ON ANALYSIS OF VARIANCE FOR THE K-SAMPLE PROBLEM!

By Daxa QuapE

University of North Carolina

1. Introduction. Suppose we have k¥ = 2 random samples, possibly multivari-
ate, where X;; is the jth observation in the sth samplefor1 <t < k,1 =< j = ni,
and there are N = ) n; observations in all. Let the distribution function of X;
be G; . The null hypothesis to be tested is

H02G1EGzE EGk

We shall be particularly concerned with the large sample situation where N — o
and n;/N — p; > 0for 1 < ¢ < k. Define

G = D iapGi;
then our null hypothesis can be reexpressed as
H,:G: = G, 1=1,2 .-,k

The general approach we have in mind is an extended version of one-way
analysis of variance. Let fy(21, %2, - -+ , Zy) be a function of N arguments which
is symmetric in the last (N — 1) of them. Next, corresponding to each observa-
tion X;; define a score

¥i; = fw(Xij, (N — 1) X’s other than Xj]).

Then we perform an ordinary analysis of variance based on the scores: that is, we
calculate

F=(N—k)2Zn(g—§/k—1) 2> (ys — %),

where 7; = ni' D iy and § = N7 D %5y > 2y, and test Ho by referring
F to the F-distribution with (¢ — 1, N — k) degrees of freedom.

In the remainder of this paper we present conditions under which such a test
will be asymptotically valid, and we show that several of the tests proposed in
the literature are essentially of this type.

2. The null-hypothesis distribution. In accordance with Chernoff and Teicher
[2], we shall say that n random variables are interchangeable if their joint dis-
tribution function is symmetric. Then clearly the scores as defined above are
interchangeable random variables if the null hypothesis is true. Now, by a com-
pletely straightforward extension of Theorem 1 of Chernoff and Teicher, using
the multivariate extension of the Wald-Wolfowitz-Noether limit theorem, we
can obtain the following:

TuaeOREM 1. For every sufficiently large N let {Z f-‘}”} be a set of N interchangeable
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random variables, where 1 < j < n™, > %1 n" = N, andasN — «,n;"/N —
pi > 0for 1 <4 = k. Suppose also that for oll N
(i) Xha " 28 = o,
(ii) BIZET =1,
and that as N —
(iit) N~ max,; [Z{Y| — 0 in probability,

ni(N)

(iv) N7 20k D0 [ZSPT — 1 én probability.
Then the k random variables

n .

N_}Z”'( Zﬁy)’ 7'=1)2,"')k1

have asymptotically a k-variate normal distribution with zero mean vector and variance
matrix

I‘pl — —Pps DDk
—DP1DP2 P2 — D2 — D2 Dk

L —D1 Dk —P2DPx Dk — I’k2J
Application of the preceding theorem to our problem gives
TuroreM 2. If the hypothesis is true, and if as N — « and ny/N — p; > 0 for
1 <17 =k wehave
AssumPTION A.
maxs,; [ys; — §l/122 22 (yis — §)"1 = 0 4n probability,
then the analysis of variance statistic F' based on the scores has asymptotically the
F-distribution with (k — 1, N — k) degrees of freedom.
Proor. Define
Zij = (yis — D/ 2 X (v — DT
forl £ ¢ =k, 1= j = n;. Then the analysis of variance statistic based on the
Z’s is identically the same as the statistic based on the y’s. But it can be verified
immediately that the Z’s are interchangeable and satlsfy all the conditions (i)—
(iv) of Theorem 1. Hence the k random variables N Y™ Z:,i=1,2, , k,
have asymptotically a k-variate normal distribution with zero mean vector and

variance matrix V. It then follows that the random variable Z'iml [Z}L‘.— Z i,-]z/ni
has asymptotically a x’-distribution with (k¥ — 1) degrees of freedom. Hence

