A REPRESENTATION FOR CONDITIONAL EXPECTATIONS GIVEN
o-LATTICES!
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1. Introduction. Conditional expectations are discussed by Brunk in [4] and
[5]. (Generally, in the literature ‘‘conditional expectation’ refers to ‘“conditional
expectation given a o-field.” However since we shall only be concerned with
conditional expectations given o-lattices, we shall use this abbreviated ter-
minology for the latter, more general, concept.) As illustrated in these references,
conditional expectations have been found to provide solutions for several maxi-
mum likelihood estimation problems. The principle result of this paper gives a
representation for conditional expectations. Marshall and Proschan [7] and the
author [9] have found such a representation for estimates useful in studying
their asymptotic properties. Special cases of this representation theorem appear
in other papers: Theorem 2.2 in Ayer, Brunk, Reid and Silverman [1] and
Theorem 1 in Brunk [2] are instances in which the domain of the functions is
finite. Brunk, Ewing and Utz [3] consider another version which we shall dis-
cuss in detail before proving the theorem.

Suppose we are given a totally finite measure space (2, &, ) and a o-lattice £
of measurable subsets of Q. A s-lattice, by definition, contains both the null set
& and © and is closed under countable unions and intersections. The symbol
£° will denote the o-lattice of all subsets of @ which are complements of members
of £. We say that a random variable X is £-measurable provided [X > a] ¢ £
for each real number a. Let Ly denote the class of square integrable random vari-
ables and Ly(£) the collection of all those members of L, which are £-measurable.
Let ® denote the class of Borel subsets of the real line. We adopt the following
definition for the conditional expectation, E(X | £), of X given £ (see Brunk
[41).

Derinition. If X e Ly then YV e Ly(£) is equal to E(X | £) if and only if ¥
has both of the following properties:

(1) J(X —Y)Zdu <0 foreach ZeLy(£)
and
(2) Js(X —Y)du =0 foreach BeY '(®).

(Brunk [4] shows that there is such a random variable Y associated with each
X ¢ L, and that it is unique in the sense that if W is any other member of L,(£)
having these properties, then u[V == W] = 0.)
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A modified form of the theorem in this paper can be obtained without the
assumption that x(2) < «. In this case the definition of E(X | £) is slightly
more complicated (see Brunk [4]). Let ®' denote the class of Borel sets of reals
which exclude the origin. In case (2, @, u) is not totally finite we obtain a def-
inition for E(X | £) by replacing (2) by

(3) BeY ™ (®), wB)< o= [(X—Y)du=0.
2. Results. We are assuming that our measure space is totally finite. Suppose

Xelyand Y = E(X | £).
LemMmA. Y has both of the following properties:

(4) [as(X —Y)du =0 for Aeg and BeY '(®)
and
(5) [as(X =Y)du=0 for Aeg and BeY '(®).

ProoF. Professor Brunk, in a personal communication, observes that for
Aeg and Be Y ' (®)-£° we have

(6) fA-B(X-Y)dl‘:fB(X“Y)dﬂ—fAc-B(X—Y)dﬂéo

since [5(X — Y)du = 0by (2) and [4e.5 (X — Y)du = 0 by (1). (This
result is similar to Corollary 3.2 of Brunk [5].) If B is the inverse image under
Y of an interval (a, b] then using (6)

Jas X = Y)du = [awsamwzn (X —Y)dp 20

since A-[Y > ale£ and [V £ b]e Y '(®)-£°. Property (4) then follows by
first proving it provided B is the inverse image under Y of a finite disjoint union
of intervals and then applying the generalized extension theorem which appears
on page 90 of Lo&ve [6]. Property (5) follows from (2) and (4).

REeEMARK. The random variable Y & Ly(£) 1s equal to E(X | £) if and only of

(7) J (X = V)Zu(Y)du £ 0

for each non-negative Borel function ¥ and £-measurable random variable Z such
that Z-V(Y) e Ly .

Proor. First assume that ¥ e Ly(£) and that Y has property (7). Property
(1) follows by taking ¥(z) = 1. Property (2) follows by applying (7) with
W the indicator function of a Borel set first with Z = 1 and then Z = —1.

Conversely suppose that ¥ = E(X | £). Property (7) with Z the indicator
function of a set in £ follows from (4) by approximating ¥ by simple non-
negative Borel functions. The case when Z is non-negative follows by approxi-
mating Z by simple random variables using methods similar to those used by
the author [8] together with 3.13 and 3.16 in Brunk [5]. Similarly if Z is a non-
negative, £°-measurable random variable such that Z-¥(Y) ¢ L, we can show
that f (X — Y)Z¥(Y) du = 0 by starting with (5) instead of (4). The argu-
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ment can then be completed by expressing an arbitrary Z as the difference of
its positive and negative parts.

For each real number y let P, = [Y > y] and T, = [V = y]. Define the set
function a by

a(Ad) = [}L(A)]_l'fAXdM for each A @ such that w(4) > O.

Before proving the theorem, which expresses Y in terms of such an averaging
function, we discuss the following special case which appears in Brunk, Ewing
and Utz [3]: Suppose @ is n-dimensional Euclidean space R, , @ is a o-field of
subsets of @ and g is a totally finite measure on @. If w = (w1, w2, = -+, Un)
and v = (v1,0s, -+, v,) are elements in @ we say that u < v if u; < v; for each
i=1,2, ---,n. This relation partially orders Q. This partial ordering induces a
o-lattice of subsets of Q in the following way. A subset of L of @ is in £ if and
only if Le@and if we L and w < vimply thatve L.

