ON TWO EQUIVALENCE RELATIONS BETWEEN MEASURES1

By DAVID A. FREEDMAN

University of California, Berkeley

- **1.** Summary. Let I be the closed unit interval, with the usual topology; Π the set of probabilities on I, with the weak* topology: $\mu_n \to \mu$ in Π if and only if $\int_I f d\mu_n \to \int_I f d\mu$ for each continuous, real-valued f on I. For μ , ν in Π , recall that $\mu \equiv \nu$ means: $\mu(A) = 0$ if and only if $\nu(A) = 0$ for all Borel subsets A of I. Of course, \equiv is an equivalence relation. The graph of \equiv , namely the set of $(\mu, \nu) \in \Pi \times \Pi$ with $\mu \equiv \nu$, is Borel (2.11 of [2]). One result of this paper is: there is no Borel selector for \equiv ; that is, there is no Borel subset of Π meeting each \equiv class in exactly one point. Let $\Sigma(\equiv)$ be the σ -field of all Borel subsets of Π saturated under \equiv , that is, containing with μ all $\nu \equiv \mu$. If there were a Borel selector for \equiv , there would be a Borel function f on Π with $f(\mu) = f(\nu)$ if and only if $\mu \equiv \nu$, and $\Sigma(\equiv)$ would be separable. However,
 - (1) Proposition. $\Sigma (\equiv)$ is inseparable,

The proof of (1) is based on the following idea of Blackwell. Let \mathfrak{F} be a σ -field, and P a probability on \mathfrak{F} . Say P is continuous if each \mathfrak{F} -atom has outer P-measure 0, and say P is 0-1 if P(A)=0 or 1 for all $A \in \mathfrak{F}$.

- (2) Lemma (Blackwell). If P is continuous and 0-1, \mathfrak{F} is inseparable. Thus, (1) follows from
- (3) THEOREM. There is a continuous 0-1 probability on $\Sigma (\equiv)$.

Two proofs of (3) will be given in Sections 2 and 4 respectively. Section 3 contains a result on random distribution functions [3], which may be of independent interest, and which is used in Section 4.

Section 5 deals with the coarser equivalence relation \approx , where $\mu \approx \nu$ means: $\mu(A) = 0$ if and only if $\nu(A) = 0$ for all open subsets A of I. Now \approx is induced by a Borel function (3.5 of [2]). More is true:

- (4) Theorem. There is a Borel selector for \approx .
- 2. First proof of (3). Let I^z be the set of functions from the positive integers Z to I. For f and g in I^z , let $f \sim g$ if and only if there is a permutation π (possibly infinite) of Z with $f = g \circ \pi$. Of course, \sim is an equivalence relation. Let W be the set of all $f \in I^z$ which are one-to-one. Of course, $W \in \Sigma(\sim)$. As usual, $W\Sigma(\sim)$ is the σ -field of all subsets of W of the form $W \cap S$, $S \in \Sigma(\sim)$.
 - (5) Lemma. There is a continuous 0-1 probability Q on $W\Sigma(\sim)$.

Proof. Take Lebesgue measure on the Borel σ -field of each factor I of I^z , and form the infinite product measure. Let Q be the restriction of this product measure to $W\Sigma(\sim)$. Plainly, Q is a continuous probability. Finally, Q is 0-1 by the Hewitt-Savage 0-1 law (Theorem 11.3 of [5]). \square

The Annals of Mathematical Statistics.

www.jstor.org

Received 20 December 1965.

¹ This paper was prepared with the partial support of the U. S. Army Research Office (Durham) DA-31-124-ARO-D-548; and a grant from the Alfred P. Sloan Foundation.

Let D be the set of discrete $\mu \in \Pi$, that is, those μ with $\sum_{x \in I} \mu\{x\} = 1$. Define functions s and p from D to I^z by requirements (6) through (9), for all $\mu \in D$ and $i \in Z$:

(6)
$$\mu\{s(\mu)(i)\} = p(\mu)(i) > 0;$$

(7)
$$\sum_{i \in \mathbb{Z}} p(\mu)(i) = 1;$$

(8)
$$p(\mu)(i) \ge p(\mu)(i+1);$$

(9)
$$p(\mu)(i) = p(\mu)(i+1)$$
 implies $s(\mu)(i) > s(\mu)(i+1)$.

It is not hard to verify that

Plainly, for μ and ν in D,

(11)
$$\mu \equiv \nu \quad \text{if and only if} \quad s(\mu) \sim s(\nu).$$

Since a subset of W which is both analytic and complentary analytic is Borel (Section 34 of [4]), (10) and (11) imply

(12)
$$A \to s(A)$$
 is a σ -isomorphism of $D\Sigma(\equiv)$ onto $W\Sigma(\sim)$.

(By [6], s(A) is not Borel for general Borel A.) For $A \in D\Sigma(\equiv)$, let P(A) = Q[s(A)]. By (5) and (12),

(13)
$$P$$
 is a continuous $0-1$ probability on $D\Sigma(\equiv)$, which proves (3).

3. A random distribution function. Let 2^z be the set of functions from the positive integers Z to the two-point set $\{0, 1\}$, with the usual product structure. Write B for the set of all finite sequences of 0's and 1's (including the empty sequence \emptyset). For $b \in B$, let \bar{b} be the set of all $f \in 2^z$ which agree with b on its domain. Thus $\overline{\emptyset} = 2^z$, $\overline{00} = \{f : f \in 2^z, f(1) = f(2) = 0\}$. Let J^B be the set of all functions t from B to the open unit interval J, with the usual product structure. For $t \in J^B$, let $M^*(t)$ be the probability on 2^z which satisfies

$$(14) M^*(t)(\overline{b0}) = t(b)M^*(t)(\overline{b}).$$

Map 2^z onto I by sending f to $\sum_{n=1}^{\infty} f(n) 2^{-n}$. This sends $M^*(t)$ to $M(t) \in \Pi$. Take Lebesgue measure λ on the Borel subsets of each factor J of J^B , and form the infinite product measure λ^B . Let $P_{\lambda} = \lambda^B M^{-1}$.

