ON SOME NONPARAMETRIC ESTIMATES FOR SHIFT IN THE
BEHRENS-FISHER SITUATION!

By P. V. RAMACHANDRAMURTY

Case Institute of Technology

1. Introduction and summary. It is now widely recognized that from the
point of view of robustness, nonparametric tests, such as the Wilcoxon or normal
scores test, should be used in practice for the two-sample location problem instead
of the classical ¢-test. But until recently there were no robust estimates for the
difference between the two location parameters. In a recent paper [4] Hodges and
Lehmann proposed a solution for this problem. After.this paper it is clear that all
the arguments that can be used in favor of the Wilcoxon test as against the
classical ¢-test can be used in favor of the estimate med (Y; — X.) for the differ-
ence between the locations as against the classical estimate (¥ — X). In their
paper quoted above, Hodges and Lehmann propose a whole class of nonpara-
metric estimates corresponding to a class of nonparametric tests both for the two-
sample and the one-sample location problems. To indicate this correspondence
suppose h(X, Y) is a test-statistic, nonparametric or otherwise for the equality
of the locations of X and Y. Affer having observed (X, Y) we estimate the differ-
ence between the two location parameters by the amount of shift required to
match the samples X and Y in such a way that h(X, Y') is close to its expected
value when the shift is zero. For a more precise definition of the estimates the
reader is referred to (1.2) below. For a corresponding definition of the one-sample
estimates the reader is referred to (3.3).

Since the difference between the two one-sample estimates for location is an
estimate for the difference between the two location parameters in the two-sample
problem the paper of Hodges and Lehmann throws open a whole class of estimates
for location in the two-sample problem. The aim of this paper is two-fold. First,
how do these estimates compare among themselves in the Behrens-Fisher situ-
ation where the scale parameters of the populations can possibly differ? Second,
how do these estimates compare with the classical estimate when the scales
differ? A basic requirement to be able to answer the above questions is the asymp-
totic normality of the estimates in the Behrens-Fisher situation and this is shown
under fairly general conditions in Sections 2 and 3. In answer to the first question
the following main result is proved: If the ¥*-score test is the best linear rank
order test when the underlying distribution is #* then the difference between the
two one-sample estimates based on the ¥*-score test is more efficient than the

Received 26 March 1965.

1 This forms a part of the author’s dissertation submitted in partial satifaction of the
requirements for the Ph.D. degree in statistics of the University of California, Berkeley.
Prepared with the partial support of the Office of Naval Research, Contract NONR-222-43.
This paper in whole or in part may be reproduced for any purpose of the United States
Government.

593

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to )

2

The Annals of Mathematical Statistics. RIKOIS ®

www.jstor.org



594 P. V. RAMACHANDRAMURTY

simultaneous two-sample estimate based on the ¥*-score test. It follows as a
particular case that the difference between the two one-sample estimates based
on the normal scores test is more efficient than the simultaneous two-sample esti-
mate based on the normal scores test when the prototype distribution is normal.
In answer to the second question, the following result is shown. The differences
between the one-sample Hodges-Lehmann estimates has all the advantages over
the classical estimate in the case of inequality of variances as in the case of
equality of variances. For a more precise statement the reader is referred to the
end of Section 4.

1.1. General assumptions and notation. All the distributions that occur are as-
sumed to be continuous. By the existence of a density we mean except possibly at
a countable number of points of which any finite interval contains at most a finite
number of points. To avoid repetition this is not stated explicitly. ® as usual
denotes the cdf of standard normal and ¢ its density. K stands for a generic
constant.

1.2. Preliminaries. Suppose X;, Xz, -+, X is a random sample from a
cdf F and Yy, Yy, -+, Y, is a random sample from a e¢df G(z — A). Let
v, v® ... V™ be an ordered sample from a cdf ¥ where N = m + n and
let

(1.1) RX,Y) = 0" Dty Eo(VE?)

where 81, S, ++ - , 8, are the ranks of Y1, Yy, - -+, Y, in the combined sample.
Let E{h(X, Y)} = u, independent of F and G when F = G'and A = 0. Then a
class of estimates proposed by Hodges and Lehmann in [4] for A is obtained by

shifting ¥1,Ys, - -+ , Y by A in such a way that A(X, ¥ — A) is close to u. More
precisely let

(1.2) 8 =sup {A:h(X,Y —A) > pu} and & = inf {A:h(X,Y — A) < p}
and '

(1.3) A=136+ 5.

The estimate A depends on the ¥ we start with and is shown in [4] to be
med (Y; — X;) if ¥ is uniform. For future reference, we state a few results about
the distribution of A when F and @ are not necessarily the same but are sym-
metric about the same point. The proofs follow as in [4] and [5].

Tureorem 1.0. (Hgyland) Let A be defined by (1.3) with h defined by (1.1) and
suppose F, G € 1, the class of continuous distributions symmetric about the origin.
Then A is symmetrically distributed about A.

LemMa 1.1. If A s defined by (1.1), (1.2) and (1.3), then

(i) Az, y + a) = Az, y) + a for all x and y,

(iii) P{h(X,Y —a) <u} £ P(A<a) £ Ph(X,Y — a) =4},
where P, indicates that the probability is taken when the true distributions are F(x)
Cand G(z — A).
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THEOREM 1.1. Let a, ¢1, ¢y, -+ be real constants, Ay = a/cy and suppose that
(1.4) limye PN{CN(hN - [.L.N) = u} = <I>[(u + GB)/A]
where by Py we mean the probability when the true distributions are F and
G(x + Ax). Then for fixed A,
(1.5) limN_,w PA{CN(AN - A) é a} = <I>(aB/A).

