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1. Summary. In this paper the problem of testing the hypothesis A < A,
against A > Ao, where A is the ratio of variances in the one-way classification of
the analysis of variance with variance components, is treated. The model is not
restricted to equal class frequencies. It is found that the most powerful invariant
test against an alternative A, depends upon A; , but has the property of maximis-
ing the minimum power over the set of alternatives with A > A;. The test
statistic is distributed like a ratio of linear combinations of independent chi-
square distributed random variables.

It is shown that a statistic used by Wald [6] to derive a confidence interval for
A gives a test that is almost equal to the most powerful invariant tests against
large alternatives A; . For the case Ay = 0 it is equal to the usual test in the fixed-
effects model. In the balanced case the test reduces to the usual F-test which
Herbach [2] has proved to be both uniformly most powerful invariant and uni-
formly most powerful unbiased.

2. Transformation to a canonical form. We define the model for the observa-
tions X,; as follows

(2.1) Xij=un+Ui+ 7V, J=12 -, mni; ¢=1,2 -1

where u is an unknown constant, and where the U;and V,, are all mdependently
normally distributed with expectation zero and variances 7* and ¢” respectively.
Let A = 7°/6°. The hypothesis to be tested is

H:A £ Ay against A > Ag.
To simplify the model we transform to a canonical form. Define
Xi, = [Xa,Xe, -, Xing), Vz'l =[Va,Va, - y Vingl,
Y/ =[Ya,Ya, -, Yl

a.nd let P; be a n; X n; orthogonal matrix with first row equal to
ni? SISy My }]. For each 7 we make the transformation Y, = P.X:. Then

ks 1

(2.2) Yﬂ =n}u+ Uy) 0 + P; V.
Yin, 0 J

Since P; is orthogonal it follows that the elements of Y, are independent.
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Clearly Y; and Y; are independent when ¢ 5 j. Hence all Y; are independent.
They are normally distributed, and the following expectations and variances are
obtained from (2.2):

(2.3) EYy =ndp; VarYy = (na + 1), i
EYij_—'O; VarYij=0'2, j=2,~--,n,~; ’i=1,2,"',7‘.

L2, -,

3. Most powerful invariant and similar test. The problem of testing H is in-
variant under a group of translations defined by

Y:1=Yi1+ni%a, —w < a< o, 7"=1)27""7“
Maximal invariant under this group is
(3.1) Zi=Ya— (ni/n)'¥a, i=12--,r—1

and Vi, 5 =2,8 - ,ni;i=1,2-,r2 =1[%,Z, -, Z] have a
multinormal distribution with

EZ; =0, i=1,2-,r—1;
(3.2) VarZ: = (2n4 + 1 + ni/n,)o’;
Cov (Z:, Z;) = (nm)i(Aa + n,7")d, i 5 j.

Let the covariance matrix of Z given by (3.2) be denoted A(A)d.
The density function of the invariant statistics is given by

Tong

(3.3) C exp (—(20)(FA(8) 2 + Lia Liayl))
where C is a constant which depends upon the parameters. The set of possible
values of the parameters is @ = {(s, A) |0 £ A < 0,0 < o < o}, the set of
values consistent with the hypothesisis w = {(¢,A) |0 S A £ A,,0 <o <},
and the set of common accumulation points of @ and € — w is wo = {(s,4) |A
= Ay, 0 < ¢ < »}. The distribution of Z and the Y’s for j = 2 for (o, A)
= (1, A) is given by
dF a0z, y) = C exp (—3(FA(8) 2 + 2ia 252 yiy)) du(z, ¥)

where u denotes the Lebesgue measure. The distribution for any (o, A) may now
be written
(34) dF (2 y) = C" exp (—(26")(FA(8) "2 — Z/A(&0) 2

