zlvaﬁzl?!"';al(':-i)-%y v = 1 4 o 4+ oo + oy,
then, by multiplying al“), to both sides of the (4.1) from the left, one obtains

[(rk — pu)/klai et = a)eQ

or _

(4.2) aydat = [k/(rk — pu)]asiiaQ.
It can be seen that

(4.3) B(alt) = alie,

Var (af':-l)-:!t) = [k/(rk — Pu)]UZ'AS:}-a.vu+a .

Thus a complete balance is achieved over the set of the normalized contrasts

aidat/ (a5 amta)’, a=1,2-",a,[8.

Since x'V,*x = [k/(7k — p.)]Q'A*Q = t'A,*Q and X 7, A* = I, — A*
one can see that

(44) > mx'V.*x = t'Q = s: sum of squares due to treatments adjusted.
Under the present model, one gets

(4.5) x'V.*x = e'V.e + 2¢'A* (@' — K'NW)e + (r — pu/k)TAr,

and therefore

(4.6) X = x'V.,”‘x/a2

is distributed as the non-central chi-square distribution of degrees of freedom
a, with the non-centrality parameter

(4.7) A, = [(rk — pu)/dkle APz .
The sum of squares due to error s,” is given by
(48) s8'=x(A—-k"B— 2 0aV)x=eT-Fk"B— 21,V.%e
and therefore
(4.9) xXe = 8./d°

is distributed as the central chi-square distribution of degrees of freedom
w —b — v + 1. The variates x, -+, Xm» Xo are mutually independent in
stochastic sense.
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Hence under the null-hypothesis
(4.10) H': A% =0
the test statistic
(4.11) Fo,=[w—>b—v+1)/a)xV. /s’
is d;’stributed )as the central F-distribution of degrees of freedom (ay,
w—b—v41).

6. A numerical example. We shall present the analysis of variance of a PBIBD
of triangular type in detail with a numerical example.
In this case, we have

A% = [2/n(n — 1)][A0 + A: + A4, a =1,
A* = [I/n(n — D][(2n— 4)A; + (n— 4)A; — 44,), m=n-—1,
AF = [1/(n — 1)(n— 2)ll(n — 2)(n — 3)As — (n — 3)A; + 24,

az = n(n — 3)/2.

We assume the following inner structure of the treatment effects:
n = 5, v=mn(n—1)/2 = 10.

0+ 0+ me 61+ 0+ ms 6+ 04+ w4 6+ 05+ wis
0 + 61 + 7 0+ 05+ mos 0+ 04+ 7o 62 + 05 + mwes
03+ 61+ w1 03 + 0 + a2 03 + 04 + maa 03 + 05 + w35
00+ 6+ T 044 0+ 72 04+ 03 + 73 04 + 05 + w45
05+ 0+ 751 05+ 02+ me2 05+ 03+ 7wes 05 + 04 + waa

The inner parameters are subjected to the restrictions
(5.1) D=0, wy=1mi, DT =0 1i=12"-n

so that these are just v — 1 independent parameters.
By direct calculations, we obtain the following expression:

A]ﬂ‘t = n‘l
((n—2)6 + (n — 2)6, —20; — --- —20,— —26,)
(n - 2)01 _202 + (n - 2)08 - _2015—1 _2015
(n - 2)01 — 20, —205 — --- + (n - 2)01.—1 —20,.
(n—2)6 —20, —20; — -+ —20p—1 + (n — 2)0,
(52) - —20,+ (n—2)0:+ (n—2)05 — --- — 20,1 —20,
_201 + (n - 2)02 _203 + M _2015—1 _2015
—26, + (n — 2)6; —203 — --- —20p—1 + (n — 2)6,
—26, —26, —20; — - —2,-1 + (n — 2)0,)
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and the

ath component of Ay*e
= [(n — 1)(n — 2)][(n — 1)(n — 3)-interaction m:;(7 < j) of 7

(5.3) — (n — 3)-2_ interactions corresponding to the 1st associates of ¢,

+ 2. interactions corresponding to the 2nd associates of ¢,].

Thus the vector A,*z represents the contrasts between the main effects 6 and the
vector A;*z represents the contrasts between interactions ;.

Now we show a numerical example of the analysis of variance of a PBIBD
of triangular type (Table 1).