REMARK. If the conditions of iTheorem 1.1 are satisfied, Theorem 1.1 shows
that A estimates consistently the shift in G, which is unrelated to F. But as we see
later, the conditions of Theorem 1.1 are satisfied only when there is some relation

between F and @ such as symmetry about the same point and then A refers to
both F and G.

2. Asymptotic normality of h(X, Y).

DEeriniTION 2.1. A pair of distributions F and G are said to overlap if the
probability measures P; and P; induced by F and G on the real line are not
mutually singular.

Lemma 2.1. Suppose X1, X, are independent random variables with cdf F and
Y1, Y, are independent random variables with cdf G. If F and G overlap then
P(X1<Y1<Y2<X2)>O(mdP(Y1<X1<X2<Y2)>0

OvuTtLINE OF ProoOF. First note that

(21) P(Xi<Y1<Y:<Xs) = [[ucacuco F(2){1 — F(y)} dG(z) dG(y).

Let S. = {z:e < F(z) <1 — ¢,0 = ¢ < . By using (2.1) it is easy to see
that

PX; <Y1 <Y, <Xy) =0=Py(S) =0, 0<e<i=PyS) =0.

But P1(Sy’) = 0 and hence F and G do not overlap.

NotaTioN. Let X;, X5, -+, X be a random sample from the c¢df F and
Y,,Yy, -, Y, from G(x + Ay) where Ay = a/Nt. We denote G(z + Ax) by
Gyn(x). Let (X, Y) be defined by (1.1). Let J(u) = ¥ (u), 0 < u < 1,
A = (m/N) and 0 < N\ = limy.. (A/N) < 1. Let

Hy(z) = WF(z) + (1 — \v)Gu(2),
(2.2) Ho(x) = MF(z) + (1 — N)G(),
ay = 2o J{Hy(2)} dGx(2),
ao = |2 J{Ho(x)} dG(x);

ot = [[wcacuca F(2){1 — F(y)}J {Ho(2)}
- J'{Ho(y)} dG(x) dG(y),
08 = [ [wcocyce G(2) {1 — G(y)}J {Ho(2))}
(2.3) - J'{Ho(y)} dF (z) dF (y),



596 P. V. RAMACHANDRAMURTY

otw = [[wcecvcn F(2){1 — F(y)}J'{Hu(2)}
- J'{Hx(y)} dGu(z) dGx(y),
ngv = ff—-eo<z<u<w Gu(z){1 — GN(?/)}J,{HN(CC)}
J'{Hy(y)} dF (z) dF (y);

(2.4) Ay = 2nofoty + N/ (1 — No)lotn}
A2 = 2)\0{0’12 + [)\o/(l - )\o)]a'zz}.

Assumprions. (a) J'(u) = J®(u) and J” (u) = J®(u) exist for0 < u < 1
and there exist 0 < k, > 0 such that |/ (u)| < K] u(l w)] P and |JP (w)] £
Klu(l — )7 =1, 2.

(b) ¥ has a bounded dens1ty Y.

(¢) F and @ overlap.

(d) aB = —limy.o N*(ax — ao) exists and is finite.

TuEOREM 2.1. Under the above assumptions and with the above notation

limyae Py[N*YR(X, ¥) — ao} < u] = ®[(u + aB)/A]

where Py denotes the probability when the true distributions are F and G(x + Ay).
Proor. Write

(25)  NR(X,Y) — a} = NHh(X, Y) — an} + N'(av — a0).

By Assumption (d) the second term on the right s1de tends to —aB To evaluate
the limit law of the first term we first show that o1y — o1’ and o3y — 02" Let
0 <w < XN < » <1 Put Gy(z) = u, Gy(y) = v so that x = Gy *(u),
y = Gy '(v). Write Hy[Gy "(u)] = £v(u). Then

tr"izv = ff0<u<11<1 F{GN_I(u)}[l - F{GN_I(v)}]J’{EN(u)}J'{EN(v')} du dvy
= [[ocucocs Ry(u, v) dudv (say).
By 7.A.5. of [1], R (%, v) < v "tn(u){1 — &x(0)}J {En(u)}J {£x(0)}. Now
tv(u) = Hu{Gy'(w)} = WF{Gy " (u)} + (1 — My)u
= (1—=xu> 1 —mu for large N;
1— HyfGy'(w)} 21— — (1 = M\)u
(=)A= u)> (1 —wn)(1—u) forlarge N.

(2.6)

1 — ¢x(u)

Assuming without loss of generality that 0 < 8 < % and using Assumption (a)
and the above inequalities

Ry(u,v) = (K/v")lEn(u){l — tx(0)}1[En(u){1 — tn(u)}1"
Jen(0) {1 — e ()}
= (K/w"){en(u)} 7L — v (u)} " en ()} 1 — tn(0)}
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é Ku&—}(l _ u)§—3/206-3/2(1 _ 0)5—-}’

independent of N. ThlS can be seen to be integrable in the range 0 < u < v < 1.

Thus the integrand in o1y is bounded in N and can easily be seen to be contmuous
inAy. It follows by the dominated convergence theorem that o1y — o1’ Slmllarly
oy — 0. We now show that oi” > 0. By simple algebra one gets J'(u) =
[:p{\If_l(u)}]_1 = K > 0 by Assumption (b). Thus by Assumptlon (¢) and Lemma,
2.1wegeto’ = KP[X: < Y1 < Y, < X5] > 0 Similarly 5° > 0. It follows that
for sufficiently large values of N, oiy and osx are bounded away from 0 and
A2 — A% Thus the conditions of Theorem 1 and Corollary 1 of [1] are satisfied
and we get

limyaw {PyINHR(X, V) — an}/AN] S u} = ®(u).
Since Ay — A, an application of Slutsky’s theorem gives
(2.7) limyae PINHR(X, Y) — ax} = u] = ®(u/A).
Another application of Slutsky’s theorem to (2.5) gives
limyaw PyINHR(X, Y) — a} < u] = ®[(w + aB)/4]l. QE.D.