— (207 — D(FAA) 2 + i 2 yi)) dFaa(2Y)-
In particular for (o, A) € wo,

AF ¢,80)(2, Y)
= " exp (—((2)™" — 1(FA(A)72 + D 2 e yi)) dFasn(z, Y)

which constitutes an exponential family of distributions.
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Let U = Z'A(A0) 7 Z + 2. it D 3% Yi; . According to Sverdrup [5], Theorem
3, the most powerful similar a-test ¢ on wo against an alternative (o1 , A) e —w
is found by setting ¢(2, ¥) = 1 when

(3.5) C" exp (—(20") (FA(M) T2 — 2 A(80) T2) — ((200°) 7 — H)u) > e(w)

and ¢(2, y) = 0 when the inequality sign is reversed and where ¢ is a function
determined such that

(36) E((p(Z, Y) | U) = a a.e. F(I,Ao) .
Combining (3.5) and (3.6) we get the condition

Pasy(Z'A(M)7Z — Z'A(A)7Z > (U)|U) = @
or

Panp([Z'A(80)7Z — Z'A(A)7ZIU > "(U) | U) = a.
Introduce
(37) W = (Z'A(A)7Z — ZA(M)TZ)(ZA(M)TZ + i L YT
The distribution of W does not depend upon ¢, and U = Z'A(A)TZ +
> i1 > M, Yi; is complete and sufficient when (o, A) € wy . Then by a theorem
of Basu [1] W and U are independent when (o, A) & wo . It follows that ¢’ (u)
must be a constant independent of u.

4. The distribution of the test statistic. Since the distribution of W does not

depend upon o, we put ¢ = 1. Then @ = > i ¥, Vi have a chi-square
distribution with n — r degrees of freedom, and @ and Z are independent,
(n = 22is1ms).

From (3.2) it is seen that the covariance matrix A(A) of Z may be written
in the form
(4.1) A(A) = BA+C
where the matrices B and C do not depend upon A. It is well known from matrix
theory that there exists a nonsingular matrix P such that
(4.2) PCP' =1 and PBP = A
where I is the identity matrix and A is a diagonal matrix with diagonal elements
A, A2, -, A1 which are the solutions of [B — \C| = 0. The X’s are positive

since both B and C are positive definite matrices.
We make the transformation

(4.3) R = PZ.
From (4.1) and (4.2) it is seen that the covariance matrix of R is AA + 1.
Hence the elements Ry, R, -+, Rr1 of R are independent with variances

ANi+1,i=1,2, -+ ,r — 1. It follows from (4.1)—(4.3) that
(44) Z'A(L0)7Z = R'(Ad + I)7R = STITIRE/ (AN + 1);
ZAA)Z = R(MA + DR = AR/ (AN + 1),

Il
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Let S; = Ri/(A\i + 1)}, 4 =1,2, ---,r — 1. Then 81, Sz, -+, Sy are in-
dependently and identically distributed as N (0, 1). From (4.4)
(4.5) ZA(A)Z = TiTH(ah 4 1)(a + 178
ZAA)TZ = (AN + 1Ak + 1)7SA
Substitution in (3.7) gives that W is distributed as

'_1<A)\; +1 AN+ 1)8.2
=\ + 1 AN+ 1)
(4.6) W(a) = ST ET
SAan+1

and in particular for A = Ao
W(Ao) = 2oimi[l — (Ack: + 1)/(AN: + DISA =SS + QI

To get a size « test a constant ¢ must be determined such that P(W(Aq) > ¢) = a.
The distribution of W(Ao) is then needed. For power calculations the distribu-
tion of W(A) is also needed.

5. Monotonicity of the power function. Let the power function of the most
powerful invariant and similar test against A; be denoted (A | A1). Then B(A| A1)
= P(W(A) > c) which by (4.6) can be written

B(A]Ar)
— P(I2E (AN 4 1)(Acki + 1) (A1 — Aohi(Aki 4+ 1) — ¢)87Q™ > o).

