A BIVARIATE SIGN TEST FOR LOCATION

By Smoutrir KisHORE CHATTERJEE

University of Calcutta

0. Summary. A strictly distribution-free test has been proposed for testing
that several independent pairs of random variables have locations as specified.
Under the null hypothesis, the test statistic has asymptotically a chi-square dis-
tribution with degrees of freedom two. The test has been shown to be unbiased
and consistent against reasonable classes of alternatives. Asymptotic power and
efficiency have been examined.

1. Introduction. In the univariate case there are two distinct hypotheses
testing problems which may be tackled by the well-known sign test. The first
is the problem of testing whether several random variables have specified me-
dians; and the second is that of testing whether these are distributed symmetri-
cally about specified medians (see [13], pp. 147, 242). In the bivariate case also,
we would have analogous problems of location and symmetry. In this paper we
develop a distribution-free test which may be considered as a bivariate extension
of the sign test for location.

Let

(11) (XI: Yl)’ (X2: Y2)’ R (Xn ) Yn)

be n independent pairs of random variables and let Fi(x, y) be the cumulative
distribution function (cdf) of (X, Y%),k = 1, - -+ , n. We shall assume (F; , F,,
<o, ) € Q, where Q, is the set of all n-tuplets of bivariate edf’s. Our problem
is to test whether Fy, F., -- -, F, have n specified pairs of (marginal) medians.
By suitably choosing the origins we can assume that the pair of hypothetical
median values is (0, 0) for each (X}, Y%). Then if we write w, for the subset of
Q, within which

(1.2) Fk(O,oo)=Fk(oo,O)=%, k=1’...’n’
we can formally state the null hypothesis as
(1.3) Ho:(Fl,Fz,"',Fn)é‘wn.

In the literature, several tests go by the name of bivariate sign test, notably
those of Hodges [7] and Blumen [4] (see also Klotz [11], Joffe and Klotz [10],
Klotz [12], Bennett [2] and Bickel [3]). But it is to be emphasized that the tests
of both Hodges and Blumen are concerned with the problem of symmetry as
follows: Let us call the distribution of a pair of random variables (X, Y) as
diagonally symmetric about (a, b) if the distribution of (X — a, Y — b) is same
as that of (a — X, b — Y). The tests of Hodges and Blumen require that, under
the null hypothesis, all the distributions Fi(z, y) be diagonally symmetric about
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1772 SHOUTIR KISHORE CHATTERJEE

the origin. These can be used for testing (1.3) provided each Fi(zx, ) is known
to be diagonally symmetric about its median point (assumed unique).

To develop a distribution-free test in the general case, we shall require some
alternative characterizations of the subset w, . First we note that (1.2) is equiva-
lent to

(14) P{Xp=0,Y, =0} = P{X; >0, Y > 0};
P{X, £0,Y,> 0} = P{X; > 0, Y, <0}, B =12 -, n

For the pair (X5, Y%) let us call the events X; <0, Y, < 0and X; > 0, Y, > 0
as concordances of the first and second kind, and the events X, < 0, Y > 0
and X; > 0, Y = 0 as discordances of the first and second kind respectively.

Writing v, for the probability of concordance of (X}, Y3), let us assume
(1.5) 0< v <1, k=12 --- n.

Then for (X, Yx) we may define the conditional probabilities of a concordance
of the first kind given concordance and a discordance of the first kind given
discordance, and let these be 6, and i respectively. In terms of these (1.4) may
equivalently be stated as

(1.6) O = 1, ™ = %, k=12 ---, n.
wn can be characterized by any one of the equivalent conditions (1.2), (1.4)
and (1.6).

A non-parametric solution to the above problem would be developed in the
following sections. We mention here that as regards the principle of solution this
paper has some similarity with an earlier paper (Chatterjee and Sen [6]) where
the analogous two-sample problem was solved.

2. Formulation of the test. Let us denote by C; , Cs and D, , D, the numbers of
concordances of the first and second kind and numbers of discordances of the
first and second kind respectively among the n pairs (1.1). Also, let C = C; + Cs
and D = D; 4 D, denote the total numbers of concordances and discordances.
We shall denote the running variables corresponding to the random variables
Ci, C:, C, D1, Dy, D by using lower-case letters. From the conditions (1.4)
it seems that a reasonable test for H, would be obtained by comparing C; with
C: and D, with D, . However, the joint distribution of Cy, Cz, Dy, D, is seen to be
not distribution-free even under Hy. To circumvent this difficulty, we consider
the conditional distribution of these, given which pairs among (X, Y3) ---
(X, Y,) are concordant and which discordant.

