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1. Introduction. Proof of infinite divisibility (i.d. for brevity) of distributions
such as the Poisson, the Normal and, the Gamma is available in text books. The
proof hinges on the fact that if ¢(¢, 8) is the characteristic function of the given
distribution, then {¢(¢, 8)}" can be written in the form ¢(t, 6*). Clearly, one can-
not expect this to happen in general situations. For example, the characteristic
function ¢(¢,0) = log {1 — 6 exp (it)}/log {1 — 6} of the logarithmic distribution
does not permit this form. The aim of this paper is to develop conditions which are
necessary and sufficient if an integer valued random variable is to be i.d. and to
illustrate their use with examples. The interesting part of these conditions is that
they are explicit. Because of this explicitness, numerical methods can be used to
give counter examples when a distribution is not i.d. and to gather inspiration to
work out algebraic proofs if the numerical methods indicate that the distribution
could be i.d.

2. Necessary and sufficient conditions. Let g(z) be the probability generating
function (pgf for brevity) of a random variable X taking values in {0, 1, 2, - - -}
with probabilities P;, Py ¢ 0. If X is i.d., then for every integer n, we have
X = D74 X: where X; are independent and identically distributed. Clearly,
X takes on the values (0, 1,2 - - -). Denote the probabilities in the distribution of
X, by =; and the pgf by h(z). Then, h(z) = D =2’ and
(1) g(z) = th(z)}"

On differentiating (1) with respect z, we get on rearranging the terms,
(2) (2% (@ + DPLEYA + Xian™/n)
= (14 25 P (2% (1 + Drlng!)

where P,* = P./Pyand = nw;/m . On ignoring the term Zi=l w,-*zi/n in com-
parison with unity on the left-hand side of (2) we get

(3) o (1 DPHaz’ = (14 27 P2 (% (0 4+ Datagh).
On equating coefficients of z° and solving for =.*, we get
P* 1 0 N U 0
4) =f = (= 1)
| P:'k-l P;k-—z P:k—:; D £k 1
iP* (i— 1P (0= 2)PE, - - - 2P P
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or

(5) 7|'i 21—1 P 7r,_, .

A set of necessary conditions for the random variable X to be i.d. therefore is
75 = 0 where =,* is given explicitly by (4) or through a recursion formula by
(5). Sufficiency is clear from the representation in formula (7) or from the fact
that the pgf (z) in (1) may be written as

h(z) = h(0) exp [1/n D im 727,

CoROLLARY 1. If we solve the equations given by (3) without ignoring the terms,
we get the following solutions for w;*, denoted by 5™ to distinguish them from the
solution in formula (4):

(6) m*(n) = (= 1"

P*(1 — 1/G —1)n) 1 0 0 0
APY (1= (i — 2)/2n) Pl=s (1 — (i — 3)/2n) Pi—s(1 — (i — 4)/2n) --- 1 0
P*(1— G—1/n) Plo(—G—2/n) Plal—G—3)/n) - Pi(l —1/n) 1
iP* (z — l)PZ‘_l (2 — 2)P?—z 2P.* P*.

Since the conditions =;* = 0 and =;*(n) = 0 are both necessary and sufficient
for the distribution of X to be i.d., we get the result that if the determinant on the
right-hand side of (4) is nonnegative then the determinant on the right-hand side
of (6) is nonnegative for every integer n.

CoROLLARY 2. We will prove here that if x> 0 forall i, then w*(n) > win) >0

fori = 2.
Denote the column vectors (m*(n), m*(n), ---)" and (m*, m* ---)" by
7*(n) and =¥, respectively. Then it can be shown that
(7) *(n) = (1 4+ A/ + A0 + - o
where

— —_

0 0 0 0
mt 0 0 0
A=|mn" =» 2 0 0
e m /2 m™/3 0

Clearly each element on the right hand side of (7) is nonnegative and a look at
the form of (7) will show that =.*(n) > =,* > 0.

A number of other results can be obtained based on equation (7) but they are
left out for brevity.

3. Examples.
ExampLE (1). Shows that the logarithmic distribution is i.d.

For a logarithmic distribution, P; = 6°"'/{ — (¢ + 1) log (1—6)},7=0,1,2, - - -
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where 0 < 6 < 1. Hence, P;* = P,/Py = 6°/(i + 1) and

(8) wt = d07/(0+ 1) — 230/ + 1)
Change i to 7 + 1 in (8) to get

(9) win = (0 + 107/ + 2) — 250/ + D, .
Therefore

wia — 0m* = {(i + 1)/(i + 2) — /(5 + 1)}

+ XA 1/G+ 1) - 1/ +2) — o/2n"
or
(10) T = 0/21”*.

Since m * is always nonnegative, equation (10) implies that =;* = 0 for every
7. Hence the logairthmic distribution is i.d.

ExampLE (ii1). The logarithmic distribution with zeros with P = a/(1 4 @) and
P, =6/{—i(1 +a)log (1 —0)},fori =1,2,--- wherea > 0and0 < 6 < 1
isi.d. if and only if @ = 1/{—log (1 — 6)}. To prove this, we write

P* = Pi/Py = §'/{—ialog (1 — 6)}.
Formula (4) for 7 = 2 gives
(11) mr = 2P, — (P = 0
On substituting for P,* and P,*, this inequality gives the condition given above

Hence the condition is necessary. To prove its sufficiency, let us substitute the
expression for P.* in formula (5). This gives the condition

i = 0'/{—ialog (1 — 0)} — D.iZi (6/{—jalog (1 — 6)})mi—; = O.

The fact that this inequality is satisfied can be verified through mathematical

induction as in example (i) above. Hence, the condition a = 1/{—log (1 — 6)}

is necessary and sufficient for the logarithmic distribution with zeroes to be i.d.
ExampLe (iii). Show that a distribution with probabilities

Pi=co™t/(1 —p™™),0 < p < 1lisid.

Here the condition =;* = 0 reduces to showing that D, given by the recursion
formula D; = 1/(1 4+ p) and
Di=i/(1+p+ - +p) =Dia/(1+p) = =D/(1+p+ - +57)
are nonnegative. On changing 7 to ¢ 4+ 1 and going through the arguments given
above we get, Diy1 = pDs/(1 + p) and the proof of i.d. follows through induction.
ExampLE iv. Show that the distribution P; = ¢p™™'/{(1 —p)’ (1 — o"tH},

0<p<lisid
Proof is left to the reader. Distributions in examples (iii) and (iv) arise in
queueing theory problems and were brought to the author’s attention by Dr.

Vincent Hodgson.