(N — k) 25 [ 2 Zil /i — 0
in probability, and thus
(N - k)—l{ 1«—1 J'—l Zi] - 'l.—l ZJ'—I Z’L]] /nz} —1

in probability. Then by Cramér’s convergence theorem ([3], p. 254) we have that
(k — 1)F is asymptotically a x'(k — 1) also. But this is equivalent to saying that
F itself is asymptotically an F(k — 1, N — k).
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The reader may note that we have passed up several opportunities for obtaining
a statistic with asymptotic x’(k — 1) distribution. He may then ask, why put
the test in terms of F rather than the simpler x°? This may be partly a matter of
personal preference. However, statement in terms of ¥ may be intuitively appeal-
ing to experimenters accustomed to applying analysis of variance to the k-sample
problem, and it provides a unified approach, since an ordinary analysis of variance
based on untransformed univariate data is clearly a special case of analysis of
variance based on scores. Alternatively, the test could be regarded as a con-
ditional one, given the scores; this will be a particularly useful device if N is small.
Then we have a permutation test based on the analysis of variance statistic, and
the results of Pitman [5] indicate that the F-distribution affords an excellent ap-
proximation to the required conditional distribution. However, our approach
throughout is to consider the test as unconditional.

3. Scores related to U-statistics. Although the general definition used for
scores so far leads to a satisfactory result under the null hypothesis, it is not evi-
dent how this may be extended to the case where the alternative holds true. In
order to obtain such an extension, we shall suppose in this section that the scores
have the more specialized form

yii = 2 o(Xi;, [m X78]),
where the function ¢(zo, %1, -+, Tm) is symmetric in its last m arguments,

1 £ m £ min (n;), and the summation extends over all possible combinations of

m observations other than X;; .
We shall also make the following:
Assumprion Bl.

n= f e fd)z(:l}o,xl, "'axm) dG(xO) dG(xl) v dG(wm) < o0,
This is equivalent to assuming that El¢*(Xo, X1, -+, Xm)] < » whenever

Xo, X1, -++, Xn are independent and their distributions are all taken from
Gy, Gy, -+, Gy. Let {m,} be any ordered set of &k nonnegative integers
(my,ma, « -+, my) such that > m, = m, and define

7" = El¢"(Xo, X1, -+, Xu)l,

where X, X1, - - - , X are independent, X, comes from G; , and m. of the other
m X’s come from @, for 1 < r =< k. Then we may write

n = 2k ps F Ry

where

(me)
R'™ = m!lp™pa? -+« i ¥ mal mal - - my!

and D% indicates summation over all (™) possible choices of {m,}. Hence

7 > [min; pd™™ max; im,y 7™, or 7™ < ylmin; pJ ™ for all 4, {m,}.
We note that Assumption B1 is trivially satisfied if ¢ is bounded. Since we shall
need this stronger condition for the results of Section 4, we state it here as
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Assumprion B2.

I¢(x07x17”')xm)l =S¢

(The constant ¢ may depend on G.) Assumption B2 is satisfied in all the

examples to follow.
A few further definitions will be useful. Let

oi(mr) = E[¢(X0 ) X17 Tty Xm)]

where Xy, X1, - -+, X\» are independent, X, comes from @; , and m, of the other
m X’s come from G, for 1 < r < k. Then

6. = [ 0™ (z) dGi(x)

where
o) = [ .- [ (@, 210, - ) Bimg , Tox, o Tiomg) 1= Iom dGe(2r).
Define also
0(x) = [ -+ [ ¢z, 21,22, -, n) dG(21) dX(22) - -+ dX(Tm)
= Z* R(mr}otmr)(x),
= [6(z) dGi(=),
8 = [0(x)dX(z) = D tipis,
and finally

= foz(x) d@i(z),
¢ = [6(z) dG(z) = D haipii.

THEOREM 3. If Assumption B1 holds, then as N — © and ni/N — p; > 0 for
1 = 7 £ k the k random variables

NY(SH g — 63
have asymptotically a joint normal distribution with zero mean vector and finite

variance matrizx.

Proor. We may write ys; = 0. * >.v" ¢(Xi;, [m X’s]) where the inner sum-
mation extends over all possible combmatlons of m observations other than X,;
such that m, of them come from the rth sample for 1 =< r < k. Then

Doy = () 2 (i — ma)/(mi + 1)IRy™ U
where

R {m,} = N—l)—IH

U™ = [T (m5:,) 1‘1 M 20 (X4, [m X78)),
and &;, is Kronecker’s delta. For 0 £ v < m define
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Su(To, X1, oo, Tm) = Z;;o o(x , 21 + (20 — 21),
T + 621'(-'130 — xz), crr Xy + aur(xo - xu), Lutl,y =,y xm);

so that ¢, is symmetric in its first (» 4+ 1) arguments and also in its last (m — u)
arguments. Then

