ASYMPTOTIC OPTIMUM QUANTILES FOR THE ESTIMATION
OF THE PARAMETERS OF THE NEGATIVE EXPONENTIAL
DISTRIBUTION
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1. Introduction. Assume that we are sampling from the negative exponential
distribution

(1.1) F(z) =1 — ¢ @, T = p;0>0,

where u and ¢ are respectively the location and the scale parameters. Denote the
observations of an ordered random sample of size n by zqy < @ < -+ < ZTny .
The integer < denotes the rank of the order statistic x(;) .

The problem of estimation of u and ¢ simultaneously (or one of them when the
other is known) based upon a fraction of the sample, say, the observations,
Ty < *++ < Tny arises frequently in practice. The integer k denotes the number
of observations for the estimation. In such estimation problem linear estimates,
Ci(ny) + CoTng) + +++ + CiTeny , are useful. The quantities ¢;, ¢a, - - -, ¢x are the
coefficients of the linear function. When both x and ¢ are unknown and to be
estimated, we obtain two linear functions differing only in coefficients but the
sample observations remain the same. The observations that are used to form the
estimate will be the relevant sample for the estimation. In such estimation
problem, ranksn; (¢ = 1, - - - , k) of the observations in the relevant sample form
a subset Ry = {ni, na, - -, mi} of the set I, = {1, 2, - - - , n}. Therefore, in esti-
mating the parameters based on k ( =n) observations we have at our disposal (x)
subset of the ranks to determine the relevant sample. Some subsets
R’ = {n), - -+, m"} are preferable to others if estimates based on the correspond-
ing order statistics T 0 , (g0 , * * * , L(ny0) POSSESS Minimum variance property
among all other (;') estimates. If such a set R;® exists, the corresponding set of
order statistics will be called “optimum set.”’” Therefore, the problem arises as to
how the ‘‘optimum set’’ of order statistics be determined for fixed values of n and
k such that the linear estimates of u and ¢ based on them have optimum variance
property.

The problem has been studied numerically by several authors. The small
sample situation has been studied by Harter (1961), Kulldorff (1963), Sarhan,
Greenberg and Ogawa (1963), Siddiqui (1963 ). Theasymptotic situation (n — o)
for the estimation of ¢ when u = 0 has been considered by Kulldorff (1962),

Ogawa (1950) and Sarhan, Greenberg and Ogawa (1963). In this paper, we

present the asymptotic situation (n — ) and obtain analytically a system of
equations which determine the £ (=<n) optimum spacings of the optimum set
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order statistics (quantiles) for the estimation of u and ¢. The solution of the
system of equations is shown to be unique.

2. Asymptotically best linear unbiased estimates of the parameters based on
k sample quantiles. Consider the two-parameter negative exponential distri-
bution (1.1).Assume that the sample size n is large and k ( £n) is given. Let the

ordered observations in a random sample of size n bexqy < - -+ < Z( and con-
sider the k sample quantiles €,y , -+, T, Where ny, - -+, ny, are the respec-
tive ranks which satisfy the inequality 1 < n, < -+ < n; £ n. The integers
fy, -+, ny are determined by the k fixed spacings py, p2, - - - , pr which satisfy

the order relation 0 < p1 < --- < py, < landn;=[np;] + 1, (¢ =1, -+, k).
[np] is the Euler notation denoting the largest integer not exceeding np; . Denote
po = 0 and pry1 = 1. It is well known that the joint asymptotic (n — ) dis-
tribution of Tmy) , Tny) » * * * 5 Teapy 1S & k-variate normal distribution with means
{w + our, p + oug, -+, p + ous} and dispersion matrix W = (o*/n)((W;))
with Wy =W = W= (e —1)(: <j);7,5=1,2, -+, k. The elements of
the inverse W' of W are

W:z — (e—“t‘—l _ e'“i+1)e—2“i/(e—u& _ e—us+x)(e—u4+x _ e—w),

Wiia = Wi = 1/(e* — ¢™7),

Wi;i=0 for |i—j]>1,
where u; = In (1 — p;)™", (s = 1, - - - , k) are the quantiles of the standardized
exponential distribution corresponding to pi, ps2, - -, pr [Mosteller (1946)].
Now, by the application of the generalized Gauss-Markoff theorem [Kulldorff

(1963)], the asymptotically best linear unbiased estimates of u and ¢ based on
the k quantiles are given by

(21) G = Zf‘:l bix(r.') )
(22) ﬁ = Ty — U,
where
(232) by = —(us — wm)/(e” — )L,
(2.3b)  bi = (/L) {(us — wia)/ (€ — €*7') — (wipa — us)/ (¥ — €*)},
1 =2, k—1,
(230) b}c = (I/L){(uk - uk—l)/(euk - euk—l)}y

(23d) L = D%, (us — wina)?/ (€% — e“-1).