Let ¢ be any integer (0 < ¢ =< n). Consider any partition

(2'1) (il’h’""ic):(ic+1;"';7:n), B < v <'£c, ic+1< <’£n,

of the set of numbers 1,2, - - - | n into two disjoint subsets containing candn — ¢
numbers respectively. (If ¢ = 0, or n, the first or second subset is of course
empty.) Let &;,...;, be the event that among (1.1), the #th, -- -, %th pairs are
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concordant, and the rest are discordant. Then
(2.2) Pl8iy i) = iy o i1 — ¥ipy) 0 (1 — 74,).
The probability that &;,...;, will occur and there will be just ¢; concordance of the
first kind and just d; discordances of the firstkind (0 £ 1 < ¢, 0= di =n — ¢)
is
’Yil e ‘Y"c(l - 'yic+1) e (1 - fY"n)
(2.3) (1 = 6) o+ (1= 05) 20 ] L [0/ (1 — 6:))}
AL = 7o) o (U= 1) 22 [T Iriy/ (1 = 7)1
where ][] denotes a product over a subset of ¢; of the values 1, 2, -+ -, ¢ of 7,
and >_; denotes the sum over all the ( J) such subsets; similarly, []. denotes a
product over a subset of d; of the values ¢ + 1, -+, n of §, and D_, denotes the
sum over all the (";,°) such subsets. From (2.2) and (2.3), the required condi-
tional distribution of C; and D, is given by
P{Cy = c1, Dy = di| &;...i,}
(2.4) = {(1 = 6) -+ (1= 0:) 2 ITa 105/ (1 — 6:)1}
A = 7o) o (U= 1) 2] Lalm/(1 — )1,
0==a=c¢0=sd=n—c
Under H, given by (1.6), whatever (Fy, -+, Fr) € wa, (2.4) gives
P{Cl =0, .D1 = dl l 8i1---ic ) HO}
(2.5) =P{Ci=ca,Di=d|C =c, Ho} = ()("s,°)27",

0=a=c¢0=ds=n—ec

Thus, under H, , given C = ¢, C1 and D; are independently distributed as binomial
random variables with parameters (¢, ) and (n — ¢, %) respectively. Hence,
for testing H, , it seems reasonable to use the statistic

(2.6) T = (4/C)(Cy — C/2)* + [4/(n — CO)]ID1 — (n — C)/2F.

(For C = 0 or n, one of the terms in 7' is absent.) Given C = ¢, the conditional
distribution of 7 under H, would be clearly distribution-free. Let F.(¢|c)
denote the cdf of this distribution as obtained by summing (2.5) over those com-
binations (¢;, d;) for which the value of T does not exceed ¢. For any
a (0 < a < 1) let t,,o(c) be the value of ¢ for which 1 — F.(t[¢) S a <1 —
F.(t — 0] c). We then define a critical function ¢(¢, ¢) which assumes the value
0fort < t,,4(c) and 1 for ¢t > t,,a(c). For ¢t = t,,.(c) we take ¢(£, ¢) = an,(c)
where 0 = a,,.(¢) < 1 is chosen such that

(2.7) E{o(T,C) | C = ¢, Hy} = a.
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We then consider the randomized test:
(2.8) reject Ho with probability (T, C).

By (2.7) the level of significance Eo(T, C) of this test would be « whatever
(F1, --+, F,) ¢ w, and therefore the test would be strictly distribution-free.
In practice one would usually prefer the non-randomized test:

(2.9) reject Ho if T > t,4.(C); otherwise, accept H,.

Whatever (Fy, --- , F,) € wa , the level of significance of this would not exceed a.

