CHARACTERIZATIONS OF CONDITIONAL EXPECTATIONS

By J. PranzacGL

1. Introduction. Let (X, @, P) be a probability space and £,(X, @, P) the
family of all @-measurable functions f: X — ® such that |f|" is P-integrable. By
I/ll- we mean P[|f|"]. (Here Plg] denotes [ g dP.)

Let { be a subfamily of £,(X, &, P) and T': f — { a given operator. This paper
is concerned with the characterization of such operators as conditional expecta-
tions. The aim is to give conditions on 7' assuring that 7 is the restriction to f
of a conditional expectation with respect to some s-algebra Gy C Q.

One such characterization was given by Moy (1954), p. 61, Theorem 2.2.,:

Ml: T: &(X, @, P) — £(X, @, P)

M2: T is linear: T'(af + bg) = aTf 4+ bTyg for all f, g £ £1(X, @, P) and all
a,be@®,

M3: ||| =1

M4: T carries bounded functions into bounded functions,

M5: T(fTg) = (Tf)(Tg) for all bounded f, g £ £:(X, @, P),

M6: T is constant preserving: 71 = 1.

This result was generalized by Rota (1960) and Olson (1965), p. 979, Theorem
3, mainly by eliminating condition M4 and using £.(X, @, P) (r = 1) in M1.
The most interesting point in Olson’s paper is to consider conditional expectations
as integrals with respect to vector-valued measures with values in £;(X, @, P).

A similar characterization was given by Bahadur (1955), p. 566, Corollary 2:

B1: T: £(X, @, P) — £(X, @, P)

B2: T is linear,

B3: T is positive: f = 0 P-a.e. implies 7f = 0 P-a.e.,

B4: T is idempotent: T° = T P-a.e.

B5: T is self-adjoint: P[f(Tg)] = P[(Tf)g],

B6: T is constant preserving.

This result was somewhat strengthened by Siddk ( 1957), p. 269, Theorem 4.
Another characterization given by Siddk (p. 271, Theorem 6) uses the condition
T(Tf v Tg) = Tf v Tg P-a.e. instead of B3 (where v denotes the pointwise
maximum).

Finally, Douglas (1965), p. 453, Corollary 1 has given the following charac-
terization:

D1: T: &(X, @, P) » £(X, @, P)

D2: T is linear,

D3: |T| = 1,

D4: T is idempotent,

D5: T is constant preserving.

In the papers of Moy, Rota, Olson and Douglas the underlying probability
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measure enters only through the domain of definition of 7, £.(X, @, P), and
through the definition of || ||,. In the papers of Bahadur and Siddk a more
explicit use of the probability measure is made by the condition of self-adjoint-
ness. The author thinks that some conditions on the operator may be weakened
if a more effective use is made of the underlying probability measure, for in-
stance by requiring expectation invariance. Considering the use made of condi-
tional expectations in statistical theory, the condition of expectation invariance
seems quite natural. It is needed e.g. in connection with the concepts ‘power
function’ and ‘unbiased estimation’.

The purpose of this paper is to give two characterizations of conditional
expectations based on expectation invariance. The first characterization uses,
except for expectation invariance and monotonicity, only properties of the range
of T'. The second characterization is closely related to the one given by Bahadur.
It is, however, more general in so far as it is not restricted to functions in
£:(X, @, P). The use of expectation invariance enables us to eliminate self-
adjointness (B5) and to replace linearity (B2) by the weaker conditions of
homogeneity and translation invariance. Finally, our proof is more elementary
in so far as it avoids the Weierstrass-approximation theorem. This is done by
working with f v g instead of f-g, an idea going back to Sidék (1957, p. 268).

An assumption like translation invariance might seem artificial at first sight.
An operator missing this property is, however, hardly of use in general statistical
theory: If we consider test functions, for instance, we want to conclude that
T(1 — ¢) = 1 — To. In the theory of estimation, we want to retain the Rao-
Blackwell theorem on convex loss-functions C: P[C(Tf)] = P[C(f)]. As the
proof of this theorem is based on the envelopment of the convex function by
straight lines we have to conclude T(b + af) = b + aTf. Monotonicity of the
operator is needed in the theory of testing hypotheses (0 < ¢ =< 1 implies
0 = Ty = 1) as well as in estimation (C(f) = b + af implies TC(f) = T(b + af)).
Expectation invariance is needed in connection with the concepts ‘power-
function’ and ‘unbiased estimation’. Hence a set of properties indispensable
for any operator useful in general statistical theory is: expectation in-
variance-monotonicity—homogeneity—translation invariance. We remark that for
special problems more general operators might be of interest (see Brunk 1963).