REeMARK. A sufficient condition for the asymptotic normality of 2(X, Y') for
Pitman alternatives is the uniform asymptotic normality for these alternatives.
Assumptions (a), (b) and (c) are made so that Theorem 1 and Corollary 1 of
[1] are applicable. One can state some conditions under which Assumption (d)
holds but these seem to be restrictive and hence we examine each case separately.

CoROLLARY 2.1. Suppose [ J{Ho} dG = [ J(G) dG = p independent of F and
G. Then 1t follows fom Theorems 1.1 and 2.1 that

limy.e Py[N'{A(X, ¥) — p} = ul = 2[(u + aB)/A]
and
limy.o PINY(A — A) < a] = ®(aB/A).

REMARKS. We see below that Theorem 2.2 of [5] and the asymptotic normality
of A when F = G (see [4], p. 609) which are apparently unrelated to each other,
come out as special cases of our Theorem 2.1 and Corollary 2.1. Besides, Theorem
2.1 and Corollary 2.1 prove the asymptotic normality of A whenever F and @ are
symmetric about the same point. It should be mentioned, however, that there is
a slight difference between the conditions here and those of Theorem 2.2 of [5].
We had to impose the extra condition that F and @ overlap to make sure that the
asymptotic variance of 2(X, Y) is bounded away from zero.

SpecIAL CasEs. (1) ¥ 4s uniform. In this case J (u) = u and we have the follow-
ing

TueoreM 2.2. Suppose A = med, ; (Y; — X;) and A = the median of the dis-
tribution of (Y — X) and (1) F and G overlap (ii) F and G have bounded densities
f and g respectively. Then limy« PA{N}A — A) < a} = ®(aB/A), where
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(28) A’ = NN [GAF + (1 — No)7 [ FPdG — [4no(1 — )7,

B =\ [Z0 g(2)f(z) dax.

Proor. We intend to apply Theorem 2.1 and Corollary 2.1. For this we first
note that A = med (Y — X) & f F dG@ = . Hence

S F 4+ (1 = N\)G}dG = N [ FdG + (1 — \o) [ GdG
=M+ 31 —-N) =3

independent of )\ . Thus the conditions of Corollary 2.1 are satisfied. Conditions
(a), (b) and (e¢) of Theorem 2.1 are obviously satisfied. The only condition that
needs to be checked is condition (d). Now,

Ni(ay — a0) = NY[[Z0 (MF(z) + (1 — \)G(z + Ax)} dG(z + Ax)
— [20 (NF(z) + (1 = N)G(2)} dG(x)]
= NY[[Z. (\WF(z — Ax) + (1 — \)G(2)} dG(z)
— 2o (WF(2) + (1 — M) G(2)} dG(x)]
= NY[[Z. \W{F(z — Ay) — F(2)} dG(a)].

Note that Ay = a/N’:‘ and N* {F(x — Ay) — F(z)} is bounded because of con-
dition (ii) and the dominated convergence theorem allows us to proceed to the
limit under the integral sign. Thus

limyae N (ay — a0) = —aXo [Z f(z) g(z) da.
As for the constant A% we get from (5.1) of the appendix
A? = B[ G*dF — 1} + /2(1 = N[ F*dG — 3]
M [ GAF 4+ (1= N)7 [ FPdG — 41 — M)} QED.
(2) F = G.
TuEOREM 2.3. Suppose A is given by (1.3) with u = E{h(X, Y)} when A = 0
and h is given by (1.1) and
(i) F has a bounded density f;

(ii) J satisfies the regularity conditions (a) and (b) of Theorem 2.1;
(iil) f(x)J'{F(x)} is bounded. :

Then |

limyae PA[N*(A — A) < a] = ®(aB/A)
where
(2.9) A = /(1 = M5 T2 (w) du — {[oJ (w) du}’];

B = o [ J{F(2)}f*(2) da.
Proor. It is easy to see that all the conditions of Theorem 2.1 and Corollary 2.1
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are satisfied except Assumption (d) of Theorem 2.1 which we check now:
Nay — @) = N[ J(WF(2) + (1 — M\)F(z + Ax)} dF(z + Ax)
— [ JIF(2)] dF ()]
= N'[[Z. JINF(z — Ay) + (1 — N)F(x)] dF (z)
— [2 JIF(z)] dF (z)].

By making use of conditions (i) and (iii) it is easy to see as in Lemma 3(b) of
[3] that ‘

limyaw N (ay — a0) = —ako [ J'{F(2)}f*(2) da.

As regards A” it follows from (4.19) of [1] that A® is given by (2.9).

(3) ¥ symmetric, F and G symmetric about the same point.

We first prove a lemma.

LemMa 2.2. If ¥ s symmetric and F and G are symmetric about the same point,
then [ J{Ho(z)} dG(x) = u, the mean of ¥, independent of \q .

Proor. Without loss of generality we assume that F, G and ¥ are symmetric
about the same point . Now

(210)  [Za J{Ho(z)} dG(z) = [*wJ{Ho(2)} dG(z) + [ J{Ho(z)} dG(x).

By putting 4 — = = y in the first integral on the right side and using the sym-
metry of F and G we get

b o J{Ho(x)} dG(z)
= [SID{l = F(p+ )} + (1 =) {1 — G(u + y)} dG(x + 1)
= [SJI0L — NF (s +y) + (1= MG + )} dG(s + y)

which, by (5.2.a) of the appendix,

(2.11) = 2[5 dG(u+y) — [T TINF (4 +y) + (1 — 2)G(s + 9)] dG(u + 1)
=p— [TINF (4 7y) + (1 = N)G(u + y)]dG(x + ¥).