Although the above development of the test is based on heuristic reasoning,
it is of interest to note that, from considerations of invariance and sufficiency,
we are led to a class of tests similar to and including (2.8). The problem of testing
the hypothesis (1.3) remains invariant under all transformations X;" = ¢,’(X4),
Vi = ¢:®(Yi), k = 1, .-+, n, with strictly increasing continuous functions
g (z) for which ¢,”(0) = 0, ¢ = 1, 2, and all permutations of the n pairs
(1.1). Therefore, if we restrict ourselves to invariant tests, we need consider
only tests based on the set of maximal invariants Cy, Dy, C. The joint distribu-
tion of these is obtained by summing (2.3) over all the (¢) partitions (2.1).
From this, the power of any critical function (¢ , di , ¢) is seen to be continuous
in the parameters, so that a test ¥(c1, di, ¢) for (1.6) is unbiased only if it is
similar (see {13], p. 125). Now it may be noted that C is a sufficient statistic
for the family of distributions of C1, Dy, and C under H, . Further, as the induced
family of distributions of C includes all binomial distributions with parameter n,
the statistic C may be shown to be complete (see Lehmann and Scheffé [14],
pp- 312, 315). Hence by a well known result ([14], p. 318) ¢¥(¢1, dy , ¢) would give
a similar level-a test for H,, if and only if

(2.10) E{y(Ci, D1, C)|C = ¢, H} = «, for all ¢, 0=<c¢=n

Thus we are led to consider the class of critical functions which satisfy (2.10).
By (2.7), the critical function ¢(¢, ¢) belongs to this class. The choice of the
particular critical function ¢(¢, ¢) is made from considerations of practical
convenience and is to some extent justified by its properties of unbiasedness
and consistency to be established later.

To apply the tests (2.8) or (2.9) in practice, we require knowledge of ¢,,.(c)
(and also of a,,.(c) for (2.8)). For small n, ¢,,.(¢) may be found easily with the
help of binomial tables. We now show that, for large n, we may approximate
F.(t|c) by the cdf Fy,»(t) of the x.’-distribution and use the upper a-point
x3.« of the latter for ¢, .(c).

From (2.5) and (2.6), by DeMoivre-Laplace limit theorem, we get that
Fo(t| ¢) = Fypa(t) if cand n — ¢ both tend to infinity. Now, writing ¢ = >_7 Z; ,
n— C = >t (1 — Z) where Z; assumes the value 1 or 0 according as (X, Y%)
is concordant or discordant, by Kolmogorov’s three series criterion ([15], p. 237)
we see that, as n — oo, if

(2.11) Dhmve=®, 2pa(l—m) = o,
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both ¢ — « and n — C — o« almost surely. (If the first or second series in
(2.11) is convergent C or n — C converges almost surely.) Hence, assuming
(2.11), we have Fy(t| C) —a.s. Fyya(t) 50 that t o(C) —es. Xoa; Gna(C) —>u.s. 0.
Therefore, for large n, the tests (2.8) and (2.9) both approach the test:

(2.12) reject Ho, if T > x3,.; otherwise, accept H,.

The level of significance 1 — EF,(x3.«| C) of the test (2.12) depends on the
particular (Fy, -+, F,) & w, through the distribution of C. However, asn — o ,
under (2.11), it tends to « whatever Fi, , k = 1,2, --- .

3. Unbiasedness of the test. In this section we shall show that the test (2.8)
is unbiased against a specific class of alternatives. For that we first prove two
lemmas.

In what follows we shall use S, generically for a random variable representing
the number of successes in r independent trials. For any set E of possible values,
P{S,¢E|p1, p2, -+, p:} will stand for the probability of the event S, ¢ E

when the probabilities of success in the r trials taken in order are py, ps, -+ - , p, .
Lemma 3.1. If py, p2, « -, pa satisfy either
(31) Oéplyp2r""pn§%y or %§P1>P2,"‘,pn§1,

and s be an integer 0 < s < n/2,

P{s = 8u=n —s|p1,D2, " ,Da)

(32) B
}.

Proor. We prove the lemma, for the case 3 < p1, p2, -+, p» < 1. The case
0 < p1,p2, -+, Pn = % then follows by interchanging the roles of success and
failure.

