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1. Introduction and summary. The admissibility of the minimum distance rule
(= maximum likelihood rule) and of a restricted maximum likelihood rule are
proved in [5] for a zero-one loss function in a classification problem in which in-
formation about the means of the k alternative multivariate normal distributions
is based on samples. That classification problem is a special case of the problem
of deciding in which of k given linear manifolds the mean of a normally distribu-
ted vector lies when the covariance matrix is known. The admissibility of the
minimum distance rule (= maximum likelihood rule) in the more general problem
is proved in [3] and [4]. The proof is similar to that given in [5] for the special
case; the choice of the prior distribution used in the proof is dictated by Lemmas
2 and 4 of [5]. The purpose of this paper is to present the admissibility proof for
the more general problem. The more general problem includes classification prob-
lems in which information about the means of the k alternative multivariate
normal distributions is based on samples, and the means are linearly restricted.
The admissibility of classification rules in such problems has received attention
recently (see, e.g., the abstracts by Das Gupta, [2], and Srivastava, [7]).

A problem more general yet than that treated in this paper is the problem of
deciding in which of k£ given linear manifolds the mean of a normally distributed
vector lies when the covariance matrix is a possibly different known matrix for
each of the k alternatives. A parametric family of admissible classification rules
for that problem can be obtained by simply replacing ¥ by ¥;, the known
covariance matrix for the jth alternative, in the statistic ¢;(x | h) given by
Equation (4) of Section 5,7 = 1, --- , k. However, such a family of admissible
classification rules is of little interest per se, since other such families are easily
generated as Bayes procedures relative to parametric families of prior distribu-
tions. What is of considerably more interest is the question of whether or not
certain ‘“natural” rules are admissible. The maximum likelihood rule, which is
not identical with the minimum distance rule in this problem, is a ‘“natural”
rule. The maximum likelihood rule is not contained in the family of admissible
rules obtained by the replacement of ¥ in.(4), and whether or not it is in general
admissible in this problem is not known to me.

If the covariance matrix is unknown, but an independent estimate of it is
available, it is “natural” to use the estimate in place of the true covariance
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matrix in the minimum distance rule (= maximum likelihood rule). Whether
or not the “natural” rule is in general admissible in this problem is not known.

The problem considered in this paper is stated in Section 2. In Section 3 the
minimum distance and maximum likelihood rules for the problem are defined;
the rules are seen to be equivalent. In Section 4 the problem is reparametrized,
and Bayes procedures relative to prior distributions of the new parameters are
obtained in general. The minimum distance rule is obtained as a Bayes pro-
cedure in Section 5, and its admissibility is deduced. Examples of applications
are given in Section 6.

2. The problem. The m-dimensional row vector X is normally distributed with
unknown mean p and known nonsingular covariance matrix ¥. One observation
z on X is available. Linear manifolds @, , - - - , @ in Euclidean m-space are given,
with dim (@;) = r;,5 = 1, -- -, k. None of the given linear manifolds is entirely
contained within one of the others. It is known that u £ Q; for some j. The prob-
lem is to decide for which j u eQ;. It is assumed that if u e Q; for more than
one j, then there is precisely one j which designates the correct decision. A simple
loss function, zero when a correct decision is made and one when an incorrect
decision is made, is to be used.

It is easy to verify that the admissibility proof given below also holds for a
loss function which is zero-one when u ¢ Q; for only one j, and which is bounded
but otherwise arbitrary when p & Q; for more than one j. This follows from the
derivation of the minimum distance rule as a Bayes procedure relative to a
prior distribution which assigns zero probability to the set of u which lie in
intersections of the given linear manifolds. The particular zero-one loss function
used in this paper was selected for convenience.

The index < is used to denote the decision made. The decision that p & Q: will
be called the sth decision, 7 = 1, - - - , k.