Now, putting z = x — u in the second integral on the right side of (2.10) we get.

(2.12) [ JF(u + 2) + (1 — N)G(p + 2)] dG(u + 2).

Ry adding (2.11) and (2.12) we get the desired result.

THEOREM 2.4. Suppose A is the estimate (1.3) and

(1) ¥ s symmetric and J = V! satisfies the regularity condition (a) of Theorem.
2.1,

(ii) F and G overlap and are symmetric about the same point possessing densities
f and g respectively, :

(iii) J'(NF(x) + (1 — NG(@)HM(z) + (1 — N)g(x)} is bounded uniformly
tn \ in a neighborhood of N, .
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Then limy_e PA{Ni'(ﬁ — A) £ a} = ®(aB/A) with A’ defined by (2.4) and
B = No [Zo J{Ho(2)}f(x)g(x) da.

Proor. We again intend to apply Theorem 2.1 and Corollary 2.1. The con-
ditions of Corollary 2.1 are satisfied because of Lemma 2.2. It only remains to
check condition (d) of Theorem 2.1 as the rest are obvious. Now, from Lemma
2.2,

(2.13) N'(ay — a0) = N'[JZ0 JDWF(z — Ax) + (1 — ) G(2)] dG(x)

— 2o IDF(2) + (1 — Ay)G(x)] dG(x)].
Now we show that
(2.14) 0T\ (z— 0) + (1 = NG(x)} — J(NF{x) + (1 — N)G(2)}]

is bounded uniformly in N in a neighborhood of Ao and in § > 0 so that the limit
and integration can be interchanged in (2.13) and we can proceed to the limit as
if \y and Ay were independent. Now, J, F and G being nondecreasing (2.14) is
bounded above by 0, (2.14) is obviously bounded below by

Az, 0,\) = 0 T{\F(z — 0) + (1 = \)G(z — 0) — J(\F(z) + (1 — N)G(x)}]
= —J'{(\F(z — £) + (L = N)G(z — H)}M(z — &) + (1 = Ng(z — £)]

and by condition (iii) the above is bounded uniformly in X and ¢. Thus integration
and limit can be interchanged and by simple calculus one can see that
limy.e N*(ay — @) = —aB where B is given in the theorem. Q.E.D.

REMARKS. We shall use Theorem 2.4 only in the Behrens-Fisher situation where
G(x) = F(cz). Condition (iii) of the theorem is the crucial one and we examine
this and the other conditions of the theorem now.

COROLLARY 2.2. Suppose G(z) = F(cx) and ¥ = &, Jo = & . Then all the con-
ditions of Theorem 2.4 are satisfied for any distribution F for which f(x)Jo {F ()} is
bounded and then A is asymptotically normal.

Proor. It is well known that J, satisfies the regularity condition (a) of Theorem
2.1. Condition (ii) of the above theorem is obviously satisfied. It follows from
(5.3.b) of the appendix that condition (iii) of the theorem is satisfied. Q.E.D.

It may be mentioned that the condition of boundedness of f(z)Jo {F(z)} is
not new and is assumed in [1]. The class of distributions F for which the above
condition is satisfied is large and includes normal, logistic, Laplace and Cauchy
distributions among others (see 5.3.c. of the appendix in this connection). The
asymptotic variance of the estimate can be derived in each case from the general
expression given in Theorem 2.4. We study these estimates in greater detail in a
later section. Since we wish to compare A with the estimates based on the one-
sample tests we now turn to the one-sample case.

3. The one-sample case. We now prove some theorems in the one-sample case
similar to those of Section 2. If the proofs are entirely analogous to those of
Section 2 they are omitted. The essential difference is that in the one-sample case
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m and n are random with nonrandom sum whereas in the two-sample case m and n
are not random.

Suppose Zy, Zy, --- , Zy is a random sample from a distribution II(x — 6).
IT being arbitrary here 8 does not have any statistical significance. But later on
we are going to fix the location of II by some condition such as symmetry around

the origin and then 6 acquires statistical significance. Suppose s;, 82, -« - , 8, are
the ranks of positive Z’s among |Zi|, |Za|, - -+ , |Zx]. Let V®, V@, ... [ V™ be
the ordered absolute values from the distribution ¥. Let

(3.1) R(Z) = N7' D5y Eg(VEP),

Let E{h(Z)} = p when II is symmetric about 6 = 0. Let

N

(3.2) by =sup{0:h(Z —0) > u} and & = inf{0:h(Z — 0) < u}
and
(3.3) b =316 + 6v).

When II is symmetric about 0, Hodges and Lehmann [4] proposed 8 as an esti-
mate for 6 and showed that this estimate has the same advantages over the
sample mean as those of the corresponding tests based on A over the one-sample
t-test. We will now show the asymptotic normality of 8 whether II is symmetric or
not. . ’

Let 6y = a/N* and I(z + 6y) = Iy(z). Let py = 1 — Ix(0) and
p =1 — II(0) and

Fy(z) = [My(z) — Iy(0)]/[1 — Ix(0)],  for =z =0,
=0 otherwise;
Gy(z) = [Ix(0) — Ix(—2)]/Tx(0), for =z 20,
(34) =0 otherwise;
F(z) = [(z) — 1(0)]/[1 — 11(0)], for z 20,
= 0; otherwise,
G(z) = [II(0) — I(—=x)]/1(0), for z = 0,
=0 otherwise.
Let
Hy*(z) = pvFr(2) + (1 — pv)Gn(2);
H*(z) = pF(z) + (1 — p)G(z);
Uy =2 ff—oo<z<u<eo Gy(2){1 — GN(Z/)}J,{HN*(:B)}