Suppose that 0 < A\t £ N2 £ -+ = A1 (which can always be attained by
relabelling) and let .. be the largest N such that (A1 — Ao)hi/(AN: + 1) < c.
Then

B(A | A1) = P( 2 izmm(AN: 4+ D(AN: + D7H(A — AA(ANi+ DT — 08Q™!
— ST (AN 4 1)(ANi + 17
e — (A1 — AoA(Ak: + 1)TISQT > o).

We now multiply with (A + 1)/(ANm + 1) on both sides of the inequality
sign within the parenthesis, and observe that

(A% + D)(& + (A 4+ D(AA: + 1) 2 (AN 4+ D(A: + 1)
as (A" — A)(Ai — M) S 0. Hence for A < A’
B(AA) < P(imhin (AN + 1) (A + 1) 7[(A — Ao)N(Aki + 1) — c]S7Q™
— SN+ DA+ DT
e — (A1 — Ao)N(Aki + 1)THSIQT > ¢)
= B(a"|Ay).
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Thus B(A | A;) is an increasing function of A. In particular it is seen that the test
is unbiased.

6. An alternative test. The test discussed in the preceding sections depends
upon the alternative A; . If we cannot or will not specify any alternative, we can
use as a general principle that it is desirable to have great power for large devia-
tions from the hypothesis, i.e., for large values of A. Using this principle, let
Ay — . Then

Z'AM)TZ = QDI RE AN+ 1) >0
and the limiting form of the test statistic W becomes
(6.1) W' = Z'A(0) ' Z(Z'A(M0)'Z + Q)7
To reject the hypothesis when W’ > constant is the same as to reject when
(6.2) T = Z'A(A))T'ZQ™" > constant.
From (4.5) it is seen that 7' is distributed as
(6.3) T(A) = 2001 (AN 4+ 1)(Aok: + 1)7'87Q™"

where in particular T'(A,) = ZZ:} S2Q7". Hence (n —r)(r — 1)‘1T have an
F-distribution with (r — 1) and (n — r) degrees of freedom when A = A, .
Let fi_. denote the upper a-point of this distribution, then we shall reject the
hypothesis when T' > (n — r)(r — 1) fi_o. It is easily seen from (6.3) that
the power function of this test is an increasing function of A.

The statistic T may also be used to derive a confidence interval for A. Let
Sas2 and fi_as2 be the lower and upper a/2-point of the above mentioned F-dis-
tribution. Then
(64) P(fap < (n — r)(r — 1)7Z'A(A)7ZQ7" < frap) =1 — o
As in (4.4)

(6.5) Z'AA)TZ = 2SR (A + 1)
which shows that Z'A(A)™'Z is a decreasing function of A. Hence (6.4) will
give an interval for A.

7. The test statlstxcs expressed by means of the original observations. Let
X:=n"2% X, then Yy = niX:. Hence by Section 2

(7.1) Q=22 Y= 2ia (YL — Yh)
= 2 a2 (X — X))
By definition
Zi=Ya— (ni/m)Vu = nd(X; = X,), i=1,2,--,r—1,
Define for any A,
Z, = Doimnind + )7 X,
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Then Z; and Z, are independent for ¢ = 1,2, -+ ,r — 1, and Var Z, = a =
S i niAn: + 1)7% The covariance matrix of Z* = [Z/, Z/] is:

[ 1)

Let D be the covariance matrix of X = [X;, X,, -+, X,]. Then since Z* is
a linear transformation of X

-1 2
7+ [A(A) 0] 7* = 7A(0)7z + &
0 a a

is equal to
X'D7X = XianXl(an: 4+ 1)7.
Combining this with the definition of Z, we get
(7.2) Z'AAN)TZ = Yiandan; + 1)7H(X — X)?
where
X = (Ziandan + 1)) Xiandan + 1)7X;.

From (7.1) and (7.2) the test statistics W and T may now be computed.
In particular it is seen that

(7.3) T = 2 ian(Am:+ 17X — (i D2 (X — X)H™

where X is computed with A = A,. From this it is seen that the confidence in-
terval based on T proposed in Section 7 is exactly the same as the one proposed
by Wald [6].