In Theorem 3 it is shown that any expectation invariant, monotone, ho-
mogeneous, translation invariant and idempotent operator is a conditional
expectation. Contrary to the other assumptions, idempotency is not required for
the application. Generalizations of conditional expectations useful in general
statistical theory might therefore be found in the domain of nonidemrpotent
operators. However, to each constant preserving, monotone, expectation in-
variant and linear operator T, there exists an operator T, with the same prop-
erties which is stronger than T, (i.e. ToT = T) and which is a conditional ex-
pectation operator (see Le Cam, Proposition 9, p. 1435). Hence useful generaliza-
tions have to be sought in the domain of nonlinear and nonidempotent operators.
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2. First characterization. Let f C £,(X, @, P) be an arbitrary family and
T: §f — f. For this and the next section, the following properties of an operator
will be of basic importance:

Expectation invariance. T | f is expectation invariant, if P[Tf] = P[f] for all
fef.

Monotonicity. T | f is monotone if for all f, g € f, f < g P-a.e. implies Tf < Tg
P-a.e.

LemMMA 1. A monotone and expectation tnvariant operator is continuous on
pointwise convergent monotone sequences.

Proor. Let f. T f P-ae., fo, fef. As T is monotone, (Tf»)n-1.2,.- is nON-
decreasing (P-a.e.) and Tfy < Tf, < Tf P-ae. for n = 1, 2, ---. Hence
lim,.. Tf. exists P-a.e. and we have lim,., T'f» < Tf P-a.e. As fi, f, Tf,
Tf & £(X, @, P) we obtain from the Lebesgue convergence theorem

Pllilgae Tfa] = limaae P[Tfa] = lim... Plfa] = PIfl = P[Tf].

Hence lim,., Tf, = Tf P-a.e.

Let now f € £1(X, @, P) be a family with the following properties:

al: f=acfforallae®

a2: f,gef, A1, Az e @ with A, N A, = & implies x4, f + x4, 9 ¢ f.

LemMa 2. If f © £(X, @, P) fulfils conditions ol and o2, it contains all
G-measurable stimple functions.

Proor. o2 immediately extends to any finite number of functions and sets.
Together with al the assertion follows.

TraEOREM 1. Let f © £1(X, @, P) be a family of functions fulfilling ol and o2.
Let Gy C @ be a sub-o-algebra and let o be the system of all Ge-measurable functions

n f.
Assume that T is a monotone and expectalion invariant operator on f such that
(1) TF < fo
(ii) Tf = f P-a.e. forallfefo.

Then

(1) Txaof = x4,Tf P-a.e. forall fef,Aoe @,

t.e. T s the restriction to f of a conditional expectalion, given Qo .

Proor. (a) Assume that (1) holds for all bounded functions in f. Let f be a
function bounded from below. Let A_ := {z: f(z) < 0}, Ay := {z: f(z) > 0}.
We have A_, A, ¢ @. Hence f© := xa,f € f by a2. Let (en)n=12,..- be a sequence
of nonnegative simple functions approximating f* from below. Then fa := xa_f
+ xa,en is a sequence of bounded functions in f. Hence by assumption :
TXaofn = Xa,Tfn P-ae. for all Age @ and all n. As fn T f and xafn T Xaof,
continuity of T on monotone sequences (Lemma 1) implies T'xaof = xa,Tf
P-a.e. Hence (1) holds for all functions in f which are bounded from below. If
f & fis arbitrary, thenf_, := xa_.f + (—n)xi_, ¢ f where A_, := {z:f(x) = —n}
forn =1,2, - --.Asf_, is bounded from below and asf_» | fand xaf-n | Xaof,
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continuity of 7' on monotone sequences again implies Tx4f = xa4,Tf P-a.e.
Therefore (1) holds for all f ¢ f.

It remains to show that (1) holds for bounded functions in f.

(b) Let fef be a bounded function (¢; < f < ¢, P-a.e.) and let Ay @ be
such that xz,f € fo. Then

(2) x1,Tf = xz.f P-a.e.
and
(3) P[XAon] = P[XAof]-/

We have f; := x4o¢i + xafefoand fi = f < fo P-a.e. Hencefi = Tfi < Tf £
Tf. = f» P-a.e. Furthermore xz,f; = x,f for< = 1, 2. Hence xz,Tf = xa.f P-a.e.
Finally, we have Plx4,Tf] + Plxz,Tf] = P[Tf] = P[f] = Plxaf] + Plxafl
Together with (2) this implies (3).