2 206Xy, ImX08]) = 208" G ([(ms + 1) X2s], (Im — ma) X7s])

where the summation extends over all possible combinations of (m -+ 1) observa-
tions such that the first (m; + 1) of them come from the ith sample and that m, of
the others come from the rth sample for 1 < r < k, r & 4. Thus

U™ = [Tt (w3507 2267 G ([(ms + 1) X08], [(m — ma) X7s])

has the form of a k-sample generalized U-statistic, and hence, using Lemma
3.1 of Bhapkar [1], it follows that the k(™% ") random variables
NY U™ — E[U;'™']) have asymptotically a joint normal distribution with
zero mean vector and finite variance matrix. Then the same result must hold true
also for the k¥ random variables N*(Qi — E[Qi), where Q; = (m: + 1)
SHEFR™UM™ for 1 £ 4 £ k. Now E[U"™] = (m: + 1)6,'™’, and hence

E[Q] = X *R™%,!™ = ¢,. Also,
N7 — @ = 27 {[(n — ma)/mdRy™ — R™NYUS/(mi + 1),
SO
var [(3) 7% — Qd = (") maxm, {[(ns — ma) /ndBy'™ — R™)?
*IMaXm,) var [Ui(m"/(ma' + 1)]

0(1) X o(1) X O(NY),

and thus the random variables N*{(*,?)™%j; — Qi) converge to zero in mean

square. Then the asymptotic joint distribution of the random variables
N ™) — 6} must be the same as that of the random variables
N*Q: — E[Q.]}, and the theorem is proven.

In the next two theorems we extend the argument used by Sen [7] in establish-
ing the structural convergence of U-statistics. For this we shall need to consider
the random variables 8(X;;) for 1 < 7 < k, 1 < j =< n. These variables are

mutually independent, the expected value of 6( X;;) is
E[6(X:)] = [ 6(x) dGi(x) = 0;
as defined previously, and the variance of 6(X;) is
var [0(Xy)] = ¢ — 64

]

We have also
TuroREM 4. If Assumption B1 holds, then as N — « and n; = Np; + O(N?),

where p; > 0, for 1 = ¢ < k we have
E[("2Y) Ty — 0(Xi)] = O(NT)
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uniformly for all 4, j.
Proor. Starting from y.; as expressed in the proof of Theorem 3, we find that

o) My = 227 (i — ma) /mdRy VT
is as defined previously, and
Vit = Ul (a2 6( Xy, m X8)).

Suppose for the moment that X; is fixed. Then, conditioned on X;;, Vi7is
a k-sample generalized U-statistic, and we have E[VT"| X = 6™ (Xy).
Now consider estimating the quantity ™' (X;;) not by Vi7" but by the mean

of independent statistics of the form ¢(X;;, [m X’s]). The number of such in-
dependent statistics which can be obtained from the data is the largest integer
not greater than min, ((n, — 8;)/m,); by hypothesis, this number will be at
least equal to Npo/2m, where po = min; p;, for all sufficiently large N. The
variance of any one of the independent statistics will be

var [6( Xy, [m X’8]) | Xy] S Elg* (X5, [m X78]) | Xif] = 2™ (Xap),
say, where
@) = [ [N, we, e Bamg, B, o Bemy) [ [T d ().

Hence the variance of their mean will be no greater than 2mn'™"'(X;)/Npo .
But since a U-statistic has minimum variance among all unbiased estimates of
its expected value it follows that

var [V | Xy = BV — 6™(Xy)' | Xal < 2ma'™ (X4)/Npo.