- J'{Hy"(y)} dFy(z) dFx(y);
Vi = 2 [ [ cocrcyco FN(x){l/ — Fu(y)}J'{Hy*(2)}
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J'{Hy* ()} dGu(z) dGy(y);
U = 2 [ [ wcocscn G(2){1 — G} (H* (@)} (H ()} dF (z) dF (y);
V = 2 [ [ wcocrcn F(2){1 — F()}{H* (@)} {H ()} dG(2) dG(y).
Let
Yo(z) = ¥(z) — ¥(—2x), if z=0,
=0 otherwise,

and

Jo(w) = ¥ (w), Jo'(w) = JoP(u),  Av(z) = Fy(e) — Gu(2),

Alz) = F(z) — G(z), Ly® = [0 Av'(2) T {Hy"(2)} dFn(z), i =0,1;
LY = [2, A% (2)J,O{H" (2)} dF (2), i=01
w™ = Npy(1—pn), w=N'p(1—p), av=plx?,
oy = pL(o),

Bat = py(1 — pa)lipxUn + (1 — p) Vi) + {Lx® + paLa®}Y,
g = p(1 — p)l{pU + (1 — p)V} + {L® + pL®}’].

Assumprions. (a) Jo (u) = Jo (u) and Jo' (w) = Jo®(u) exist for 0 < u
< 1 and there exist K > 0, 6 > 0 such that [Jo(u)| = K{u(l — w)} e
and |J,®(w)| £ Kfu(l — u)}™";

(b) I admits a density = and II(0) > 0 or 1;

(¢) ¥ has a bounded density ;

(d) F and G overlap;

(e) aB = —limy.. N*(ay — ao) exists and is finite.

TaeoreM 3.1. Under the above assumptions

limyow PVIN'{R(Z) — ao} < ul = @[(u + aB)/A]
where Py denotes the probability when the true distribution is II(z + Ox).

Proor. The proof is quite analogous to Theorem 2.1. We here use the results
of [2].

CoroLLaRY 3.1. Suppose pL® = p [ Jo{H*(z)} dF(z) = % [ Jo(F) dF =
p = 1 (mean of ¥o). Then

limyaw PAINHA(Z) — 4} £ u] = ®[(u + aB)/B]
and for every fized 0,
limyo. Po[N*(§ — 0) < a] = ®(aB/B).

Proor. The first part follows from Theorem 3.1 and the second part follows
from the one-sample analogue of Theorem 1.1.
SprciAL CasEs. (1) II ¢s symmetric about 0.
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In this case we have the following
THEOREM 3.2. Suppose 0 is the estimate (3.3) with p = % (mean of ¥,) and
(i) Jo satisfies the regularity condition (a) of Theorem 3.1;
(i) ¥ is symmetric and unimodal with density ¥;
(iii) II admits a unimodal density = satisfying the following properties
(2) w(a) is bounded in a neighborhood of the origin,
(b) Jo'{II(z)}w(x) is bounded.
Then litmy. Ps{N*(§ — 0) < a} = ®(aB/B), where B = } [7 JJ'[Q(2)]¢"(2) d
with

=0 otherwise

and q(z) = Q'(x) and B = 1 [second moment of ).

Proor. We intend to apply Theorem 3.1 and Corollary 3.1. Note first that in
this case F and G defined by (3.4) coincide and p = 3. We now check condition
(e) of Theorem 3.1 as the rest are obvious. The proof for this is analogous to
Lemma 6¢c.1 of [2]. We only mention the points of difference with the proof there.
Lemma 6¢.1 of [2] is proved only for Jo(u) = x (), the inverse of the x-dis-
tribution. But a careful examination of the proof shows that this applies for any
Jo such that J,' is nondecreasing. In our case this is assured by condition (ii).
Furthermore, our conditions iii(a) and iii(b) give us conditions (ii) and (iii) of
Lemma 6¢.1 of [2] for, then we can take r(z) = w(z). It only remains to check the
constants B and 8. Note first that when F = G, L® = 0 and hence

8 = p(1 — p)U + (1 — p)V] + pa(L®)’
= 1[5 I (w) du — {[s Jo(u) du}?] + [ Jo(w) dul®
= 1 [§Jo'(u) du = % [second moment of Wo].

Our constant B is the same as I'(0) of Lemma 6c.1 of [2].

REeMmarks. Conditions (i) and (ii) concern the ¥ used in the statistic and are
satisfied for Wilcoxon and normal scores tests among others. Condition iii(b)
is the crucial one and it can be shown that for the normal scores test this is satisfied
whenever Jo' {F(z)}f(x) is bounded, which is true for a large class of distributions.

DeriniTioN 3.1 (Hgyland). Let Z; and Z, be independent random variables
with cdf II. Then we call med 1(Z; + Z.) the pseudomedian of II.

(2) ¥ 4s uniform in [0, 1].

THEOREM 3.3. Let 6 = med:<; 3(Z: + Z;) and 0 the pseudomedian of I and
suppose that

(i) F and G defined by (3.4) overlap,

(ii) O admits a bounded density .

Then limy.. Po{N*(§ — 0) < a} = &(aB/B) where

B = [n(—z)r(z)dx and § = [[ ='(—z)r(z)de — il.
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Proor. It is shown in [4] that when ¥ is uniform § = med:<; 3(Z: + Z;).
We now check condition (e) of Theorem 3.1. Let us first write ay and o, in terms
of IIy and II:

oan = pn [ Jo{Hx*(2)} dFn(z) = [ Jo{psFu(z)
+ (1 — paGu(2)} - d(paFw (2)).
Recalling the definition of Fy and Gy in (3.4) we see that
av = [§ Jo{lx(z) — Ty(—2)} dllx(z).

