THE TREATMENT OF TIES IN THE WILCOXON TEST'

By Wovrreang J. BUHLER
Unaversity of California, Berkeley

1. Introduction. Let (X, ---, X,) be a sample of n independent observations
from a distribution F, and (Y7, - -+, Y.) be a sample of independent observa-
tions from @. Then, if all m + n observations are different, the Wilcoxon test
will reject the hypothesis F = @, when the sum S, of the ranks R; of the X is
too small or too large.

For the case with a positive probability of ties two procedures have been
proposed. One is to order the tied observations randomly, the other is to replace
Sum by Sum = D%y R/. Here R/ = midrank (X;) = 1[N1(3) + Na(3) + 1].
Ni1(i) is the number of observations smaller than X; and N(i) is the number of
observations (including X;) not larger than X;.

If there are only finitely many values & at which ties may occur and if
pr = P{X; = &}, then as shown by Putter [3] under certain regularity conditions
the asymptotic relative efficiency of the “randomized’ with respect to the mid-
rank testis 1 — D_my pi’. Using a slight modification of Putter’s argument this
note will show that this conclusion is still true if pr, = P{Xi1= &} > 0 and
qr = P{Y; = &} > 0 for infinitely many values & . The result is illustrated by
applying it to certain parametric families of distributions, for which the efficiency
of the midrank test has been investigated by Chanda [1]. Putter’s notation will be
used throughout the paper.

2. The basic theorem. Following Putter, let for
k=1,2,---, ;e =P{Xi=8&} >0, q=P{Y1==&}>0;

U, = pumber of X’s equal to &, Vi = .number of Y’s equal to & ;
U= (U,Us, ),V =(V1,Vs, ), W= U+ V; 8on = anystatistic whose
distribution is that of Spm under F = G; prm = ESam = n(n + m + 1)/2,
0im = Var 8om = nm(n + m + 1)/12; Tom = (Sam — bnm)/Tnm -

T;len the following theorem connects the asymptotic distributions of S.» and
of Sam -

TaeoreM 1. If m/n converges to a positive number ¢ as m, n — «, then we have
for any pair (F, G, of distributions with common discontinuities & , k = 1,2, -+

(2.1) 0bvi/Tam = G —p b’ = (1 + ¢) " prge(8) [pe + cgi(6)]
(2.2) (Snm bl ESmn)/a'nm = Tnm —g N(O: bz)
(2.3) (S;m —_ Esmn)/o'nm = T;m —e N(Oy 52)’
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where the variances b* and b° satisfy the relation
(2.4) b =0 — Db

Proor.” Let c(u) = % + %sgn (u) and d(u) = 1 or 0 according to u = 0 or
% # Orespectively. Define X,..; = Y;(j = 1,2, --- ,m) andlet Z,,Z2, - -+ , Znym
be mutually independent and independent of X; , Xz, «++ , Xuym and let the Z;,
have a common continuous (otherwise arbitrary) distribution. Then

Ri= 3%+ 22050 (Il — d(X:s — X)lo(X: — X;) 4+ d(X: — X))e(Z: — Z5)},
R/ =3+ X7 e(X: — X;), and therefore
Sam = 2EaR{ = Xia{t + Dio(X: — X3) + LT o(X: — X;))
n(n 4+ 1)/2 + 20 D7 o(Xs — Xas)
= 2k 20 {(n 4+ 1)/2m + o(X: — V),

and similarly S, , is a two-sample U statistic. Thus (2.2) and (2.3) follow im-
mediately (Lehmann [2]). To establish (2.4) we note that

7 ) 0
Toam = Tum + Zk=1 akTU,,V,, )

where all the summands on the right hand side are conditionally independent
given (U, V). This implies Var (Tun | U, V) = Var (Tom | U, V) + Dorrai
Using, that ES,» = ES,» and even E(8S., | U, V) = E’(S:,ml U, v) = Shm , it
can be seen that
(2.5) Var (Tam) — Var (Thm)

= E{Var (Ton | U, V) — Var (Tom | U, V)} = E{D 1 a;3}.

Finally we let n tend to infinity in (2.5) to prove the relation (2.4).