The variance and the covariance of the estimates are

(2.4a) V(i) = {w'/L + (" — 1)}d"/n,
(2.4b) V(¢) = (1/L)d*/n,

(2.4c) Cov (4, 6) = (w/L)d"/n
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and the generalized variance of the estimates is
(2.5) A =V(@)-V(s) — Cov* (4,4) = [(e — 1)/Lle*/n’

3. The optimum quantiles for the estimation of u and o. In order to determine
the k optimum quantiles for the simultaneous estimation of u and ¢, we minimize
the expression in (2.5) with respect to us , us, - - - , ux where u; = In (1 — p,)™%,
(¢ =1,---, k) over the domain 0 < %; < --- < u, < o, or equivalently,
maximize L(e"* — 1)~ where L is given in (2.3d). The partial derivative

(3.1) SL(e" — 1) Youy = —[e “L/(1 — &™)*
+ (€ — D72 + € (up — 1)/ (€ — €} (uz — w1)/ (e — €")] <0,

since 0 < u; < ugand L > 0for0 < u; < -+ < u, < oo. Therefore, L(e"* — 1)"
is a monotonically decreasing function of w; and attains its maximum value when
u; assumes its smallest value. But according to the theory of quantiles p; must
be bounded away from zero and we encounter difficulty as to the choice of a
proper value of u; for which L(e** — 1)™" is maximum. To overcome this diffi-
culty, we consider the estimation of u and o based on the order statistics z(, ,

Tng) s **° 5 Ty Where the integers ny, - - - , 1y are determined by (K — 1) fixed
spacings p:, - - - , pi satisfying the order relation 0 < ps < -+ < pr < landr
is an integer such that 1 < r < [np.] + 1. It is well known that

(3.2) E@o) =p+o2ia(n—j+ 17

(3.3) V(zw) = Cov (2t , Tap) = o Z;=1 (n—J+ 1)—2-

The quantities D 51 (n —j + 1), s = 1,2 for1 £ r < [nps] + 1 can be ap-
proximated as

(34a) 25u(n—j +1)7 =l —r/(n+§)7 + 0@,

(34b) 2a(n—j + 17 = (I/n)lr/(n+ P/ —r/(n 4+ H] + 07,
by the use of the following Euler-Maclaurin summation formula:

(35) Xiie(s+3) = [o" ¢(2) do + 205 [Ba(3)/(2) N8G5 + R,

where Ba, (1) is the Bernoulli polynomial with argument } and the error term R
is numerically less than three times the first neglected term if ¢(z;’ does not change
sign [Steffenson (1927)], ¢E§§) denoting the (2»)th order derivative of ¢ . Now,
we set

(3.6) pr=r/(n+3%)=1—¢e" (say).

With this correspondence of w; in all the express1ons in (2.1) through (2.5),
we observe that the maximum of L(e** — 1)™' is attained when u, =
In (1 — 1/(n 4 1)) " since w,; is now limited in the intervalln (1 — 1/(n +%))*
Su<Iln(l-— pg)_l. Thus we have

(3.7) p’=1/(n+3%) and n’ = 1.
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To determine the remaining ¥ — 1 quantiles we maximize L(e** — 1)™" with
respect to uz , - - - , ux keeping u; fixed to be In (1 — 1/(n + %) )%, For this we
use the following transformation:

(3.8) bici = ui — ulo, (i=1,---,k),
where " = In (1 — 1/(n + %)) Then L(e** — 1)™" reduces to [(n — %)/(n
+ $)]Q@k-1(t, - -+, te1) where

(3.9) Q= 25 [(t — t1)?/ (e — )] with & = 0.
The functional form (3.9) may be put in the alternative form
(3.10) Qia = i [(te" — tiae™ 7)Y/ (71 — )]

with £, = 0 and te * = 0, which has been studied numerically by Ogawa (1960)
and Sarhan, Greenberg and Ogawa (1963) in determining the optimum spacings
when ¢ is the unknown parameter to be estimated based on k£ — 1 quantiles. Thus

maximization of Qe_1(ty, - -+ , t—1) With respect tot;, - - - , t—1 will determine the
optimum spacings \, - - - , M1 for the & — 1 quantiles by the relations

(3.11) AN =1-— ¢4, i=1 - ,k—1,
where (&', &, -+, ti_1) denote the point at which Q,_; attains its maximum.