Similarly

a = [¢ Jof(2) — T(—=)} dli(x).
Hence

Nay — a0) = N[5 Jo{TI(z 4 0x) — T(—2 + Oy} dIL(z + 6x)

(3.5) — [5 Jo{li(z) — T(—g)} dII(z)].

= N[ (I(205 — ) — T (2)}n(x) dzx

— [T {I(—z + 20x) — O(—2)}x(z) dx].

Now,

0 < [ NMII(20y — 2) — I(2)}x(2) da
< a{II(20y) — I(0)}0x " IIY w(z) da.

7 being bounded, (6y)" fg” w(z) dr is bounded and II(26y) — I (0) — 0 as
N — . As for the second term, we have

NI(—2 + 20x) — T(=2)] = a-(26x) {IL(—2 + 20) — [(—2)}
= 2a{r(—z) + O(1)}
which is bounded by (ii) of the hypothesis. Thus the limit and integration can be
interchanged and we see that
limy.o N (ay — a) = 2a [§ 7(—2)r(z) de = a [Z, 7(—2z)r(z) da.

Now suppose that the pseudomedian of II is 0. Then 6 is the pseudomedian of
II(x — 0) and the assertion follows if we check the rest of the conditions of
Theorem 3.1 and Corollary 3.1. We only check the latter as the former are ob-
vious. Suppose X; and X, are two independént observations from II. Pseudo-
median of Tis 0 < P(X; + X, > 0) = 1 and

P(X1+X2>0) =P(X1 < 0, X2> O)P(—Xl < Xz'Xl < 0 < Xz)
4+ P(X:1>0,X: < 0)P(—X. < X1 | X, <0< X))
+ P(X.1>0,X,>0)
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or
=2p(1 —p) [GdF + 7’
or
p(l—p) [GdF =%+ —p*/2=%—p" [FdF
or

lp [ {pF 4+ (1 — p)G} dF] = j{mean of R(0, 1)}

Thus the conditions of Corollary 3.1 are satisfied. That the constant 8 reduces
to the one given in the theorem can be shown after some computations. Q.E.D.

4. Comparison of the estimates. The theorems of Sections 2 and 3 enable us
to compare the several estimates for shift when the prototype distributions are
symmetric and satisfy certain regularity conditions. We shall discuss only the
case of inequality of variances. We measure the performance of an estimate by
the inverse of its asymptotic variance. We denote the estimate (1.3) based
simultaneously on both the samples by Ay, . We denote the one-sample estimate
for the location of ¥’s defined in (3.3) by fy2 and du, is the corresponding estimate
for the locations of X’s. We write Agy for (6gs — 6u1). Awz and Ay are competitors
as estimates for the shift A. Ay, = med (¥; — X:) and Ay = med:¢; 3(Y: + Y;)
— med:; 3(X: + X;) where U stands for the cdf of the uniform distribution.
We denote the asymptotic relative efficiency of two estimates &/(X, Y) and
5(X, Y) by e(81, 8 ; Mo, F, G) where F(z) and G(y — A) are the underlying
distributions with F and G symmetric about 0 and No = limy.. (m/N). We de-
note by F the distribution defined by F“)(x) = F(cx),0 < ¢ < «.Thus, when
F and @ differ in variances G(X) = F© () with ¢ 5 1. ¥, is defined by

Yo(z) = ¥(x) — ¥(—2x), ifx > 0,
=0 otherwise.

We denote ¥, ' by J, . In this section, J; stands for &' and Jy for x . A* stands
for the classical estimate (¥ — X). The following two theorems are not entirely
new and are implicit in Theorem 6 of [4]. We give them here with the precise con-
ditions needed for future reference.

TaEOREM 4.1. Suppose (i) ¥ and J = V! satisfy the regularity conditions of
Theorem 3.2 with ¥ symmetric about 0; (ii) F has a bounded symmetric density f;
(iii) f(z)J'{F(x)} is bounded. Then e(Ags, Av1 3 N0, F, F) = 1 irrespective of \o
and F.

Proor. It is easy to see that all the conditions of Theorems 2.3 and 3.2 are
satisfied and it follows that the asymptotic variance of N*Ay, is given by

(4.1) (1 — No)} '-variance of ¥-[f J'{F(2)}f*(z) da]™*

and the asymptotic variance of N*Aqy, is given by
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(4.2) (1 — o)} -second moment of Wol[§ Jo'{2F (z) — 1}{2f(x)}* da] ™",

We shall show that the second factors in (4.1) and (4.2) are the same and this
proves the result.

Flrst note that the mean of ¥ being 0, variance of ¥ = [ 2> d¥ = [ |z|*d¥ =
[ 2* d¥, = second moment of ¥, . Thus the numerators agree. As for the denomi-
nators makmg use of the equalities J'(w) = J'1 —w),0 <w < 1, and
J'(w) = 270 (2w — 1), 3 < w < 1, we get

LI (F(2))f (z) dz = [LuJ'{1 — F(2)}f*(x) da
. 2J0 {1 — 2F(2)}f*(x) dx
= 3 [T T {2F(y) — 1}{2f()} dy.

Similarly
I3 T (F @) (z) de = % [7 Jo'(2F (z) — 1}{2f(2)})’ da.

Adding the above two equalities completes the proof of the theorem.

TaEOREM 4.2. If F has a bounded symmetmc density f e(Rva , Ay 320, F, F) =11
irrespective of ho and F.