First suppose 1 = s < n/2. The event s £ S, < n — s can materialize in three
mutually exclusive and exhaustive ways: (i) the first trial gives a success and
the last (n — 1) trials give just (s — 1) successes, (ii) the first gives a failure
and the last (n — 1) trials give n — s successes, (iii) the number of successes
in the last (n — 1) trials is not less than s and not more than n — s — 1. Hence,

lIA
D=

P{s=8S.=n—s]|},

Wl

oo
) b

Pls=8Si=n—s|pi,p2, 00 =p1P{Sacs=s5—1|pz, -+, pa)}
(33) +(1_pl)P{Sn—l=n_3|p2’"')pn}
+P{3§Sn—l§n—s_ 1|p2r ,pn}

Let p;’ be any number, 0 < p,’ < p . Replacing p; in (3.3) by pi’ and from the
resulting expression subtracting (3.3), we get

Pls < Su =n— s|pyp2, -+, pal
3.4) —P{s=8.=n—s|pi,p2, ", pn}
= (p1 = P)IPSsr =1 —s|ps, -+, pu}
P{Sp1=5—1ps, -, pa}l.
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Now it is known (see [13], p. 220) that for pz, -+, pa = %, ("7) 'P{Spy =
7| p2, -+, pa} is a non-decreasing function of 7. As s — 1 < n — s we conclude
that the difference (3.4) is non-negative. This statement is also trivially true
for s = 0. Further we can always renumber the trials so that the <th trial be-
comes the first. From these considerations it follows that for any integer 2
(1=4=n),if0 = p = ps,

P{Sé Sy, =n— Slpl, ctcy Die1y Diy Pitl, "'»p"}
éP{séSﬂén_s,pl>"'>pi—1’pi>,pi+l>"'>pn}a

irrespective of the values of p1, -+, pi, Diz1, - -, P provided these are all
= 3. Therefore as p1, p2, -+, Pn = %, successively takingz = 1,2, -+, n
and putting p;’ = 1 in every case, we get (3.2).

In the following, for any two random variables with cdf’s F(x), G(x) respec-
tively, we shall say that the first random variable (or its distribution) is stochas-
tically larger than the second (or its distribution) when F(z) =< G(z) for all
z (c.f. [13], p. 73). Then we get the following corollary to the above lemma.

CoroLLARY. Whatever a > 0, the distribution of a(S, — in)® when pi, ps2,
-+, Da satisfy (3.1), is stochastically larger than the distribution of the same when
p1= P =pn=%_

This follows immediately from the above lemma, since under (3.1) whatever
z =0,

P{a(Sn - %n)z = xlplr Tty pn} = P{a(sn - %n)2 = CL'I%, Tt %}'

Lemma 3.2. If Uy, Uy and Vi, V, are pairs of independent random variables,
such that U ; is stochastically larger than V; , 7 = 1, 2, then U1 + U, s stochastically
larger than Vi 4+ V.

Proor. Let the cdf’s of U, and V; be F(x) and G(zx) respectively. Then, for
any z, G(z) = F(x), so that
(3.5) P{Vi+ Vy, = 2} = EG(x — Vi) =2 EF(z — V).

Again, as U, is stochastically larger than Vi, and for a fixed z, F(x — v) is
non-increasing in v, by a well known result (see [13], p. 73), we have
(3.6) EF(x — V) = EF(x — U,) = P{U, + U, = z}.

Combining (3.5) and (3.6), the lemma, follows.

Now we consider the unbiasedness of the test (2.8). For this, we define the
particular subclass 2, of alternatives (Fy, Fs, - -+ , Fn) € @, — w, for which the
following two conditions both hold:

(3.7) either 6y, -+, 6, =

1
2
(3.8) either 71, ---, 7 = %, or 7, -+, 7

1A

lIA
Wil

, O O, -, 6n

We now prove the following:
TrEOREM 3.1. The test (2.8) is unbiased against the class of alternatives Q,

gwen by (3.7) and (3.8).

[¢))
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Proor. Take any (Fy, -+, F,) ¢ 2, and let the corresponding alternative
be called H; . For any partition (2.1) of {1, 2, ---, n} let the event &,;,...;, be
defined as in Section 2. By (2.4), given &;,...;, C1 and D, are generally independ-
ently distributed as numbers of successes in sets of ¢ and n — ¢ independent
trials with probabilities of success 6;, , - - -, 6;, and 74,,,, -+, 74, respectively.
So by (1.6), (3.7) and (3.8), and the Corollary to Lemma 3.1, given §&;,...;,
the conditional distributions of 4¢7*{C; — %c}*and 4(n — ¢) ™ {D: — 3(n — ¢)}’
under H; are respectively stochastically larger than those under Ho. (In the
particular cases ¢ = 0, n, the statement holds for only one of the expressions).
Hence applying Lemma 3.2, from (2.6) it follows that, given &;;,...;, , the condi-
tional distribution of T' under H, is stochastically larger than that under H,.
As given &;,...., , ¢ is fixed and the critical function ¢(¢, ¢) defined in Section 2 is
non-decreasing in ¢ for a fixed ¢, by a well known result (see [13], p. 73), it follows
that

(3.9) E{o(T, C) | &y , Hi} 2 E{o(T, C) | &..s, , Ho}.