The asymptotic relative efficiency (ARE) of the estimate of ¢ (when u is known)
based on k — 1 quantiles compared to the maximum likelihood estimate using
all the observations in the sample is Qi_1 which is the maximum of Q_; at
(t°, - -+, tie1). We refer the readers to Table 3 of Sarhan, Greenberg and Ogawa
(1963) for the numerical results for & = 2(1)16. This table will be referred to in
this paper as “Table 3 (1963).” In Section 4 we prove that maximum of Q—, for

each k is unique.
The optimum spacing of the k — 1 quantiles for the simultaneous estimation

of u and o are determined by the relations
P = (2 4+ (20 — N))/(2n + 1), (i=1-,k—1)

and the relevant sample for the estimation of p and ¢ consists of za)
Tinad) , *** 5 Tny) Where the ranks n, (i =2, -+, k), are given by nd = [npd] +
1,(i = 2,---, k). The asymptotically best linear unbiased estimates of x and
o are

fi=2zn—¢n[(2n—1)/(2n + 1)],

& = bozw + 21 bzl
where the coefficients by, - -, bi_y are available in “Table 3 (1963)” and
b = — D _*Z1 b’ . The joint asymptotic efficiency (JAE) of u and ¢ and asymp-
totic relative efficiency (ARE) compared to the maximum likelihood estimates
using all the observations in the sample are

JAE (4, 6) = [(2n — 1)*/2(n" — 1))@,
ARE (6) = [(2n — 1)/(2n + 1)]Qi-1,
ARE (3) = (2n — 1)Q_y/n[(2n — 1) In[(2n + 1)/(2n — 1)] + 2Qi-],
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where Q}_, is the asymptotic relative efficiency of the estimate of ¢ based on
k — 1 quantiles (when p is known).

For k = 5 and n = 70, it is easily verified that the relevant sample consists of
the set xqy , @3 , T3 5 Tesy , Ty - The estimates are p = gy — ¢ In (141/139),
G = —.78711‘(1) + .3907:13(33) + .2361:0(53) + -119517(64) + .04:09x(59) . The coeffi-
cients are taken from “Table 3 (1963)” for k = 4. The efficiencies are
JAE (i, ¢) = 90.04%, ARE (¢) = 91.37% and ARE (%) = 95.22%.

4. On the equations for optimum spacings. In the previous section, we have
observed that for a given k, the determination of the unique set of optimum
quantiles depends on the uniqueness of the maximum of the function Q;_; . In
order to obtain the maximum of Q. we have to solve the following system of
equations

8Qu_1/6t: = ¢ (11 — 1) (1i1 + 7 — 2t) = 0, i=1,2 - ,k—1,
where
(4.1) I mri= (W — g /(= ),
It will be shown later that the solution of the system of equations 741 + 7;
—2t;=0(:=1,---,k — 1) corresponds to maximum of @ . To prove the

same we require the following lemmas:

LemMa 4.1. The function Qx_1(t1,- + - , te—1) defined over the domain 0 < t <
< 1 < o isbounded by 0 and 1,1i.e.,0 < Qx_a(tr, -+, tra) < 1.

Proor. It is easily checked that Qx—i(t1, -+, 1) = 0. By Schwarz’s in-
equality we have

(S (= De'a) = (Jii, e dy(fii_, (¢t — 1)% " de)
or

(te™" — tiae™"1)2/ (7 — ¢7Y) [, (t—1)%"d

I\

or
D[t — tiae )Y (T — )] = [o (¢ — D)% 'd

Hence the lemma is proved.

LEMMA 4.2. £,y < 73 < t; for 1 = 1, , k — 1 where 7; is gwen i (4.1).
PROOF By the mean Value theorem there ex1sts a ;such that [ii_ te‘dt =
[ e dt =1 — )Where i <7 <ti.

Hence 0 < 11 < t; < 79 < -++ <ty < 7 < . Further, we note that if
ti = t,,'_l 5 then ti = ti-—l = Ti.