Their theorem states that if for each ¢ > 0, u(L — Tyt.) > O foreach L e £
containing w and u(Py_ — L) > 0 for each L’ &£ £ not containing w then

Y(w) = Y = SUPLeg,Lsw infL’st,L'm a(L - L,)
Our result applies to more general spaces @ and needs less restrictive hypotheses
than u(L — Ty4e) > 0 and u(Py—e — L") > 0 for every L in £ which contains
w and every L’ in £ which does not contain w. Moreover, the theorem in Brunk,
Ewing and Utz holds in particular when w is a mass point of x and our theorem
holds more generally when u assigns positive measure to [Y = y].
THEOREM. Fix w ¢ @ and le¢ Y(w) = y. Suppose for each ¢ > 0,
w(T, — Tyse) > 0and u(Py_c — P,) > 0. Define the classes My and M by:
My, = {L; Le&, u(L — Tyre) > 0 for each e > 0}
and
M = {L'; L' e &, u(Py_c — L") > 0 for each e > 0}.
If L £ 9y let
(L) = {L'; L' e &, u(L — L") > 0}.
If L' e M, let
No(L') = {L; Le&, u(L — L") > 0}.
By hypothesis Ty & My and P, e My . If R and Rz are any two collections of sub-
sets of Q such that Ty e ®y C My and Py e Ry C My then

I

i SUP LR, irlfL’gs'Ll(L) a(L —_ L,)
= infL’gg’Ll(T”) Ol(Ty - L,)
= infr.p, SUPLegty 2y (L — L

= SUPLegacpy (L — Py).
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Proor. First suppose L e ®;. Then L e 9y and u(L — Tye) > 0 for each
e > 0. Using (4) we conclude that

fL—T,,,,.e Xdp = fL—-T,H_‘ Ydu < (y + €)-u(L — y+¢).

Hence for every L e ®; and € > 0, Type e 9(L) and a(L — Tyy) < (y + €).
It follows that

(8) infrrg,ma(l — L) <y foreach Le®.
Now suppose L’ & 91,(T,). Then u(T, — L') > 0 and by (5)
Jrpv Xdu = 1,0 YVidp = yuT, — L.
We conclude that
(9) y < infueqr,) @(Ty — L),

Combining (8) and (9) it follows that
Y = SUPLeq, infrreqyny a(L — L)
= infL'ef)'ll(Ty) a(Ty - L/)

The remainder of the theorem follows by a similar argument.
Let S =[Y =y, & = {L; Leg,Sc Land & = {L'; L' e g, L' < P,}.
CoROLLARY. If u(S) > 0 then

Y = SUPLew, infL'tEﬂ,l(L) a(L — L,)
= infreq, SUPLegony a(L — L).

In case u is not totally finite our representative theorem is still valid if we
add the hypothesis that y — & > 0 and u[T,—s] < o« for some § > 0 and make
other obvious changes in the theorem to insure that the sets involved have
finite measure. The assumptions ¥y — § > 0 and u[T,—s] < « do not seem un-
reasonable in most of the applications which have come to the author’s atten-
tion. In most of these the random variable Y is non-negative and integrable.
Hence the representation is only valid for y > 0.

3. Acknowledgment. The author wishes to thank Professor H. D. Brunk for
suggesting the investigations in the course of which the subject matter of this
paper arose and for his guidance and encouragement. He also wishes to thank
the associate editor and the referee for their valuable comments.

REFERENCES

[1] AYER, MiriaM, Brunk, H. D., Ewing, G. M., Remp, W. T., and SILVERMAN, EDWARD
(1955). An empirical distribution function for sampling with incomplete in-
formation. Ann. Math. Statist. 26 641-647.

[2] Brunk, H. D. (1955). Maximum likelihood estimation of monotone parameters. Ann.
Math. Statist. 26 607-616.

[3] Brunk, H. D., EwiNg, G. M., and Urz, W. R. (1957). Minimizing integrals in certain
classes of monotone functions. Pacific J. Math. T 833-847.



CONDITIONAL EXPECTATIONS GIVEN LATTICES 1283

[4] Brunk, H. D. (1963). On an extension of the concept conditional expectation. Proc.
Amer. Math. Soc. 14 298-304.

[5] Brunk, H. D. (1965). Conditional expectation given a o-lattice and applications. Ann.
Math. Statist. 36 1339-1350.

[6] Lo&ve, MicHEL (1963). Probability Theory (Third Edition). Van Nostrand, New York.

[7] MagrsHALL, ALBERT W. and ProscEAN, FrRANK (1965). Maximum likelihood estimation
for distributions with monotone failure rate. Ann. Math. Statist. 36 69-77.

[8] RoBERTSON, TiMm (1965). A note on the reciprocal of the conditional expectation of a
positive random variable. Ann. Math. Statist. 36 1302-1305.

[9] RoBERTsoN, TiM (1966). On estimating density which is measurable with respect to a
o-lattice. (Submitted to Ann. Math. Statist.)



