ON TWO EQUIVALENCE RELATIONS BETWEEN MEASURES!

By Davip A. FREEDMAN
University of California, Berkeley

1. Summary. Let I be the closed unit interval, with the usual topology; II the
set of probabilities on I, with the weak™® topology: . —  in II if and only if
J1fdpn— [ f dufor each continuous, real-valued f on I. For p, » in II, recall that
r =v means: u(4) = 0if and only if »(A) = 0 for all Borel subsets 4 of I. Of
course, = is an equivalence relation. The graph of =, namely the set of
(p, v) eI x II with u = v, is Borel (2.11 of [2]). One result of this paper is: there
18 no ‘Borel selector for = ; that is, there is no Borel subset of II meeting each =
class in exactly one point. Let Z(=) be the o-field of all Borel subsets of II satu-
rated under =, that is, containing with u all v = u. If there were a Borel selector
for =, there would be a Borel function f on II with f(u) = f(») if and only if
= », and =(=) would be separable. However,

(1) ProrosITION. =(=) 18 inseparable,

The proof of (1) is based on the following idea of Blackwell. Let § be a o-field,
and P a probability on §. Say P is continuous if each -atom has outer P-measure
0,and say Pis0 — 1if P(A) = Oor1lforall 4 ¢ §.

(2) LeEmma (Blackwell). If P is continuous and 0 — 1, § is inseparable.

Thus, (1) follows from

(8) TurorREM. There is a continuous 0 — 1 probability on 2(=).

Two proofs of (3) will be given in Sections 2 and 4 respectively. Section 3 con-
tains a result on random distribution functions [3], which may be of independent
interest, and which is used in Section 4.

Section 5 deals with the coarser equivalence relation =, where p &~ » means:
w(A) = 0if and only if v(A) = 0 for all open subsets A of I. Now = is induced by
a Borel function (3.5 of [2]). More is true:

(4) TueorEM. There is a Borel selector for =~.

2. First proof of (3). Let I” be the set of functions from the positive integers
Z to I. For f and g in I?, let f ~ g if and only if there is a permutation « (possibly
infinite) of Z with f = g o w. Of course, ~ is an equivalence relation. Let W be
the set of all f & I” which are one-to-one. Of course, W & Z(~). As usual, WZ(~)
is the o-field of all subsets of W of the form W n S, S ¢ Z(~).

(5) LEMMA. There is a continuous 0 — 1 probability Q on WZ(~).

Proor. Take Lebesgue measure on the Borel o-field of each factor I of I, and
form the infinite product measure. Let Q be the restriction of this product meas-
ure to WZ(~). Plainly, Q is a continuous probability. Finally, @ is0 — 1 by the
Hewitt-Savage 0 — 1 law (Theorem 11.3 of [5]). []
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Let D be the set of discrete pE II, that is, those u with D .r u{z} = 1. Define
functions s and p from D to I” by requirements (6) through (9) for all ue D
and e Z:

(6) pl{s(u) ()} = p(u)(2) > 0;
() 2Zuzp(w)(@) = 1;

(8) p(w) (@) Z p(w) (5 + 1);

(9) p(w)(@) = p(p) (4 + 1) implies s(u)(¢) > s(u)(z + 1).
It is not hard to verify that

(10) s is Borel.

Plainly, for y and v in D,

(11) rw=v ifandonlyif s(u) ~ s(v).

Since a subset of W which is both analytic and complentary analytic is Borel
(Section 34 of [4]), (10) and (11) imply

(12) A — s(A) is aoc-isomorphism of DZ(=) onto WZ(~).

(By [6], s(A) is not Borel for general Borel A.) For A £ D2(=), let P(4) =
Q[s(4)]. By (5) and (12),

(13) P is a continuous 0 — 1 probability on DZ(=),
which proves (3).