LemMA 4.3. The function Qw(t1, -- -, tx—1) defined over the domain 0 < t; <

- < b1 < oo satisfy the inequalities

Qia(ty, » ooy tiy bivny ooy tem1) > Mgy, Qealy, boy o o0yt b, o0 B),
Qr—1(t, + -y tem1) > limy oo Qr—1(t, -+, 1),
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and
Qra(ty, +++, timr) > limy e Qua(fr, -+, t-1).
Proor.
Quoa(t, =y tia) = Dima (b€ — tige )Y (e — €)
and
limy,e,,, (i€ % — tig %) /(e — ¢ "*1) = 0.
Therefore,

limyae; g Qea(ty, o0y tica,y by tipa, oo, te1)
= Qk—Z(tly ey b, by, 00, tk—l)'
But

Qua(te, ~++y ticay by by w00y temt) > Quea(tr, <o+ y tica,y bipr, =+ beo1)
for i < til < t,'+1 since
Quoalty <oy bicay 8y by ooy ta) — Quca(fry ooy bicay i, oo, fe)

= (L™ = i )Y@ — 6 A (e — ) (6 — e

— (b€ " — b)Y (67 — )

— (e—tg_l _ e—t.-')(e_t‘r _ 6_“+1)(712+1 _ Ti,) > 0
BUt/ Quoalty, + vy tiay 8y tivny w00y toe) = Quealty, =y bicay bipr,y ooy Bet)
if t) — tiy or t — tiy . Tt is easily checked that if ¢, — 0 or #,_, — o, the proposi-
tion remains true. Hence the lemma is proved.

LEmMA 4.4. The function Qr—1(t1, - -+, tk—1) defined over the domain 0 = t
< - £ o £ o does not have a maximum on the boundary; it has at least one
maximum inside the domain 0 < 6 < -+ S gy £ .

Proor. The proof is a direct consequence of Lemmas 4.1 and 4.3.

Lemma 4.5. A sufficient condition that the (kK — 1) X (kK — 1) symmetric
matrix of the form

—ay b1 0 0 0 0 0 0
bh —a b, 0 O 0 0 0
J = 0 b2 — a3 bs 0 0 0 0
0 0 0 0 O .
0 0 0 0 O bi-s —ak— br—s
0 0 0 0 O 0 bis  ——

fora; > 0,b; > 0, be negative definite is that the row-totals (1) (b; — @1 + biy1) = 0
for ¢ = 1,2, ---, k — 3, and the row-totals (ii) (i — a;) < 0; (iii)
(br—2 — ax—1) < 0.
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Proor. Consider the quadratic form
XUX = D rlaX+ 2D 16X X, where X; =0,
(b1 — )X + (rs — w1)Xoa + Dot (b — air + bi1) X
— D EIbd(X: — X))
It follows immediately that if the stated conditions of the lemma are satisfied,
then J is negative definite.

LeEmmA 4.6. The function Qry(t1, -+, ti1) defined over the domain 0 < t

< --- £t £ o has at least one maximum which corresponds to the solutions
of the equations

T+ 17— 26=0 (#g=1,---,k—1)
where 7; is defined in (4.1).
Proor. To obtain the maximum of Qi_1(¢1, - -+, t—1) we solve the following
system of equations, for¢ =1, --- , k — 1:

(8/8t)Qu1(tr, « -+ 5 tie1) = € *(rips — 1) (Tin + 75 — 24) = 0.

Bute® > 0for 0 < t; < « and 741 > 7; by Lemmas 4.1 and 4.4. Hence the
extremes of Qi_1(t, - - - , tr—1) correspond to the solutions of the following system
of equations ;41 + 7 — 28, = 0(¢ = 1, - -- , k — 1). To check whether maximum
or minimum occurs, we have to show that the matrix of the second partial
derivatives

(((5°/t:5t;) Qes))
at those points where 7;11 + 7; — 2¢; = 0 is negative definite or positive definite.
In the present case, we show that it is negative definite.
The second partial derivatives of Qi1 at those points which satisfy 711 +
7 — 2t; = 0 are given by

5°Qu/8tS" bii = € 5 (ripn — 1)[(8 — 1)/ (€5 — %)
+ (i1 — 1)/ (€ — €)= 2¢],
FQuor/0tidtips = diiy1 = € € T (1o — 1) (b — T)/(6F — € ),
8Qu1/0tdtiy = bii1 = € Y& N rin — 7)) (i — tia)/(e57 — €Y),
3°Qr/0tdt; = ¢:; =0  for i — j| > 1.