(c¢) Let fi, faef be bounded functions (¢; £ fi £ &, a = f £ ¢
P-a.e.) and Ao & Go be such that x4.f1 = xufe P-a.e., xaf1 = xaf. P-a.e. and
xafi € fo for © = 1, 2. Then

(4) Xa,Tfi = xa4,Tf2 P-a.e.

fi £ fo P-a.e. implies T'fy < Tf, P-a.e. Together with (3) applied to f1 and f. we
obtain: x4,Tf1 = x4,Tf2 P-a.e.

(d) Let f, g € f be bounded functions (¢ £ f < ¢, £ g £ ¢z P-ae.) and
Aq £ Qo be such that x4f = x4,9 P-a.e. Then '

(5) XaoTf = x4,Tg P-a.e.

Let fi: = xaof + cixz, - We have fi < f, g < f, P-a.e. which implies Tf; < T,
Tg = Tf. P-a.e. Using (4) we obtain (5).

(e) Let fef be bounded. Let 4¢e @ be arbitrary. Then (5) applied to
fand g := xaf yields x4, Tf = xa,Tx4.f P-a.e. (2) applied to x4,f instead of f
yields xi,Tx4.f = O P-a.e. Hence x4,Tf = T'xaf P-a.e.

REMARK. If | contains nonnegative functions only, the proof of Theorem 1
works if f contains all @-measurable simple functions. (The steps b—e are then
concerned with simple functions instead of bounded functions).

In order to give sufficient conditions for al and a2 we consider systems of
functions f < £,(X, @, P) with the following properties:

Bl: fef implies af ¢ f for all a ¢ @®,

B2: fefimplies1 + fef,

B3: f, g ¢ fimplies f A g ¢ f (where A denotes the pointwise minimum),

B4: fn | fpointwise, frefforn =1,2, ---, fe£(X, @, P) implies f ¢ f.

REMARK. B1 and B2 togetherimply b + af ¢ ffor f € f and a, b £ ®. Furthermore
B1 and B3 together imply f v g ¢ ffor f, g & {.

Lemma 3. If | # & fulfills B1-B4, Qs := {A £ Q: x4 f} s a o-algebra and
f=&(X, ax, P).

Proor. As f # &, 81 and B2 together imply 1 ¢f whence X € @+. Hence



CHARACTERIZATIONS OF CONDITIONAL EXPECTATIONS 419

Qs #* &. If A eQx, then x4 ¢ f whence 1 — x4 ¢ f whence A € G«. If A, £ G,
then x4, & f whence fa := x4, A -+ A x4, € [ whence by 54, Xn®s, =
lima.. fa € f whence (|1 A, & G« . Hence G« is a o-algebra. To show G«-measura-
bility for fef, let 8 := {f'[a, ©): fef, ac®}. Because fef implies
f — (@ — 1)ef, we have 8 = {f'[1, ©): fef}. Because fef implies
(0v (L Aaf))ef,wehave:8 = {f {1}:fef,0<f<1}.Finallyfe f,0<f=<1,
implies fo :=1 — (1 A n(1 — f)) e fand fo = lim,. f» is an indicator function
such that fo {1} = f*{1}. Hence s = {f '{1}:f ¢ f, f indicator function}. There-
fore, 8 is identical to G4 . As the system {[a, ©): a ¢ ®} generates the Borel-
algebra, all functions of f are measurable with respect to the o-algebra generated
by 8. As 8 itself is a o-algebra, namely G« , all functions of f are @«-measurable.

Finally we show that any @s«-measurable function in £,(X, @, P) belongs to f.
It is immediately clear that any nonnegative Gi-measurable simple function
belongs to f, for D> F axa; = V¥ aixa; (A1, -+, A, pairwise disjoint). If
fe&£i(X, @, P)is @4x-measurable and nonnegative, it is the limitof a nondecreasing
sequence of nonnegative @s-measurable simple functions and hence (by 81 and
B4) belongs to f. Let finally f ¢ £,(X, @, P) be an arbitrary @s-measurable func-
tion. Then (f + n)* is @«-measurable and nonnegative. As (f +n)" ¢ £,(X, @, P)
we have therefore (f 4+ n)" ¢ f. Hence (f + n)t —nefforn =1,2, ---. As
(f+n)"—n | fandfe£i(X, @, P), wehavefef.

THEOREM 2. Let T | f be a monotone and expectation invariant operator on a
system of functions f % & fulfilling B1-B4. Let fo C f be a subsystem of functions
Sulfilling B1-B4 such that

(1) TFCfo

(ii) Tf = f P-a.e. forall fe fo .