Proor. Theorems 2.2 and 3.3 are obviously applicable and the asymptotic

variance of N*Ay, is given by
(4.3) {120(1 — M)} [ () da} ™"
The asymptotic variance of N*Ay; is given by
(1 — M)} FY(—2) dF (2) — 3]If f(—2)f(e) dal”,

which can easily be seen to be equal to (4.3) because of symmetry of f.
TueoreMm 4.3. Suppose
(i) F has a bounded symmetric density f;
(ii) ¥ 4s symmetric and unimodal with density ¢ and Jo = W, satisfies the

regularity conditions of Theorem 3.1;
(iil) f(z)Jo {F(z)} is bounded. Then

e(Ru, A*; N0, F, F© = I J'{F(x)}f'(z) da]*

irrespective of ¢ and ho where o* is the variance of F.
Proor. The asymptotic variance of N 'A% is given by

(4.4) ()™ + (1 — M)

It is easy to see that the conditions of Theorem 3.2 are satlsﬁed and from (4.2)
which was shown to equal (4.1) the asymptotic variance of N *Ag, is given by

(4.5) L) ™+ [ = M) J{F(2)}f(2) da.

Dividing (4.4) by (4.5) gives the required result.
TaEOREM 4.4. If ¥ satisfies the regularity condition (i) of Theorem 2.4 and
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(i) F admits a density and
(i) J'{(Z\F(z) 4+ (1 — N)F(cx)}f(cx) is bounded for N in a neighborhood of
Mand —o < z < «, then

(4.6) e(Ags, A*%; N\, F, F©) = *(\/ + (1 — No))(B?/247)
where B = fJ'{)\oF(x) + (1 — N)F(cx)}ef(x)f(cx) dx and A2 = o + o 2 with
@’ = No [ [oacocuco Fe) {1 — F(ey)}J {NF (2) + (1 — No)F(cx)}
J'NF(y) + (1 — No)F(cy)} dF (z) dF (y),
@’ = (1= M) [[wcocuc F(2) {1 = F(y)} - J'{NF(2) 4+ (1 — No)F (cx))}
T {NF(y) + (1 — No)F(cy)} dF (cz) dF (oy).

Proor. Theorem 2.4 is applicable and the asymptotic variance of N*Ag, is
given by {A(1 — No)} 7" (24%/B*) where

A = Do [ [ aococv<e F(c@) {1 — F(ey)}J (MF(2) + (1 — No)F(cx)}
J'(F(y) + (1 = N)F(ey)} dF (2) dF (y)
+ (1= o) [ [ ocacycw F(@) {1 — F(y)}J {NF (z) + (1 — No)F(c)}
J'{NF (y) + (1 — No)F(cy)} dF (cx) dF (cy)],
B = [Z.J'{NF(2) 4+ (1 — No)F(cx)}f(z)ef(cx) da.

On the other hand, from (4.4) the asymptotic variance of N Ia* s given by
a{ (M) ™"+ [(1 — No)] ™} and the result follows.

It follows from Corollary 2.2 that when ¥ = & all the conditions of Theorem 4.4
are satisfied for any distribution for which f(z)J, {F(z)} is bounded.

We now turn to the comparison of Ay, and Ay, for a fixed .

LemMma 4.1. Suppose F, G and ¥ are symmetric and let

I = 2 [ wcocyca F(2) {1 — F(y)}J'{Ho(x)} {Ho(y)} dG(z) dG(y)
be finite with Hy defined in (2.2). Then I, = [ B*(t) dF(t) with

(4.7) B(t) = [oJ{Ho(y)} dG(y).

Proor. On account of (4.14) and (4.17) of [1] we need only show that
E{B(z)} = 0 where F is the cdf of X. Because of symmetry of X it suffices to
show that B(¢) is an odd function of ¢ Now wusing the properties
H(—y) =1 — H(y) and J'(u) = J'(1 — u) proved in the appendix we get

B(—t) = [{*J'{H(~y)} dG(y) = —[S T {H(~y)} dG(y)
= —[LJ(H(y)} dG(y) = —B(f). QE.D.

In the following theorem we write H,(z) = NoF(z) + (1 — N)F(cz).
THEOREM 4.5. Suppose
(i) ¥ and F satisfy the regularity conditions of Theorem 4.4;
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(i) liMgse f(z)B(z) = 0 = liMsse f(z)B*(z) where B(z) s defined by (4.7)
with G(z) = F(cx) and B*(z) = [oJ {Hoa()}cf(c7't) dt;
(iii) [ {f'(z)/f(x)}* dF(x) < . Then

8(3‘1'2 ) A*’ )‘0 ) F; F(C)) é a'zE[f,(x)/f(x)]z

irrespective of ¥ and \o .

Proor. Observe first that B*(z) = ff)_l’ J'{H.(t)} dF(t) and hence if we define
Bi(z) = [§J'{H.(t)} dF (¢), a1’ of Theorem 4.4 reduces to \o | Bi(z) dF (cz) =
Mo S B*(z) dF (z). Now using Lemma 4.1 in (4.6) we get

2A% = N [ B®(z) dF (z) + (1 — No) [ B*(z) dF (),
o/ + (1 — M)}B* = Nl J'{H.(2)}f(2)f (ex) daT’
(4.8) + (1 — MW J'{Ho(2)}f(2)ef () daT’
= Nolf I {Hea(2)} ¢ (2)f(¢ ) da]’
+ (1 = M) J'{Ho(2)}f(2)f (cx) da]”

Now notice that because of the continuity of the integrands dB(z)/dxz =
J'{Ho(x)}ef(cx) and dB*(z)/dz = J'{H~1(z)}c¢f(¢ ). Thus

(49) (/¢ + (1 — M)}B* = Nof [ldB* (2)/delf(2) do}?
+ (1 — No){[ dB(z)/dalf(z) dz}’.
After integrating by parts and using condition (ii) of the theorem we see that
[ 1[dB*(x)/dalf(x) dx = [ B*(x){—F (x)/f(x)} dF (z),
[ 1dB()/da)f(z) dz = [ B(z){—f (z)/f(2)} dF ().