By inserting (7.1) and (7.2) in the expression (3.7) for W, it is easily seen
that, when the model is balanced the test based upon W is equal to the usual
F-test which rejects when

m(Agm + 1) 271 (X — XN 2t 25 (X — X))
>(n—r)(r—1) fia
wheren; = npg = -+ = n, = m.

8. Optimum properties. In Section 3 it was proved that a maximal invariant
under the group of translationsis Z; , - - - , Z,_; and the Y;;forj > 1. The problem
of testing the hypothesis H is also invariant under the group of all orthogonal
transformations of the variables Y;; for j > 1, and under the group of change of
scale of all variables. It is easily seen that a maximal invariant under the group
G of all these transformations is

(8.1) Z:Q7*, 207, , Z,.Q7.

The distribution of (8.1) depends only upon A. Hence any test which depends
upon (8.1) must be similar on wo defined in Section 3. The class of tests invariant
under the group G is thus contained in the class of tests considered in Section 3,
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i.e., class of tests invariant under translations and similar on wo. From (3.7)
it is seen that the optimum test in the latter class depends only upon (8.1).
Hence it is the optimum test in the former class too.

The discussion in the preceding paragraph shows that we can consider the
test based upon W either as the most powerful test which is invariant under the
group G, or as the most powerful test which is similar on w and invariant under
a group of translations.

It may at this point be of interest to compare with Herbach’s [2] results for
the balanced case. Herbach proves that the usual F-test may either be considered
as the most powerful test invariant under a group of transformations including
translation, change of scale and orthogonal transformation, or as the most
powerful similar test. (Only the case Ag = 0 is considered by Herbach, but it is
easily proved that the results are true for any A,). The difference is that for the
unbalanced model it has not been possible to use similarity alone to derive a test.

The group of transformations satisfies the conditions of the Hunt-Stein theorem
(see Lehmann [3] chapter 8). The most powerful invariant test against A,
then maximizes the minimum power over the set of all alternatives with A = 4;,
and since the power function of the test increases with A the test also maximizes
the minimum power over the set of alternatives with A = A,. Hence it is a
maximin test over A = A;, where the term maximin is used in the sense of
Lehmann [3].

The statistic T given by (7.3) is the one used by Scheffé ([4] Chapter 7) to
test the hypothesis A = 0. In this case T is equal to the usual test statistic in the
fixed effects model. The test based on 7' may be interpreted as being almost equal
to the most powerful invariant tests against large alternatives A, .

T was introduced to avoid to specify any alternative A; . Another way out is
given by the following argument: It should be possible to determine a small num-
ber 8 such that if the power is greater than 1 — 8 it would be regarded as good
enough. Then A, should be determined as the smallest A; such that the probability
of not rejecting the hypothesis when A > A, is less than 8. Since the power func-
tions are monotone in A it is seen that A; should be taken as the solution of
B(A1|A1) = 1 — B. In this way the shortest possible interval (Ao, A1) of not
satisfactory power is obtained, and because of the maximin property of the test
this is true even without the restriction to invariant tests.

REFERENCES

[1] Basu, D. (1955). On statistics independent of a complete sufficient statistic. Sankhya
15 377-380.

[2] HeErBAcH, L. H. (1959). Properties of model II—type analysis of variance tests, A: opti-
mum nature of the F-test for model 1II in the balanced case. Ann. Math. Statist.
30 939-959.

[3] LeaMANN, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.

[4] ScuEFFE, H. (1959). The Analysis of Variance. Wiley, New York.

[5] Sverprup, E. (1953). Similarity, unbiasedness, minimaxibility and admissibility of
statistical test procedures. Skand. Aktuarietidskr. 36 64-86.

[6] WaLp, A. (1940). A note on the analysis of variance with unequal class frequencies. Ann.
Math. Statist. 11 96-100.