Let the loss function be denoted by

(1) w(i,j) =0 if <=4,
1 if 4 #j, Ghji=1 -k

3. The minimum distance and maximum likelihood rules. Define the squared
distance of x from Q; to be min,.q; {(z — wINe —w)',75 =1, -,k The
minimum distance rule makes the 7th decision if the distance of z from Q; is mini-
mum among the respective distances of « from @, - - - , @ : ties may be resolved
arbitrarily.

The distribution of X has the density function (27) ™3| exp [—1(z — u)
372 — u)'], which is also the likelihood function of u for given z. The mazi-
mum likelthood rule makes the 7th decision if the maximum of the likelihood
function on Uj_; @, is attained for ueQ:; ties may be resolved arbitrarily.
Clearly the minimum distance and maximum likelihood rules are identical.

4. Bayes procedures. If all Bayes procedures relative to a given prior distribu-
tion have the same risk function, then each is admissible (see, e.g., [8], p. 101).
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The admissibility of the minimum distance rule will be proved by showing that
it is a ‘Bayes procedure relative to such a prior distribution.

In the derivation of Bayes procedures it is convenient to reparametrize.
The original parameter (j, u) signifies that the jth decision is correct, and that
E[X] = u. There exists an orthogonal T'; such that

I‘.ﬂ‘,=(17]')0)"')0)’) /"’EQ:I'7

where n; has r; coordinates, and hence may be treated as a row vector in Eu-
clidean r;-space,j = 1, ---, k. Fix I'1, ---, Tx. The parameter (7, 5;) signifies
that the jth decision is correct and that T'ju' = (n;,0, - -+, 0)’. The parameter
(7, mi) is equivalent to the original parameter (j, u), since TI'; is nonsingular.

For each j let T;X = Z; = (Zy;, Z»;), where Zy; has r; coordinates. Z;is
normally distributed with mean I'ju’, and

Cov [Z,] = Cov (Zyj,Z) = T; 30 = V; = (Em 3‘”).
215 225
Let f(zx|j, #;) and g¢(z;|J, #;) denote, respectively, the density functions
with respect to Lebesgue measure of the distributions of X and Z; for the pa-
rameter value (j, n;). Since the Jacobian of the transformation from z to z;
is one, it follows that

f(x 17, ;) = g(zi|j, n;) for z; = Tj.

Any decision rule § may be denoted by k functions ¢:(z;8),7 =1, ---, k,
such that 0 < ¢i(z;8) < 1,z e % ,5= 1, ---,k, and suchthat D_5- ¢:(z;8) = 1,
z £ X. In an application of the decision rule § the 7th decision is made with prob-
ability ¢:(x; 8) when z is observed, 7 = 1, --- , k.

For a prior distribution, h, of (j, n;), let £; be the prior probability that the
Jjth decision is correct; and given that the jth decision is correct, let P;(-) be
the probability measure on Euclidean rj-space for the prior distribution of
n5,J =1, , k.

By the usual derivation of a Bayes procedure (see, e.g., [5], p. 218), it is found
that a decision rule ¢ is a Bayes procedure relative to the prior distribution h
of (7, »;) if, and only if, except on a set of 2 having Lebesgue measure zero,
¢:(x; 8) = 0 whenever t;(z | h) < max; {t;(x | h)}, where

(2) ti(x|h) = &fu;f(x|j, n;) dPi(n;) = Eif1;9(25 |4, n5) dP;i(n;),

L; is Euclidean rj-space, and z; = 'z, =1, --- , k.

It is evident that two decision rules for the present problem have the same risk
function if they differ only on a set of  having Lebesgue measure zero. Hence if
the set of x which yield ties for maximum among the statistics (2) has Lebesgue
measure zero, then all Bayes procedures relative to the distribution h have the
same risk function, and each is admissible. This is the case for the prior distribu-
tions considered in the following section.
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5. Normal prior distributions. In this section Bayes procedures are derived
relative to prior distributions under which each #; vector has a normal distribu-
tion. A normal distribution of the vector %; is specified by E[n,;] = v;, say, and
Cov (9;) = Uj;, say. Each v; will be taken equal to the zero vector in order to
obtain Bayes procedures which are invariant under a change of sign of X (the
classification problem is invariant under this transformation).