Now condition (iii) allows us to apply Schwarz’s inequality to the above and we
get

Mol [ [dB*(2)/dalf(z) dz}® < N [ B¥(2) dF (z)
(4.10) J A @) /f(2)} dF (),
(1 — No){J [dB(x)/da)f(z) da]’ < (1 — No) [ B*(2) dF (x)
J{f @)/f(=)}* dF ().

From (4.6), (4.8), (4.9) and (4.10) we get the result.

It is easy to see that (4.6) and oE{f (z)/f(x)}* are both invariant under scale
changes in F and there is no loss of generality in assuming, as we now do, that
¢ = 1. Now suppose that F* is the underlying distribution with density . It
follows from [1] that a locally best linear rank-order test, which we shall call the
¥*-score test is given by

(4.11) TP (@)} = — [ @)/ @)IB /T
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THEOREM 4.6. Suppose F* is the underlying distribution and ¥* is defined by
(4.11) and further F* and J* = ¥* satisfy the regularity conditions of Theorem
4.4. Then e(Agss , Ao 300, F*, F*@) < 1 irrespective of X, .

Proor. From Theorem 4.3 it follows that

(4.12)  e(Ayer, A% N, F¥, F*©) = [[ TF*(2)}f*(z) dF*(2)]".
= [E(f*/f*T from section 5 of [1].

The result follows from (4.12) and Theorem 4.5.

COROLLARY 4.1. e(Ass , Agy ; Mo, ®,87) < 1.

Proor. We intend to apply Theorem 4.6. It follows from the results of the
appendix that condition (i) of Theorem 4.6 is satisfied. Condition (iii) of the
theorem is obviously satisfied. Now we shall check condition (ii).

Ife>1,
co(x) [§J1{H(t)}o(ct) dt

co(x) [§J7 (@ (ct)}p(ct) dt

cro(x) >0 as = — o,

0 = ¢(2)B(2)

Al

If ¢ <1,
0 = o(x)B(x)

IIA

co(z) [§J'([®(1)}p(ct) dt

co(z) [§ lo(et)/o(t)] dt

= co(z) [fexp [(1 — ¢)F/2] dt

< co(z) exp[(1 — )2?/2) >0 as z— . QE.D.

ReEMARKs. Corollary 4.1 tells us that when the underlying distribution is normal
Asy should be preferred to As, . In the case of logistic distribution it can be seen
that the upper bound for the efficiency of As; given in Theorem 4.5 reduces to
(II*/9) = 1.10 and the efficiency of As; is 1.05 (see [3]). On the other hand it can
be shown that the efficiency of Ass(Aye for symmetric ¥) drops down to
46°*(0) = (II*/12) = .82 as the ratio of the two variances becomes very large.
Thus in the case of logistic distribution also we can say that As; should be pre-
ferred to Ass . It can also be shown by using the results of [3] that when the under-
lying distribution is uniform the efficiency of As; is infinite whereas the efficiency
of Ags is finite for any ¢ = 1.

In answer to the second question raised at the beginning of this paper we are
now in a position to conclude the following: From Theorem 4.3 and the results of
[1] it follows that whenever the prototype distribution is symmetric As; has all
the advantages over A* in the case of inequality of variances as in the case of
equality. In particular e(Ae;, A*; 0o ,®,8”) = 1 and e(Asr,A%; N0, F, F9) = 1
for any F for which J,'{F(x)}f(x) is bounded. e(Ay;, A*; N, ®,8) = 3/IT and
for any F for which the density is bounded, e(Ay;, A*; N, F, F*?) = .864. The
above conclusions support the use of Hodges-Lehmann estimates Ag; even in the
case of inequality of variances.
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5. Appendix. All the elementary results that are used in the paper are stated
here explicitly. The proofs are omitted and can be seen after some calculations.
J as before stands for ¥

51. If [ FdG =,

I = [[ wcocycw F(2){1 = F(y)} dG(z) dX(y) = [[ G"dF — 1].

5.2.a. If ¥ is symmetric about u, then J(1 — u) = 2p — J(u) and hence if
J'(u) exists at u = a, then J'(u) exists foru = 1 — a and J'(a) =J' (1 = a).

5.2.b. If (i) ¥ is symmetric about u and admits a unimodal density, (ii) J " (u)
exists at u = a, then J"(a) = afora = 3, J"(a) £ 0fora < 1.

5.3.a. Let Jo = & ' Then Jo(u) ~ [—2log (1 — )] and ¢[Jo(u)| ~
(1 —u)[—2log (1 —u)asull. .

5.3.b. With the notation of 5.3.a, if f is symmetric and Jo'{F(z)}f(z) is
bounded, then Jo {\F(z) + (1 — N)F(cx)}{\F(z) + (1 — \) ¢f(cz)} is bounded
uniformly in z, A and ¢ for —® < z < «, \ in a neighborhood of A and 0 <
c <1l

5.3.c. With the notation of 5.3.a, if F(z) has density f(x) and

f(z)[—2log {1 — F(2)}I}{1 — F(z)}™

is bounded, then f(x)Jq'{F(x)} is bounded.
5.4. Suppose ¥ is symmetric and admits a unimodal density. Let ¥, be defined
by
Yo(z) =0 if 20

=V(z) —¥(—zx) = 2¥(z) — 1 if z>0.
Let Jo(u) = ¥, '(u) for 0 < u < 1. Then Jo' (w) T u.
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