As (3.9) holds whatever ¢ (0 < ¢ < n) and whatever the partition (2.1), un-
conditionally also,

E{e(T, C) | Hi} = E{e(T, C) | Ho}.

This proves the theorem.
To see the significance of the conditions (3.7)-(3.8), we note that from (1.7),

(3.10) 0 Z 3 o Fi0, ) + Fu(,0) — 1 20
1 & Fy(0, ) — Fi( =, 0) Z0.

Hence a little consideration shows that (3.7)—(3.8) hold if and only if either
(i) Fr(0, ©) — 3,k = 1, --- , n, are of the same sign, and |[F(0, ) — | =
|Fi(©0,0) — 3,k =1, ---,n,or (ii) Fi(»,0) — 3,k = 1, -+, n, are of the
same sign, and [Fy(0, ©) — 3| < |Fi(»,0) — 4,k =1, ---, n. When Fy,
F;, ---, F, are identical, this holds for every alternative, and thus the test
(2.13) is unbiased against all alternatives.

Finally, it may be noted that as the tests (2.9) and (2.12) are not similar these
can not be unbiased against the alternatives 2, (see [13], p. 125).

Tk

AV AV

4. Consistency of the tests. We shall first prove the consistency of the large-
sample test (2.12). As in studying consistency we make n — o, we consider now
the set ., of all infinite sequences { Fi(x,y)} of bivariate cdf’s such that 0 < v, < 1
for all k. The null hypothetical set w, will be the subset of sequences for which
(1.2), or equivalently, (1.6) holds for all k. Consider the subset Q™ of Qo — oo
such that, for any {Fi(z, y)} € Q.", at least one of the following two conditions
holds as n — o :

(4.1) lim inf |2 2°F (6 — %) > 0;
(4.2) lim inf |2~ 227 (1 — %) (7% — )| > 0.
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From the definitions of v;, 65, and 7 in Section 1, we see that conditions (4.1)
and (4.2) are respectively equivalent to

(4.3) lim inf [n™" 301 {Fi(0, ) + Fi(=,0) — 4}| > 0;
(4.4) lim inf [n™" D7 {F4(0, ) — Fi(, 0)}| > 0.

If all the distributions F are identical then at least one of (4.3) and (4.4) is satis-
fied by every alternative to H, .
Now consider the test (2.12). Let {F.*(z, )} be a sequence belonging to the
class 2., * and suppose (X} , Y%) follows the distribution F.*(z, y), k = 1,2, - - - .
From (2.6), we have

(4.5) (4n)7'T = n7%(CL — 20} + n 7Dy — L(n — O)}%

By Tshebysheff’s inequality, as n — o, with probability approaching unity
n{C1— 3C) ~ 07 21 (0 — ) and n Dy — 3(n — O)} ~n T 200 (1 — i)
(7 — %). Now, as at least one of (4.1) and (4.2) holds, by (4.5), asn — «, with
probability approaching unity, 7'/n is bounded away from zero. Hence

limpaw P{T > x5.a| {Fx*}} = 1.

As, with n increasing, t,,«(C) —>, x2.a and @, .«(C) —, 0, we may conclude the
following (see [8], p. 171-172).

TrEOREM 4.1. The tests (2.8), (2.9) and (2.12) are all consistent against the class
of alternatives Q..

5. Asymptotic power and relative efficiency. As, with increasing n, the tests
(2.8) and (2.9) approach the test (2.12), for studying the asymptotic power, we
confine our attention to (2.12). Throughout this section we shall consider the
case when the observations represent independent samples from the same popu-
lation with cdf, say, F(z, y). F(z, y) is known to lie in the set Q of all bivariate
cdf’s F(z, y) for which (1.5) holds. The null hypothetical set w C € consists of
the edf’s F(z, y) satisfying (1.2).