Except that m is written as kp there, the computation of ¢;(z | h) is given in
the notation of the present paper, with subscripts suppressed, on p. 220 of [5].

The result is
-1
e [ 4G,z ([T U 7Y g2
V21j V22

J
Vi + U; Vi [ ’

V21j V221’

(3)  ti(z|h) =
(27r)m/2

i=1,-k
Now let
Ui = NV = ViVaiVail, (A 20), j=1,--,k

The covariance matrix U; is \; times the covariance matrix of the conditional
distribution of Z;; given Z;. It follows from (3) and Lemmas 2 and 4 of [5]
that for such a choice of the prior distribution h, the statistics ¢;(x | h) are

giexp[—3{IN/O\ + Dlay Vasg s + O+ D)7 V7 2}
@m)m2(n; + 1)mil2 [V {12

_giexp[—3{IN/ O+ Dley Visyzoi + O+ D72 2702
= (27‘.)",/2()\]_ _|__ 1)7,/2 lzllﬂ )

i=1,F

ti(x|h) =

(4)

If the \; are taken equal to \, and the ¢; are take proportional to (A + 1)7"2
then the statistics (4) are equivalent to, and monotone decreasing functions of,
the statistics

(5) 8,‘(13 l h) = 22.1'V2_21.7'zé.7'; .7 = 1) ] k.

A decision rule § is a Bayes procedure relative to the prior distribution 4 if, and
only if, except on a set of z having Lebesgue measure zero, the ¢th decision is
made only when s;(z | k) is minimum among s;(z | &), - - - , sy(z | ). The follow-
ing lemma shows that the minimum distance rule is a Bayes procedure relative
to the prior distribution .

LemMma.

Il
—

z2fV;21]'Z;J' = minﬂcﬂj {(il} - ”)E_l(x - l"'),}) .7 y T k.

Proor. For p € Q;,
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I

(x — w)T/T;37'T/Ti(z — u)’

’?
= (215, — 5, 2)) Vi (215 — 1, %)

(z — p)I Yz — p)

-1 7
szV22,-z2j

1 1 ~1
+ (217 — VuiVajee; — 9) [V — ViaiVaz;Vajl

1 ’
- (215 — Vlzj[’njzzj - ),

where the last equality can be obtained from the formula for the inverse of a
partitioned matrix given by Lemma 3 of [5] (in which the words ‘“then” and
“and” should be interchanged)? or perhaps better, from the factorization of a
multivariate normal density into a marginal density times a conditional density
(see, e.g., [1], p. 29). The lemma now follows.

It is clear that the set of  which yield ties for minimum among the statistics
(5) has Lebesgue measure zero. The admissibility of the minimum distance rule
now follows:

TaEOREM. The minimum distance rule (= maximum likelihood rule) is an ad-
massible classification procedure.

Note that the minimum distance rule can still be applied, and remains ad-
missible, when Cov [X] is an unknown scalar multiple of a known nonsingular
matrix.

I

6. Examples. The problem treated in this paper includes the k-population
classification problem in which an ‘“‘individual” who is to be classified comes from
one of k multivariate normal populations, information about the means of the k
populations is based on samples, and the k population means are subject to linear
restrictions.

An observation on an “individual” may be a sample mean, and the observa-
tion may contain a normally-distributed zero-mean measurement-error. The co-
variance matrix for such an observation takes sample-size and measurement-
error into account (see [5], p. 214).

The k-population classification problem can be put into the form of the prob-
lem defined in Section 2 simply by letting the vector X denote all of the observa-
tions. The vector X lists the observation on the “individual” who is to be classi-
fied, and the independent observations on the “individuals” whose correct
classifications are known. If the covariance matrix for each observation is known
and nonsingular, then ¥ = Cov [X] is known and nonsingular. The linear re-
strictions on the means of the &k populations together with the k alternative
classifications define the k linear manifolds Q;, «--, @ .