Plainly, M is a continuous and 1-1 map of J^B onto the set of $\mu \in \Pi$ which assign positive mass to all nonempty open subsets of I. Moreover, P_{λ} -almost all μ are continuous (4.4 of [3]). Let $\nu \in \Pi$.

(15) Theorem. P_{λ} -almost all μ are singular with respect to any probability ν .

Proof. Suppose without loss of generality that ν assigns positive mass to all nonempty open subsets of I. For each $x \in I$ and $n = 0, 1, \dots$, let I(n, x) be the unique interval $[0, 2^{-n}], (2^{-n}, 2 \cdot 2^{-n}], \dots, (1 - 2^{-n}, 1]$ which contains x. Fix

- $x \in I$. For $n = 0, 1, \dots$, the ratios of $M(\cdot)[I(n+1,x)]$ to $M(\cdot)[I(n,x)]$ are independent and uniform on I with respect to λ^B , by (14). Therefore, the ratio of M(t)[I(n,x)] to $\nu[I(n,x)]$ converges to a finite, positive limit for λ^B -almost no t. By Fubini's theorem, for λ^B -almost all t, the ratio of M(t)[I(n,x)] to $\nu[I(n,x)]$ converges to a finite, positive limit for ν -almost no x. From the usual martingale argument (VII.8 of [1]), for any such t, $M(t) \perp \nu$. \square
- **4.** Second proof of (3). Let C be the set of all continuous $\mu \in \Pi$ (that is, $\mu\{x\} = 0$ for all $x \in I$) which assign positive measure to all non-empty open subsets of I. Plainly, $C \in \Sigma(\equiv)$. It is clear from (15) that
- (16) P_{λ} is a continuous probability on $C\Sigma (\equiv)$.

To prove (3), it is now enough to prove

(17) LEMMA. P_{λ} is 0-1 on $C\Sigma (\equiv)$.

PROOF. For t and u in J^B , say $t \sim u$ provided t(b) = u(b) for all but finitely many b. Plainly, \sim is an equivalence relation, and $t \sim u$ implies $M(t) \equiv M(u)$. So, if $A \in C\Sigma(\equiv)$, then $M^{-1}A \in \Sigma(\sim)$. By the Kolmogorov 0-1 law (p. 102 of [1]), λ^B is 0-1 on $\Sigma(\sim)$. \square

- **5. Proof of (4).** It is not much harder to prove (4) when I is any compact metric set. To avoid trivial complications, suppose I is infinite. For $\mu \in \Pi$, let $C(\mu)$ be the smallest closed subset of I having μ -measure 1. Let 2^I be the set of non-empty closed subsets of I, in the usual compact metric topology (Section 28 of [4]). For $K \in 2^I$ and $x \in I$, let m(K, x) be the set of $y \in K$ whose distance from x is minimal. Clearly,
- (18) $K \to m(K, x)$ is upper semicontinuous,

and

(19) the diameter of m(K, x) is at most twice the distance from x to K.

Let $R = \{r_1, r_2, \cdots\}$ be a dense subset of I. Define the functions $R^{(0)}, R^{(1)}, \cdots, R^{(\infty)}$ from 2^I to 2^I as follows: $R^{(0)}(K) = K$; $R^{(n+1)}(K) = m(R^{(n)}(K), r_{n+1})$ for $n = 0, 1, \cdots, R^{(\infty)}(K) = \bigcap_{n=0}^{\infty} R^{(n)}(K)$. By (19), $R^{(\infty)}(K)$ consists of a single point, call it $R^*(K)$. By (18), R^* is a Borel function from 2^I to I. Now, let $R_n = \{r_n, r_{n+1}, \cdots\}$ for $n = 1, 2, \cdots$, and let $\rho(K) \in \Pi$ assign mass 2^{-n} to $R_n^*(K)$ for $n = 1, 2, \cdots$. Plainly, ρ is a Borel mapping from 2^I to Π . By (19), $\{R_1^*(K), R_2^*(K), \cdots\}$ is a dense subset of K, so $C(\rho(K)) = K$. In particular, ρ is 1-1, so $\rho(2^I)$ is Borel (Section 43 of [4]) in Π , and is plainly a selector for \approx . This completes the proof of (4).

The situation is similar when I is a $G_{b\sigma}$, but I do not know what happens for general Borel I.

REFERENCES

- [1] DOOB, J. L. (1953). Stochastic Processes. Wiley, New York.
- [2] Dubins, L. E. and Freedman, D. A. (1964) Measurable sets of measures. Pacific J. Math. 14 1211-1222.

- [3] DUBINS, L. E. and FREEDMAN, D. A. (1965). Random distribution functions. Proc. Fifth Berkeley Symp. Math. Statist. Prob. To appear.
- [4] HAUSDORFF, FELIX (1957). Set Theory. Chelsea, New York.
- [5] HEWITT, EDWIN and SAVAGE, L. J. (1955). Symmetric measures on Cartesian products. Trans. Amer. Math. Soc. 80 470-501.
- [6] Purves, Roger (1965). Bimeasurable functions. Fund. Math. To appear.