There are n kind ingredients I;, I;, ---, I, which are known to be efficient

TABLE 1
A design of triangular type
Treat-
Block Treatments 1 2 3 4 5 6 7 8 9 10 ment
Total
1=(,2) 2.31 2.81 | 1.65 2.58 9.40
2=(Q1,3) 2.51 1.41 |1 1.90 | 3.06 8.88
3=(@1,4) 2.89 2.29 1.95 2.04 | 9.16
4 = (1, 5) 2.54 2.09 | 2.36 2.03 | 9.02
5= (2,3) 2.28 2.81 2.20 | 2.07 | 9.36
6= (2,4) 1.77 1 2.49 | 2.31 3.02 9.59
7=(2,05) 2.72 |1 2.29 1.57 2.60 9.18
8= (3,4) 2.81|2.99 | 2.28 2.44 10.52
9= (3,5) 2.54 2.44 2.23 2.12 9.33
10 = (4, 5) 1.54 2.87 2.77 1 2.09 | 9.27
Block totals [10.43 | 8.11 | 9.53 |10.47 {10.95 | 7.59 | 8.91 | 8.89 |10.61 | 8.22 | 93.71
TABLE 2
Association
Treatment 1st Associates 2nd Associates
1 2,3,4,5,6, 7 8,9,10
2 1,3,4,5,8, 9 6,7,10
3 1,2,4,6,8, 10 57, 9
4 1,2,3,7,9,10 56, 8
5 1,2,6,7,8, 9 3, 4,10
6 1,3,5,7,8, 10 2,4, 9
7 1,4,5,6,9,10 2,3, 8
8 2,3,5,6,9, 10 1,4, 7
9 2,4,5,7,8,10 1,3, 6
10 3,4,6,7,8, 9 1,2, 5

-
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in gaining weights of hogs if added in the feed stuff. We are interested to know
whether there are interactions between any two of the ingredients when the
mixtures of the two are added in the feed stuff.

We make » = n(n — 1)/2 mixtures of the possible pairs (I;, I;), 7 ## j. The
main effects of the n original ingredients are denoted by 8; ,7 = 1,2, --- , n and
the interactions between I, and I; is denoted by ;; . Then the inner-parametric
representations of the mixtures are given by 6, = 6; 4+ 6; 4+ =; if the ath treat-
ment is the mixture of I; and I;fora=1,2, --- ,» = n(n — 1)/2. Hence in this
situation, the association scheme of the triangular type is naturally defined
among the » treatments (Table 2).

Suppose by taking ten litters of 4 hogs each as blocks, a PBIBD of triangular
type with parameters n = 5,» = b= 10,7 =k = 4, \; = 1, \, = 2 is adopted
yielding the following results. Observations are the gains of weights of hogs in
pounds after feeding the mixtures of ingredients 3 months. This experiment is a
hypothetical one and the data are borrowed from R. C. Bose and T. Shimamoto
[3] and therefore this example should be regarded as a purely illustrative one.

TABLE 3
Adjusted treatment tables and related sums
Q AQ A:Q A*Q A:*Q
1 —0.2700 0.0525 0.2175 —0.1625 —0.1075
2 —0.2500 —0.3075 0.5575 —0.2692 0.0192
3 —0.1075 0.8800 —0.7725 0.2217 —0.3292
4 0.2225 —1.0300 0.8075 —0.1950 0.4175
5 —0.5725 0.6600 —0.0875 —0.1617 —0.4108
6 0.3350 0.3175 —0.6505 0.3292 0.0058
7 0.4250 —1.1125 0.6875 —0.0875 0.5125
8 1.0450 —1.4225 0.3775 —0.2225 0.8225
9 —0.6250 0.6675 —0.0425 —0.1992 —0.4308
10 —0.2025 1.2950 —1.0925 0.2967 —0.4992
Total........ 0.0000 0.0000 0.0000 0.0000 0.0000
TABLE 4
Analysis of variance
Sources of Variation Sum of Squares d.f. m.s.s. Variance Ratio
Blocks.................. ... 3.2284 9
Treatment eliminating blocks. 0.7467 9 0.08295
Main effect. .................. 0.1343 4 0.03357 0.230
Interactions.................. 0.6124 5 0.12248 0.841
Errors........................ 3.0585 21 0.14550

Total....................... 7.0336 39
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Now in this case, since

p1 = 21k + 2uht + 2zphe = 44+ 11 — 2.2 = 1,
p2 = Zaoho + Zuh + Zohe = 4 — 2:1 4 1.2 = 4
and
A* = & (6A)+ A; — 44A;), o1 = 4,
A* = 2(6A)— 2A;, +2A;), =5,

it follows that
A%Q = 75(6Q + AQ — 4AQ),
A%Q = 3(3Q — A\Q + AQ).

There is a relation A,*Q + A,*Q = Q. Finally the sum of squares due to main-
effects and interactions is given by

xVi*x = [k/(rk — p)IQ'A*Q = %Q'A*Q
and
XVo*x = [k/(rk — p)]Q'A*Q = 3Q'A*Q,
respectively, satisfying the relation
Q'A*Q + 1Q'A*Q = t'Q.
Thus we get the following table of the analysis of variance by use of the auxiliary
Tables 3 and 4.

Acknowledgment. The authors’ thanks are due to the referee by whose sug-
gestion this paper is revised in the present form.
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