As the test (2.12) is consistent, to study its asymptotic power we take an
Fo(z, y) € w and consider the sequence of alternatives represented by

(5.1) Fay(z,y) = Fo(z + 0,y +n7), n=12--,

where (&, &) # (0, 0). For each n, let the test (2.12) be based on a sample of
size n taken from F((z, y). Then, applying a form of bivariate central limit
theorem due to Hoeffding and Robbins [9] to the joint distribution of n}(Cy — C1)
and n~ (D, — D,), and using a well-known result [16] regarding the limiting dis-
tribution of continuous functions, it follows that, as n — «, T is asymptotically
distributed as a non-central xs° with non-centrality parameter

(5.2) A = v {£fo1(0) + £afo2(0)}2 + (1 — 7o) " {&for(0) — £afo-2(0)}%,

where v = 2F(0,0) — Fo(0, ©) — Fo( ©,0) + 1, and Fo(z, ) and Fo( 0, y)
are assumed absolutely continuous with densities fo.1(z) and fo.2(y). The asymp-
totic power is given by the tail-probability of this non-central x*-distribution.
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As pointed out by a referee, in this case of identically distributed sample ob-
servations, Bickel [3] considers a class of asymptotically equivalent test sta-
tistics (the class 91t,®) which includes 7T, and the above result follows from a
general theorem of Bickel (see [3], pp. 163, 167).

Efficiency relative to Hotelling’s T". When the parent cdf F(z, y) is known a priors
to be bivariate normal, taking the cdf of the distribution N (0, 0, o1, o2, p) for
Fo(z, y) and writing &’ = &/0s,7 = 1,2, (5.2) reduces to

A =3+ &) (r—cos o) + (& — &) (cos™ p) 7]

In this case, the standard T’statistic of Hotelling is asymptotically dis-
tributed as a non-central x;® with non-centrality parameter A* = (1 — p*)™"
(51'2 — 2088 + £'). Hence for the given p, El', and &', the efficiency of the test
(2.12) relative to the comparable Hotelling test is given by e = A/A*, Bickel
[3], [3a] gives the details of these results and the expression for e in connexion
with his class of statistics 917,° which includes 7. He also obtains the maximum
¢” and minimum €™ of e for a fixed p and studies their behaviour. It turns out that
both these are symmetric about p = 0, and at this point both assume the value
2/7 =2 .64, which incidentally is the Pitman efficiency against normal alternatives
of the univariate sign test. As |p| increases ™ first rises slightly to a value of about
.72 and then gradually decreases to 2/ as |p| — 1. ¢” monotonically falls off to 0
as |p| increases to 1. For very high values of |p|, e will be high or low according as
the deviation of the standardized median point is in a direction along or orthogo-
nal to the axis of scatter of the distribution. Thus taking &' = £  and making
p — =1, we see e — 2/r and 0 respectively. On the other hand for moderate
values of ||, say |o|] < .50, the efficiency will be satisfactory whatever the di-
rection of deviation.

Efficiency relative to the Hodges test. As noted in Section 1, when it is known that
the observations are independently taken from a distribution F(z, y) diagonally
symmetric about the median point, for testing Ho, we may also use the alterna-
tive bivariate sign test of Hodges. In this case it is of interest to compare the
efficiency of the test (2.12) relative to the Hodges test. But the test-statistic for
the latter is not asymptotically distributed as a central x* under Hy, (see Joffe
and Klotz [10]), and its asymptotic non-null distribution is not known. There-
fore comparison of efficiency in terms of power, as in the preceding discussion is not
possible. However, as in [10], we may derive the relative efficiency in the sense
of Bahadur [1] in the particular case when F(z, y) is bivariate normal.

Let all observations be taken from the distribution F(z, y) which is bivariate
normal with parameters (us, ps, o1, 02, p) (Jo] < 1), and let w/o1 = wi,
pa/os = uy. Also let T be defined as in (2.6) on the basis of a sample size n. Let
us write

F(0,0) = P, 1— F(0, ©) — F(w,0) + F(0,0) = P,,
(53) F(O,OO)—F(O,O) P3, F(OO,O)—'F(O,O)=P4,
Py 4 Py = v, P; 4 Py=1—+.