II

3. The conclusions. As in Putter [3] we obtain the following immediate
consequence of Theorem 1:

TrEOREM 2. If F = @, then Shm — pnm/Tam —g N(0, 1 — > Pe) asmn, m— .
Therefore, if sam(U, V) is any sequence of statistics with sim(U, V)/oom —p
1 — 224, then Sum — pm/$am(U, V) —¢ N(0, 1) asn, m — .

Now we can state Putter’s result about the asymptotic relative efficiency for
the case of infinitely many points £ where ties may occur.

TaEOREM 3. Let m/n converge to a fixed number ¢ > 0 and let {Gy,0 < 0 < 64}
be a family of purely discontinuous distributions all having the same discontinuities
b < & < -+ with jumps qu(0). Let $2n(U, V') be functions of U and V having,
under each Gy , finite variances, and let the following conditions be satisfied:

(1) qk(o) g Qr > O) qk(O) = pk;k = 1’ 2; trty

(2) #f X has distribution F = Gy, Y has distribution Gy , then @ = P(X > Y)
+iP(X=Y) - %

2] am indebted to Professor W. Hoeffding for pointing out this proof which is much
simpler than my original one.
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(3) (Swm — ESun)/0am —¢ N(0, b°(0)) uniformly in 6;

(4) the functions qx(6) are continuous at 6 = 0;

(5) 8am(U, V)/n* = 220 0a(0)(Ur — npe) + 2 =1 Be(8) (Vi — mqu(8))
+ v(0)n + oy(n);

(6) ¥*(0) = [e(1 + ¢)/12)(1 — 23 pi’);

(7) ~(6) is differentiable, v’ (8) is continuous at 0;

(8) At least one of the inequalities cfox(0) = v(0)ar(8), c6Bx(0) = v(0)Bs
holds where a(0) = 1 + ¢[2 < ¢;(0) + $ax(0)], B = D_sc Dj + 3ps -

Under these conditions the asymptotic relative efficiency of the randomized with
respect to the nonrandomized test is R = 1 — 3 oy pi’.

The proof of Theorem 3 follows the lines of Putter’s proof using that the
convergence in the proof of Theorem 1 is uniform in 6. It can be seen that (3)
holds whenever b’(8) is bounded away from zero. Also, modifying remark (i)
of Putter’s paper, one shows that conditions (5), (6) and (8) are satisfied e.g.,
when s, is given by

(31) sin(U, V) = nm(n + m + 1)/12 — 2oy UVi(Ui + Vi + 1)/12.
In this case we have

ax(0) = —(c/24v(0))q(6)[2pi + cgi(0)]

Br(0) = —(c/24v(6))pilpr + 2¢qx(6)]

¥(0) = e[l 4+ ¢ — 22 pugu(0) (Pe + cgu(6))]/12.

4. Illustrations. Using the above remarks it is easy to verify that the result
of Theorem 3 can be applied to many parametric families of distributions (a
reparametrization may be needed to satisfy (2)). In particular we shall apply it
to the examples considered by Chanda [1]. For this purpose let us denote by e
the asymptotic efficiency of the midrank test relative to the best parametric
test and by £ = Re the asymptotic efficiency of the randomized test. All values
of e given in the following, in particular the numerical values in Table 1 are
taken from Chanda [1].

ExawmpLE 1. Potisson distribution with parameter N.

TABLE 1
0 0.2 0.5 1.0 3.0 L
e 1 0.92 0.91 0.92 0.94 0.95
E 0 0.42 0.68 0.82 0.91 0.95

Exampre 2. Binomial distribution with parameter p = P(X = 1). e = 1,
E=R=1—-9p"— (1 —p)?®=3p(1 — p). Thus E is zero at p = 0 and at
p = 1 and takes its maximum £ at p = 3.

ExampLE 3. Geometric distribution with parameter p. ¢ = (1 + p + p°)/

14+ p) R =3p/(1+p+79),E=3p/(1+p). Atp =0wehavee = 1
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and E = 0. As p increases to 1, ¢ is monotone decreasing to $ whereas E is
monotone increasing to the same value £. As should be expected these examples
indicate that the loss of efficiency when using the randomized procedure is the
more severe the more the distribution is concentrated in a few points.
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