Then Go := {A € Q: x4 € fo} s a o-algebra and T | | is the restriction to f of a con-
dittonal expectation, given Qo .

Proor. According to Lemma 3: f = £1(X, @« , P) and fo = £1(X, @, P) with
Qo C Q4 . Hence f fulfills al and o2 and f, is the system of all G,-measurable func-
tions in . Hence the assertion follows immediately from Theorem 1.

3. Second characterization. Theorem 1 depends on the rather strong assump-
tion (ii) that T leaves the functions in f, invariant. The purpose of this section is
to replace this assumption by other assumptions on 7. In addition to the assump-
tion of monotonicity and expectation invariance we will assume that 7' is idem-
potent. (Idempotency is an immediate consequence of (i) and (ii).) Further-
more, we need the following properties:

Homogeneity. T is homogeneous, if T'af = aTf P-a.e. for all f and all @ ¢ ® (for
which these terms are defined).

T ranslation invariance. T is translation invariant, if T(1 4+ f) = 1 + Tf P-a.e.
for all f (for which these terms are defined).

The natural domain of definition of an operator with these properties is a
family f € £.(X, @, P) which fulfills 81-4.

REMARK. Let T | f be an expectation invariant, monotone and constant pre-
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serving operator, defined on a family f C £:(X, @, P) which is closed under v and
contains all constants. Under these conditions, idempotency of 7' is equivalent to
the following property (used by Siddk (1957), p. 271, Theorem 6):

T(Tf v Tg) = Tf v Tg P-a.e.

Proor. (i) Monotonicity of T implies T(f v g) = Tf v Tg P-a.e. Applied to
Tf, Tg (instead of f, g), this relation together with idempotency yields T(Tf v Tg)
= Tf v Tg P-a.e. Using expectation invariance, we obtain T(Tf v Tg) =
Tf v Tg P-a.e.

(ii) As T is constant preserving, Siddk’s condition implies T((Tf) v (—n)) =
(Tf) v (—n) P-a.e. for all integers n. According to Lemma 1, T'is continuous on
monotone limits. Hence for n — « we obtain: T(Tf) = Tf P-a.e.

LemMma 4. If T | f s an expectation invariant, monotone, homogeneous, translation
tnvariant and idempotent operator defined on a family § % & with properties 3134,
the family fo := {f € {: Tf = f P-a.e.} has properties B1-84 too. Furthermore we have
Tf = f, P-a.e

Proor. The relation 7'f = f, P-a.e. is obvious from the idempotency of T'. That
fo has properties 81, 82 and B4 is obvious from homogeneity, translation in-
variance and Lemma 1, respectively. It remains to show that f, g £ fo implies
f A gefo. Monotonicity of T implies T(f A ¢g) < (Tf) A (Tg) P-ae. If
frgefo:T(f A g) =f A g P-ae. Together with expectation invariance we ob-
tain T'(f A g) = f A g P-a.e.

TuroreM 3. If T | f is an expectation invariant, monotone, homogeneous, transla-
tion tnvariant and idempotent operator, defined on a family § = & with properties
B1-p4, then T is the restriction to f of a conditional expectation with respect to the
o-algebra Qo := {A £ @: x4 € fo} where {o is defined as in Lemma 4.

ProoF. According to Lemma 4, fo := {f ¢ {: Tf = f P-a.e.} has properties 1-3 4.
Condition (ii) of Theorem 2 is fulfilled by definition of f, ; condition (i) is a conse-
quence of idempotency. Hence the assertion follows immediately from Theorem 2.

We remark that the assumptions on 7 made in Theoem 3 are less restrictive
than the assumptions made by Bahadur. First of all the domain of definition of
T is an arbitrary subfamily of £,(X, &, P) fulfilling 31-84 whereas Bahadur re-
quires f = £2(X, @, P). Expectation invariance is an immediate consequence of
B5 and B6 (taking f = 1). Monotonicity follows from B2 and B3. Furthermore
B2 implies homogeneity, B2 and B6 together imply translation invariance. Hence
Theorem 3 is stronger than Bahadur’s characterization (Corollary 2, p. 566).

A number of easy examples show that the properties of the operator required
in Theorem 3 (expectation invariance, monotonicity, homogeneity, translation
invariance and idempotency) are mutually independent.
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1§, C f2 P-a.e. if to each f; € f, there exists f2 € fasuch that f; = f» P-a.e.;f. = f: P-ae.
if f; C f2 P-a.e. and f» C {; P-a.e.
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