The problem treated in [5] serves as one example. The p-dimensional row
vector Y; is normally distributed with known nonsingular covariance matrix
B; and unknown mean m;, j = 1, ---, k. There are no restrictions on the

2 The submatrix A must be assumed nonsingular in Lemma 4 of [5].
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means my , -+, M. The p-dimensional row vector Y, is normally distributed
with known nonsingular covariance matrix B and unknown mean m. It is known
that m = m; for some j. The problem is to decide for which j m = m; on the
basis of independent observations %,, y1, --+, Y+ on the respective random
vectors.

In this problem X = (Y,, Yy, ---, ¥}), ¥ = Cov [X] is known and non-
singular, and the linear manifold ; is defined by (m, m;, ---, my) € Q; when
m = m;,j = 1,---, k. Computation shows that here the minimum distance
rule reduces to the following simple form: make the ith decision for the ¢ which
minimizes (y: — %) (B: + B) ™ (y: — 4o)".

Other examples are provided by cases in which the k populations are identified
with the cells of an ANOVA or MANOVA model. Consider the case of two-way
ANOVA with no interaction and common unknown variance §° for the inde-

pendent cell averages Yog, @ =1, --- ,r;8 =1, -+, c. The means E[Y ,5] = uag
are unknown, and are subject to the linear restrictions pes — fa. — g + .. = 0,
a=1,---,r;8=1,---,c, where a bar denotes simple averaging with respect

to dotted subscripts. The independent normally distributed random variable
Y, has variance A6°, with A known, and unknown mean po. It is known that
Ko = Mep for some (e, 8). The problem is to decide for which («, 8) uo = mas On
the basis of observations 4o, yag,a =1, -+, r;8=1,--- ¢.

In this problem X = (Yy, Y, @ = 1,---, r; 8 = 1,---, ¢), and
¥ = Cov [X] is nonsingular and known except for the scalar factor §° whose
value is not needed in application of the minimum distance rule. For

a=1--,7r;,8=1,---, ¢, the linear manifold Q. is defined by (o, ua ,
a=1---,rb=1,+-,¢) eQpwhen up — fig. — o+ g.. =0,a=1, ---,r;
b=1---,¢ and up = pes . Computation shows that here the minimum dis-

tance rule reduces to the following simple form: make the (a, 8)th decision for
the («, 8) which minimizes (yo — §a — 7.6 + 7..)>. This rule can be applied,
and remains admissible, when \ as well as 6” is unknown.

In each of these two examples, application of the minimum distance rule does
not require the projection of z on each of the alternative linear manifolds: in
the first example it is not necessary to estimate any m; under the hypothesis
that m = m; ; in the second example it is not necessary to estimate ‘‘row effects”,
“column effects”, and ‘“‘over-all mean” under any of the hypotheses uy = pas .
A common feature of these examples is that y, is an “extra observation” in
what would otherwise be a very tractable model. The problem of extra observa-
tions in this situation is treated by Kruskal in [6]. He shows how extra
observations can be incorporated into the analysis through “correction” of the
analysis for the tractable model. This approach should yield simplified forms of
the minimum distance rule, analogous to those obtained in our two examples,
in other cases of the k-population classification problem.

The problem treated in this paper also includes the problem in which the
“individual” who is to be classified is a set of observations not all necessarily
from the same population. This is the problem of simultaneous classification.
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This problem can be put into the form of the problem defined in Section 2 by
again letting the vector X denote all of the observations. The minimum distance
rule is admissible for the zero-one loss function (1). However, for this loss func-
tion the risk function gives the probability that the set of observations is in-
correctly classified, i.e., it gives the probability that at least one observation in
the set is misclassified. A risk function which gives the expected number of mis-
classified observations is often preferable. Problems in which the latter risk
function is used are not included in the problem treated in this paper.
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