{my}

where Ry

Then, integrating over the distribution of X;;, we find unconditionally that
BV — 6™ (X))l < 2mn/Np™™* = O(N™)
uniformly for all ¢, j, {m.}. Note that 6(z) = »_* R™¢'"(z). Hence
(o) — 0(Xy) = 25 (s — ma)/miBRy™ VT — R™6T (X))
= 2" [(ni — ma)/ndRy'™ VI — 6 (X )]
+ 2 ¥ {l(n — ma)/nidRy™" — R™ 0™ (X )
= A 4 B,
say, and E[("»") yi; — 0(2:)] < 4 max (E[A%], E[B’]). But
E[A”)
< (" maximy {[(ns — ma)/nidRa'™"} max; i my BV — 07 (X))
= 0(1) X 0(1) X O(N7")

uniformly for all 7, j, and also
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E[B2]
< (" maximy {[(ni — mo)/ndRy™ — R™ max,j,im, BO™ (X:)]
= 0(1) X O(N_l) X 0(1)

uniformly for all 4, j. Hence the theorem follows immediately.
At this point it is convenient to define

s = (ni — )7 2 (v — 9)°
for 1 <1 = k, and also
§ = D [(ni — 1)s’/(N — k)] = (N — E) D E D (v — )™

Then we have
TaroreM 5. If Assumption B1 holds, then as N — « and n; = Np: + O(NY,
where p; > 0, for 1 < ¢ = k we have

8i2(N;‘1)—2 — g‘i _ 01'2
in probability, and
82(N;,1)_2 — g_ . 72=1 pioiz

in probability.

Proo¥. Let ai; = 0(Xs;) — 6i, bij = (“m')ys; — 6:. Then nit Do ak —
(¢; — 65°) in probability by Khinchin’s form of the law of large numbers, and
ni DL (4 — b:;)® = 0 in probability by Theorem 4. Then by Lemma 1 of
Sen [7] nit DXy bi; — (¢ — 65°) in probability, and certainly

(ne — D722 [(0) Ty — 0 — (55 — 65)
in probability also. But
s2(a 7 = (i — DT () Ty — 0 — [ni/(ni — DI g — 6

and the second of these two sums converges to zero in probability by Theorem 3.
Thus the first part of the present theorem is proven; and the second part follows
immediately from it.

TarEoREM 6. If the hypothesis is true, and if furthermore Assumption Bl and

AssumprioN C. ¢ — 6> 0
both hold, then as N — « and n; = Np: + O(N?), where p; > 0, for 1 < ¢ < k,
the analystis of variance statistic F based on the scores has asymptotically the F-dis-
tribution with (k — 1, N — k) degrees of freedom.

Proor. We present a direct proof instead of reducing the present theorem to
Theorem 2. Under the hypothesis, the scores are interchangeable. We have that
the expected value of any score is Ely;;] = (" )0 for all 4, j; let us write oxn
for the variance of any score, and py for the correlation between any two scores.
Nowlet Z = (Z1, 2z, -+, Z:)", where the Z’s are the random variables in the
statement of Theorem 3. Then E[Z] = 0 and it is easily verified that

var [Z] = ZN = N(N;zl —20'N2[(1 - PN)DN.—I + pxd]
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where Dy = diag (n1,n2, - -+, nz) and J is the matrix in which every element is
unity. Let Ay = (") NDy — nn')/N’6y*(1 — py), wheren = (n1,n2, - -+ . ) -
Then Ay) x = I — DyJ/N is an idempotent matrix of rank (k — 1). Hence,
since by Theorem 3 the joint distribution of the Z,’s is asymptotically k-variate
normal, it follows that the quadratic form
Z'ANZ = [ ni(Gi — §)")/on'(1 — pw)

is asymptotically distributed as x°(k — 1). A little algebra will show that
E[s’] = o4°(1 — px). Hence by Theorem 5 and Cramér’s convergence theorem
we have that (k — 1)F = (Z'AxZ)ox*(1 — px)/s" is asymptotically distributed
as x(k — 1). And this is equivalent to saying that F is asymptotically
F(k— 1,N — k).

We note that making Assumption C is equivalent to saying that the random
variable 8(z) should not equal a constant with probability one when X is a
random observation from G.

TueorREM 7. If Assumptions Bl and C hold, then as N — o and n; = Np; +
O(N~ *), where p; > 0, for 1 = ¢ = k the test of Ho based on the analystis of variance
statistic F' is consistent against any alternative for which

A= Z?—l pi(ﬁ,’ — 0)2 > 0.

Proor. From Theorem 3 it follows that under the stated conditions the random
variable

(22 n(gs — DVYNCD* = (b — DFS/N(")* — A

in probability. Hence, using Theorem 5, (k — 1)F/N — A/(y — 2 pibs)
in probability, and thus, for sufficiently large N, F is certain to exceed the critical
value F* corresponding to any a.