It
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Then from the results of Section 2, it follows that 7' satisfies the conditions of
Bahadur [1], and its slope in the sense of Bahadur is

plim n7'T = v NP1 — Py)* + (1 - 7)—1(P3 — Py)?
= 7M@) + (') — 1}° + (1 — v)H{o(w') — ()}’

where ®(z) stands for the standard univariate normal cdf. The slope of the
Hodges test in the present case has been shown to be (see [10]) {2B(A) — 1}%,
where A* = (1 — p*) ™ MHuw — 20m'us” + p2'*}. Hence, the Bahadur efficiency of
the test (2.12) relative to the Hodges test would be

(54) E = {28(A) — 1} 7y H{®(w') + ®(w’) — 1}°
+ (1= y)He(w') — ®(w)})

To calculate the limiting value of E as u;’, us’ — 0, let us put = ohy Jus = ohy,
where (h1, hy) # (0, 0) is fixed, and make § — 0. Writing \* = (1 — p*) ™"
{hi® — 2phihs + ho%}, as, whatever hy , hy, limy = % + = *sin™ p, from (5.4),
we derive

limsoo B = IN2{(1 4+ (2/x) sin™ p) ™ (hy + hs)®
+ (1 — (2/7) sin™ p) (ks — ho)?}.

This limiting efficiency clearly depends on A, , h; which represent the direction in
which (u1, u2’) approaches (0, 0). In particular we have, for by = hy, lim E =
{1 + (2/7) sin™ p} (1 + p) and this is seen to be greater than or less than 1
depending on whether p is positive or negative. Similarly it is seen that for
hy = —hy, lim E is greater than or less than 1 depending on whether p is negative
or positive. When either %, or A, is zero, F is seen to be less than 1 although it is
close to 1 unless |p| is very large.

The above asymptotic studies of the performance of the test (2.12) relative to
the tests of Hotelling and Hodges of course do not tell us anything regarding the
performance in small samples. For any parent cdf F(z, ), if we use the notations
(5.3), we can write the exact power of the test (2.12) as the multinomial sum

D ! PP T PP T e (¢ — eV di! (n — ¢ — dy) ],

the summation being taken over allvalues0 = ¢ < ¢, 0=d1 =n—¢,0=c=n
for which the value of T' given by (2.6) exceeds x3.. . For different parent cdf’s
F(z, y), numerical studies such as in Klotz [12] would reveal the performance of
the proposed test in small samples.

6. Concluding remarks. In the preceding sections we confined ourselves solely
to the bivariate problem of testing whether several pairs of variables have speci-
fied location. However, some problems involving sets of three or more variables
which can be reduced to bivariate problems by suitable transformations, would
be tractable by identical techniques. Thus, if we have independent triplets
(Z2.2, 2.% 2,P), k = 1,2, -+, n, to test whether the variables within each
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triplet are identically located we may set X = Z,* — Z,?, ¥y = 2, — 2,
and apply the methods of Section 2. This gives an exact non-parametric test for
identity of location without any assumption of symmetry of the original trivariate
distribution. Another familiar problem is related to quadrivariate distributions
in which the four variables group into natural pairs. Thus if we have n inde-
pendent sets of observations (X', Yi', X", Yi' ),k = 1, - -+, n, and our problem
is to test whether X’ and Y’ have respectively same locations as X" and Y” we
can apply the proposed test on the differences X = X' — X", ¥, = ¥,/ — Y.
Here also in using this method we do not require any assumption of symmetry or
interchangeability of the variables to be able to test the hypothesis.

Lastly one may note that, whereas the bivariate sign tests of Hodges [7] and
Blumen [4] are invariant under non-singular transformations of the pairs
(Xx,Yr),k =1, -, n,the test proposed here is not. On the other hand it may
be readily seen from the expression of the proposed test-statistic given by (2.6)
that the latter is invariant under transformations in each variable which are zero-
preserving and monotonic increasing (when the underlying cdf’s are continuous
the transformations need only be zero-preserving and monotonic). As such trans-
formations will not necessarily preserve diagonal symmetry in the joint dis-
tribution, the tests of Hodges and Blumen will not be generally invariant under
these. Invariance under a non-singular transformation will be meaningful when
the choice of co-ordinate axes in the bivariate plane is more or less arbitrary. On
the other hand, when one or the other of the variables is being measured on an
indirect scale (such as on a calibrated instrument or on a psychophysical scale)
invariance under a monotonic transformation preserving zero may be important.
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