Now, for0 < t; < -+ < frq < o, @461 > 0 and ¢;q > 0, since 7,41 —
7:> 0, tiy1 > 7ip1and 7; > ¢y . Further, ¢, < Ofore =2, --- |k — 2,

i + diip1 + biia
= ¢ (i — m)(ti — 1) /(€ — €)] F (ron — t)e /(67 — ¢ )
— 24 (tipn — Ter)€ /(€75 — € ) + (1o — tia)e (€ — @)
=e¢ “(rin—r)(l—rm+rn+1—rp+ra—2)=0.
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Also, it is easy to check that
¢+ dr = —¢ (1, — m){n + n(" — 1)} <0
and
Gr1h2 + Pr—1h1 = —€ 1 — 1m1)(1 + B + m) < O

Therefore, the elements of the matrix ((6°Q:_;/6t:8t;)) satisfy the condition of
the Lemma 4.5. Hence, the matrix is negative definite and the lemma is proved.
THEOREM 4.1. The system of equations

(42) Ti4l +T¢—2ti=0 (’l:=1,"',k—].)
has one and only one solution and this solution corresponds to the maximum of Qx—y .
Proor. Applying the following transformation s; = ¢ — ¢ (2 = 1, -+

k — 1) with ¢, = 0 to the function @,—1(t1, - , ti—1) given in (3.9), we obtain
(43) Y(s1, -+, sa) = f(s1) + €f(s:) + € f(ss)
+ oo 4 exp (— 2051 8)f(s),

where f(s;) = 8’/ —1 (=1, -, k—1Nand0< s <s1 + 8 < -+ <
> iZls; < . Clearly, the Jacobian of transformation is unity. Moreover, by
the chain rule, 6Q_i/8t; = (8¢/8s1)(8s1/8t) + -+ + (8¢/88k—1) (88k—1/0:);

(=1, ---, k — 1). It follows that &/6s; = 0 if and only if 6Qz—./8t; = O,
i=1,---,k— 1. Now, we have to show that the system of equations y/ss; = 0
(¢ =1, ---, k — 1) has one and only one solution. The solution corresponds

to maximum follow from lemma (4.6).
(4.4) 8y/ds; = exp (— D iZis;) {df(s:)/dsi — € “G(si)} = 0
(i=1,-,k—1)
where G(s;) = 0, and
G(sin) = f(siy) 4 €+ f(sir2) + -++ + exp (— D i=rs1 87)f(Sh—1).
Clearly, G(siy1) is a function of the form y(s1, « -, sx—1) and 0 < ¥(s1, -+,

Sk—l) =L
We consider first the (£ — 1)th equation

/081 = exp (— 25z s)sir/ (€% — D2 — s—1/(1 — 1)) = 0.

Since D =1 8; < ® and 0 < 81 < , we consider the factor in the parenthesis.
This factor is a decreasing function of 81 since sp—/1 — e %=1 is increasing.
Therefore, by monotonicity, the solution is unique, and is st = 1.5936.

Next, we consider the (¢ — 2)th equation

3W/dsks = exp (— D_i=s 8;){df (s1—2)/dsi— — € **f(81)} = 0.
Since 0 < D =t s; < o, the above equation reduces to

1 — f(si1) — (sua/(1 — €*%) — 1)* = 0.
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Substituting the root of the (¢ — 1)th equation, we obtain s;o/(1 — € "*-%) =
1 4+ (1 — f(sh_1))! since s,_s/(1 — € **-2) > 1, where f(si_y) is the maximum
value of f(sk—1) and is less than unity. Since s,—o/(1 — ¢ *-?) is an increasing
function of s;_; , by monotonicity the solution is unique and is sp_, = 1.0177.

Now, consider the ¢th equation given in (4.4). Assuming that & — ¢ — 1
equations have been solved and the maximum value of G(s:y) is G(st1) for
Siy1 = 8441, *** , 81 = Si_1, Equation (4.4) reduces to si/(1 — ¢ %) = 1 +
(1 — Q(s¥%1))}, since s;/(1 — €*) > 1 and G(s}1) < 1. By previous argu-
ment, the solution is unique. Hence, we have proved that the system of equa-
tions &y/ds; = 0 (¢ = 1, ---, k — 1) has unique solution. The proof of the
theorem is complete.
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