We remark that if for each N the alternative Hy is true, where under H 5

8: = 6 + 8;/Nt + o(N°7H),

then under reasonable regularity conditions the asymptotic distribution of F
will be noncentral F with (kK — 1, N — k) degrees of freedom and noncentrality
parameter

A = [ p(s: — 8)7)/(s — 6)
where § = Y, p:d; . However, we shall not attempt to present a general theorem.

4. Scores related to modified U-statistics. Suppose the function ¢ of the pre-
ceding section depends on an unknown parameter r (which may be vector-
valued), that is

¢($o,x1, o 7xm) = ¢(T;x07x17 e ,.’11,,,).

Then we may consider using an analysis of variance test based on modified
scores

zii = 2 i o(tw 3 Xiz, [(m — 1) X7])
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where 7 has been estimated by a statistic {x which is a symmetric function of all
the N observations. We shall require the following:

Assumprion D. If Xy, X1, -+, Xx are independent observations from G,
then

E[¢(T;X07X19 e 7Xm) - d’(tN;XO:Xl; tee ’Xm)]2 = O(N—l)

Then we may state

TuroreMm 8. If the hypothesis is true, and if Assumptions B2, C, and D all
hold, then as N — » and n; = Np: + O(N?), where p; > 0, for 1 < i < k the
analysis of variance statistic F based on the modified scores has asymptotically the
F-distribution with (k — 1, N — k) degrees of freedom.

Proor. Define scores

yis = 2 9(m; Xi, [(m — 1) X78])
as in Section 3. Then by Theorem 5 we have that
(N = k)72 5 Y (g — D)= — 6
in probability as N — «. And
Yis — 25 = 2ile(r; Xy, [(m — 1) X8]) — ¢(tv ; Xij, [(m — 1) X))},
so by Assumption D Ely;; — zi]° = ("2))’°0O(N7'), and hence
(N — B2 5 2 (v — §) — (2 — AP
S (N = B2 25 (g — 2:)° () "= 0
in probability. But then by Sen’s lemma we have
(N = BT 25 25 (2 — B () P> — 6

in probability, where { — 6 > 0 by Assumption C. Now, using Assumption B2
we find that max;; 2;; — 5| < (Y»')c and thus we see immediately that the
modified scores satisfy Assumption A. Finally, since under the hypothesis these
scores are interchangeable random variables, the present theorem follows from
Theorem 2.

5. Examples.
Exampre 1. (Kruskal-Wallis Test). Let X,; be univariate, and define the

corresponding score as
Yij = Rij — 1

where R;; is the rank of X,; among all the N X’s, average ranks being used in
case of ties. Then yij = i/ o( X, X) = > w( Xy — X) where

¥(2) =0, 2<0,

) z=07

I
(S

, 2> 0.
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The analysis of variance statistic turns out to be
F=(N-=-FkH/(k—1)(N—-1~-H),
where
H = (12/N(N + 1)] 25 [0 Ril/ni — 3(N + 1)

is the familiar Kruskal-Wallis statistic, usually treated as x’(k — 1). (Itw_'may
be noted that F is one of the alternative expressions considered by Wallace
[8], who showed that the approximation to the conditional distribution afforded
by treating it as F(k — 1, N — k) is better than the usual one is, at least for
certain very small sample sizes, although not so good as various other more
complicated approximations.) In the standard method it is necessary to make
special adjustments for ties; however, in our approach equivalent adjustments are
made automatically as a part of the computation. Finally, we have

6; = P{X,; > X} + 3P{X; = X}, 9 =1,
where X; and X are observations randomly chosen from @; and G respectively.
Exampri 2. (Rank Analysis of Covariance). Let X;; = (X7, X7, - -+, X$7)
where X is the response and X@, - -- , X® are concomitant variables. Let
R{Y be the rank of X{¥ among all the N X{*’sfor 0 < » < p. Then the rank

analysis of covariance procedure proposed by the author [6] consists of performing
an ordinary analysis of variance on scores

yii = [RY — (N + 1)/2] — 20 clRY — (N + 1)/2]
where the ¢’s are any suitable set of constants. These scores can be obtained as
Yij = Zi:'¢(Xij, X) where
$(Xy, X) = WX — XO) — 4] - ZiaaW(Xy — X¥) — 3.
No matter what ¢’s have been selected, we have
6: = $P(X:” > XV} — (X0 < XO}, 0=,