3. A random distribution function. Let 27 be the set of functions from the
positive integers Z to the two-point set {0, 1}, with the usual product structure.
Write B for the set of all finite sequences of 0’s and 1’s (including the empty
sequence ). For b & B, let b be the set of all f £ 2” which agree with b on its
domain. Thus & = 27,00 = {f:f ¢ 2% f(1) = f(2) = 0}. Let J® be the set of all
functions ¢ from B to the open unit interval J, with the usual product structure.
For t & J®, let M*(t) be the probability on 2% which satisfies

(14) M*(8)(B0) = t(b)M*(¢)(b).

Map 27 onto I by sending f to Dy f(n)27". This sends M *(t) to M (%) eII.
Take Lebesgue measure A on the Borel subsets of each factor J of J?, and form the
infinite product measure \®. Let Py = A°M 72,

Plainly, M is a continuous and 1-1 map of J & onto the set of u ¢ II which assign
positive mass to all nonempty open subsets of I. Moreover, Py-almost all x are
continuous (4.4 of [3]). Let v & II.

(15) TaEOREM. P)-almost all p are singular with respect to any probability v.

Proor. Suppose without loss of generality that » assigns positive mass to all
nonempty open subsets of I. Foreachz ¢ I andn = 0, 1, - - - , let I(n, z) be the
unique interval [0, 277], (27", 2-27"], --- , (1 — 27", 1] which contains z. Fix
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zel.Forn = 0,1, ---, the ratios of M(-)[I(n + 1, z)] to M(-)[I(n, z)] are
independent and uniform on I with respect to A?, by (14). Therefore, the ratio of
M (t)[I(n, )] to.»[I(n, x)] converges to a finite, positive limit for A®-almost no ¢.
By Fubini’s theorem, for A®*-almost all £, the ratio of M(¢)[I(n, )] to »[I(n, z)]
converges to a finite, positive limit for »-almost no z. From the usual martingale
argument (VIL.8 of [1]), for any such ¢, M (¢) L ».[]

4. Second proof of (3). Let C be the set of all continuous u £ II (that is, u{z} =
0 for all z £ I) which assign positive measure to all non-empty open subsets of I.
Plainly, C ¢ Z(=). It is clear from (15) that

(16) P) is a continuous probability on CZ(=).

To prove (3), it is now enough to prove

(17) LeEmMA. P\ is0 — 1 on C=(=).

Proor. For ¢ and u in J?, say ¢ ~ u provided ¢(b) = u(b) for all but finitely
many b. Plainly, ~ is an equivalence relation, and ¢ ~ « implies M (¢) = M (u).
So, if A ¢ C=(=), then M*A £ =(~). By the Kolmogorov 0 — 1 law (p. 102 of
[1),A?i80 — 1 on Z(~).[]

6. Proof of (4). It is not much harder to prove (4) when I is any compact
metric set. To avoid trivial complications, suppose I is infinite. For p £ II, let
C(p) be the smallest closed subset of I having u-measure 1. Let 2’ be the set of
non-empty closed subsets of I, in the usual compact metric topology (Section 28
of [4]). For K £ 2" and r £ I, let m(K, z) be the set of ¥ ¢ K whose distance from
2 is minimal. Clearly,

(18) K — m(K, z) isupper semicontinuous,
and
(19) the diameter of m(K, z) is at most twice the distance from z to K.

Let R = {r, r2,---} be a dense subset of I. Define the functions
R®, R®, ..., R from 2’ to 2' as follows: R”(K) = K; R™™"(K) =
m(R™(K), tay) forn = 0, 1, .-+ ,; R®(K) = Ni_R™(K). By (19),
R (K) consists of a single point, call it R*(K). By (18), R* is a Borel function
from 2" to I. Now, let R, = {74, Tay1, --+} forn = 1,2, - -+ ,and let p(K) e IT
assign mass 27" to R,*(K) forn = 1,2, - - - . Plainly, p is a Borel mapping from
2" to I1. By (19), {R,*(K), R,*(K), - - -} is a dense subset of K,s0 C(p(K)) = K.
In particular, p is 1-1, so p(27) is Borel (Section 43 of [4]) in II, and is plainly a
selector for =. This completes the proof of (4).

The situation is similar when I is a G5, , but I do not know what happens for
general Borel 1.
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