where X and X© are observations randomly chosen from Gi(z®, 0, -, ®)
and G(z®, ©, --., ») respectively. If ¢, = -+ = ¢, = 0 then the test is

equivalent to the modified Kruskal-Wallis test of Example 1.
In [6] it is shown that, from the standpoint of asymptotic relative efficiency,

the optimal choice for ¢’ = (¢1, -« -, ¢p) is ¢’ = ' where ¥’ minimizes [y'Ay —
2v'n], n is the vector of covariances between RSY and (RSP, ---, R{?), and A
is the variance matrix of (RS, - -+, R?’). Suppose we choose ¢’ to minimize

[c’Lc — 2¢r] where r and L are the sample estimates of n and A. Then we are
using modified scores as in Section 4. Assumption B2 is satisfied since |¢| < 1 +
> |vul, Assumption C is satisfied unless the multiple correlation between
R and ( Rf-}) , -+, R?) is unity, and Assumption D since the ¢’s are continuous
functions of U-statistics. Thus the test with estimated optimal ¢’s is also asymp-
totically valid.
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ExampLE 3. (Mood’s Squared-Rank Test). Let X;; be univariate and define
the corresponding score as

Yi; = (Bij — 1)(N — Ry;),

where R; is again the rank of X;; among all the N z’s, provided that X,; is not
tied with any other X; let the score attached to each member of a group of tied
observations be the mean of the various scores they would receive if the ties were

broken arbitrarily. Then
Vi = 24 0( Xy, [2X78])
where
(o, 21, x2) =1 ifa; <ap<xgorae < m < 1
ifag=a1 5 Ty0orzo = 22 # 1y
ifzg =21 = @,

otherwise.

I
[«

If G is continuous then 6; is the probability that an observation randomly chosen
from G; will lie between two observations randomly chosen from G; if the hy-
pothesis is true then 6; = § = 3.

Now, the squared-rank test proposed by Mood [4] for the case where k = 2
and there are no ties is based on treating the statistic

W= 2 4Ry — (N 4 1)/2F

as normally distributed with mean E[W] = ni(N + 1)(N 4+ 2)/12 and variance
VW] = nmo(N 4+ 1)(N + 2)(N — 2)/180; equivalently,

W* = 180{W — E[W]}*/nms(N + 1)(N + 2)(N — 2)

may be treated as x* with 1 degree of freedom. After some algebra it can be shown
that for this special case the analysis of variance statistic based on the scores is

F(1,N — 2) = (N — 2)W*/(N — 1 — W%).

Note, however, that as in Example 1 the extension to k¥ > 2 is made immediate
through the general approach, and again that no special adjustment for ties is
required.

ExampLE 4. (2-by-k Contingency Tables) (a) Let the observations X; be
elements of any space Q and let Qo be any prespecified subspace of Q. Then the
data may be summarized as a contingency table with k rows, corresponding to
the k samples, and 2 columns, corresponding to observations in or not in Q, ; let
m; be the number of observations from the 7th sample which fall in Qy, and let
M = Z m; . The standard test is based on treating the statistic

X = [M(N — M) 2 5 [(miN — niM)*/mi]
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as x’(k — 1). Let ¢(X,;, X) = 1 or 0 according as X; £ Q or £ Q ; then the
score yi; = 2. ¢(Xii, X) = (N — 1) or 0 according as X,; € Q or £ Q ,and
the analysis of variance statistic turnsout tobe F = (N — k)X*/(k — 1)(N — X?).
The parameter 6; is then just the probability that a random observation from the
1th population will fall in Qo .

(b) Now suppose that the subspace Qo is defined in terms of some unknown
parameter. As a definite instance, consider the extension of the median test.
Here Q is the real line and Qo is the portion to the right of u, the population
median. We use modified scores

2ij = 2 d(f; Xij, X)
where ¢(; X3, X) is 1 or 0 according as X ;; does or does not exceed 4, the sample
median. That this test is asymptotically valid may be shown by the method of

Section 4, although in this case it is easier to apply Theorem 2 directly. Other
instances may be adduced.
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